Implementation of Machine Learning-Based System for Early Diagnosis of Feline Mammary Carcinomas through Blood Metabolite Profiling
Abstract
:1. Introduction
2. Methods
2.1. Data Collection and Preprocessing
2.2. Programs Used
2.2.1. PaDEL-Descriptor
2.2.2. Waikato Environment for Knowledge Analysis
2.2.3. MetaboAnalyst
2.2.4. STRINGdb
2.2.5. DAVID
2.3. Data Selection and Preprocessing
3. Results
3.1. Metabolic Pathway Analysis
3.2. Genetic Analysis Using STRING
3.3. Gene Cluster Analysis through DAVID
3.4. Network Analysis Using MetaboAnalyst
3.5. Joint Pathway Analysis Using MetaboAnalyst
3.6. Machine Learning Classifiers
4. Discussion
4.1. Alanine, Aspartate, and Glutamate Metabolism
4.2. Glutamine and Glutamate Metabolism
4.3. Arginine Biosynthesis
4.4. Glyoxylate and Dicarboxylate Metabolism
4.5. Purine Metabolism
4.6. Butanoate Metabolism
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, J.-S.; Wei, R.-Y.; Wang, Z.; Song, J.; Ge, Y.-S.; Wu, R. Serum metabolomic analysis of feline mammary carcinomas based on LC-MS and MRM techniques. J. Vet. Res. 2020, 64, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Gameiro, A.; Urbano, A.C.; Ferreira, F. Emerging biomarkers and targeted therapies in feline mammary carcinoma. Vet. Sci. 2021, 8, 164. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Jasbi, P.; Shi, X.; Turner, C.; Hrovat, J.; Liu, L.; Rabena, Y.; Porter, P.; Gu, H. Early breast cancer detection using untargeted and targeted metabolomics. J. Proteome Res. 2021, 20, 3124–3133. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Zheng, H.H.; Zhang, Y.Z.; Du, C.T.; Xie, G.H. Identification of canine mammary tumor-associated metabolites using untargeted metabolomics. Theriogenology 2023, 211, 84–96. [Google Scholar] [CrossRef] [PubMed]
- Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 1988, 28, 31–36. [Google Scholar] [CrossRef]
- Weininger, D.; Weininger, A.; Weininger, J.L. SMILES. 2. Algorithm for generation of unique SMILES notation. J. Chem. Inf. Comput. Sci. 1989, 29, 97–101. [Google Scholar] [CrossRef]
- Hassan, B.B.; Elshafae, S.M.; Supsavhad, W.; Simmons, J.K.; Dirksen, W.P.; Sokkar, S.M.; Rosol, T.J. Feline mammary cancer: Novel nude mouse model and molecular characterization of invasion and metastasis genes. Vet. Pathol. 2017, 54, 32–43. [Google Scholar] [CrossRef]
- Lin, J.; Kouznetsova, V.L.; Tsigelny, I.F. Molecular mechanisms of feline cancers. OBM Genet. 2015, 5, 131–159. [Google Scholar] [CrossRef]
- Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; et al. PubChem Substance and Compound databases. Nucleic Acids Res. 2016, 44, D1202–D1213. [Google Scholar] [CrossRef]
- Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res. 2022, 50, D622–D631. [Google Scholar] [CrossRef]
- Yap, C.W. PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem. 2011, 32, 1466–1474. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA data mining software. ACM SIGKDD Explor. Newsl. 2009, 11, 10–18. [Google Scholar]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.-É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef] [PubMed]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef]
- PaDEL Descriptors. Last Modified on 17 July 2014 by Yap Chun Wei. Available online: http://www.yapcwsoft.com/dd/padeldescriptor/ (accessed on 29 August 2023).
- Barabási, A.L.; Oltvai, Z.N. Network biology: Understanding the cell’s functional organization. Nat. Rev. Genet. 2004, 5, 101–113. [Google Scholar] [CrossRef]
- Ping, Z.; Siegal, G.P.; Harada, S.; Eltoum, I.-E.; Youssef, M.; Shen, T.; He, J.; Huang, Y.; Chen, D.; Li, Y.; et al. ERBB2 mutation is associated with a worse prognosis in patients with CDH1 altered invasive lobular cancer of the breast. Oncotarget 2016, 7, 80655–80663. [Google Scholar] [CrossRef]
- Bai, F.; Liu, S.; Liu, X.; Hollern, D.P.; Scott, A.; Wang, C.; Zhang, L.; Fan, C.; Fu, L.; Perou, C.M.; et al. PDGFRβ is an essential therapeutic target for BRCA1-deficient mammary tumors. Breast Cancer Res. 2021, 23, 10. [Google Scholar] [CrossRef]
- Wang, Z. ErbB Receptors and Cancer. In ErbB Receptor Signaling: Methods in Molecular Biology; Wang, Z., Ed.; Humana Press: New York, NY, USA, 2017; Volume 1652, pp. 3–35. [Google Scholar] [CrossRef]
- Wang, F. Oncogenic Role of Grb2 in breast cancer and Grb2 antagonists as therapeutic drugs. Cancer Ther. Oncol. Int. J. 2017, 3, 555618. [Google Scholar] [CrossRef]
- Stacker, S.A.; Achen, M.G. Emerging Roles for VEGF-D in Human Disease. Biomolecules 2018, 8, 1. [Google Scholar] [CrossRef]
- Park, S.-S.; Baek, K.-H. Acute myeloid leukemia-related proteins modified by ubiquitin and ubiquitin-like proteins. Int. J. Mol. Sci. 2022, 23, 514. [Google Scholar] [CrossRef] [PubMed]
- Diévart, A.; Beaulieu, N.; Jolicoeur, P. Involvement of Notch1 in the development of mouse mammary tumors. Oncogene 1999, 18, 5973–5981. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Shen, J.-X.; Wen, X.-F.; Guo, Y.-X.; Zhang, G.-J. Targeting Notch degradation system provides promise for breast cancer therapeutics. Crit. Rev. Oncol. 2016, 104, 21–29. [Google Scholar] [CrossRef]
- Deb, N.; Garg, M.; Kawashita, Y.; Alfieri, A.; Liu, L.; Cerretti, D.; Fanslow, W.; Vikram, B.; Guha, C. A novel antiangiogenic therapy with soluble TEK (Tie2) receptor tyrosine kinase alone or in combination with fractionated irradiation in a murine model of lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 2001, 51, 154–155. [Google Scholar] [CrossRef]
- Yu, H.; Kim, P.M.; Sprecher, E.; Trifonov, V.; Gerstein, M. The importance of bottlenecks in protein networks: Correlation with gene essentiality and expression dynamics. PLoS Comput. Biol. 2007, 3, e59. [Google Scholar] [CrossRef]
- Yuan, J.; Dong, X.; Yap, J.; Hu, J. The MAPK and AMPK signalings: Interplay and implication in targeted cancer therapy. J. Hematol. Oncol. 2020, 13, 113. [Google Scholar] [CrossRef]
- KEGG Pathways in Cancer. Available online: https://www.genome.jp/kegg-bin/show_pathway?ko05200 (accessed on 29 August 2023).
- Wehde, B.L.; Rädler, P.D.; Shrestha, H.; Johnson, S.J.; Triplett, A.A.; Wagner, K.-U. Janus kinase 1 plays a critical role in mammary cancer progression. Cell Rep. 2018, 25, 2192–2207.e5. [Google Scholar] [CrossRef]
- Schousboe, A.; Scafidi, S.; Bak, L.K.; Waagepetersen, H.S.; McKenna, M.C. Glutamate metabolism in the brain focusing on astrocytes. Adv. Neurobiol. 2014, 11, 13–30. [Google Scholar] [CrossRef]
- Lieu, E.L.; Nguyen, T.; Rhyne, S.; Kim, J. Amino acids in cancer. Exp. Mol. Med. 2020, 52, 15–30. [Google Scholar] [CrossRef]
- Helenius, I.T.; Madala, H.R.; Yeh, J.-R.J. An Asp to strike out cancer? Therapeutic possibilities arising from aspartate’s emerging roles in cell proliferation and survival. Biomolecules 2021, 11, 1666. [Google Scholar] [CrossRef]
- Altman, B.J.; Stine, Z.E.; Dang, C.V. From Krebs to clinic: Glutamine metabolism to cancer therapy. Nat. Rev. Cancer 2016, 16, 619–634. [Google Scholar] [CrossRef] [PubMed]
- Cluntun, A.A.; Lukey, M.J.; Cerione, R.A.; Locasale, J.W. Glutamine metabolism in cancer: Understanding the heterogeneity. Trends Cancer 2017, 3, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Panieri, E.; Santoro, M.M. ROS homeostasis and metabolism: A dangerous liason in cancer cells. Cell Death Dis. 2016, 7, e2253. [Google Scholar] [CrossRef] [PubMed]
- Delage, B.; Fennell, D.A.; Nicholson, L.; McNeish, I.; Lemoine, N.R.; Crook, T.; Szlosarek, P.W. Arginine deprivation and argininosuccinate synthetase expression in the treatment of cancer. Int. J. Cancer 2010, 126, 2762–2772. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-L.; Hsu, S.-C.; Ann, D.K.; Yen, Y.; Kung, H.-J. Arginine signaling and cancer metabolism. Cancers 2021, 13, 3541. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Zhao, X. Argininosuccinate synthase 1, arginine deprivation therapy and cancer management. Front. Pharmacol. 2022, 13, 935553. [Google Scholar] [CrossRef]
- Kim, S.; Lee, M.; Song, Y.; Lee, S.-Y.; Choi, I.; Park, I.-S.; Kim, J.; Kim, J.-S.; Kim, K.M.; Seo, H.R. Argininosuccinate synthase 1 suppresses tumor progression through activation of PERK/eIF2α/ATF4/CHOP axis in hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 2021, 40, 127. [Google Scholar] [CrossRef]
- Dunn, M.F.; Ramírez-Trujillo, J.A.; Hernández-Lucas, I. Major roles of isocitrate lyase and malate synthase in bacterial and fungal pathogenesis. Microbiology 2009, 155, 3166–3175. [Google Scholar] [CrossRef]
- Liu, J.; Hong, S.; Yang, J.; Zhang, X.; Wang, Y.; Wang, H.; Peng, J.; Hong, L. Targeting purine metabolism in ovarian cancer. J. Ovarian Res. 2022, 15, 93. [Google Scholar] [CrossRef]
- Tang, Z.; Ye, W.; Chen, H.; Kuang, X.; Guo, J.; Xiang, M.; Peng, C.; Chen, X.; Liu, H. Role of purines in regulation of metabolic reprogramming. Purinergic Signal. 2019, 15, 423–438. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, K.-N.; Vitetta, L. Effects of intestinal microbial-elaborated butyrate on oncogenic signaling pathways. Nutrients 2019, 11, 1026. [Google Scholar] [CrossRef] [PubMed]
Metabolites | p-Value | Increase/Decrease | Fold Change |
---|---|---|---|
L-glutamate | 9.39957 × 10−6 | Increase | 2.301030 |
L-alanine | 9.66197 × 10−5 | Increase | 1.903090 |
Glycerol 3-phosphate | 1.128205 × 10−3 | Increase | 1.591065 |
Succinate | 5.54729 × 10−4 | Increase | 1.446256 |
20-hydroxy-PGE2 | 2.17846 × 10−5 | Increase | 2.079181 |
Fosfomycin | 2.655475 × 10−3 | Increase | 2.041393 |
3-methyluridine | 2.77439 × 10−4 | Increase | 1.748188 |
N-acetyl-L-alanine | 2.40845 × 10−4 | Increase | 1.698970 |
Choline | 2.37754 × 10−7 | Increase | 1.778151 |
Trigonelline | 2.40845 × 10−4 | Increase | 1.612784 |
Ile-Asn | 1.10469 × 10−5 | Increase | 1.724276 |
Arachidonic acid (peroxide free) | 1.126785 × 10−3 | Increase | 1.556303 |
S-methyl-5′-thioadenosine | 3.60333 × 10−4 | Increase | 1.643453 |
Creatinine | 5.23436 × 10−5 | Increase | 1.568202 |
L-histidinol | 8.41015 × 10−4 | Increase | 1.602060 |
Guanidine acetic acid | 5.46455 × 10−4 | Increase | 1.653213 |
Cytosine | 1.12223 × 10−4 | Increase | 1.690196 |
Inosine | 2.446273 × 10−3 | Decrease | −1.522878 |
Adenine | 1.575227 × 10−3 | Increase | 1.518514 |
Hypoxanthine | 6.7303 × 10−4 | Increase | 1.585027 |
L-glutamic acid | 1.94106 × 10−2 | Increase | 1.579784 |
FMC-Related Genes | References |
---|---|
AKT2 | [8] |
ANGPT2 | [7] |
BMI1 | [8] |
COX-2 (PTGS2) | [8] |
Cyclin A1 (CCNA1) | [8] |
E-cadherin (CDH1) | [8] |
EGFR | [7,8] |
ERBB2 | [7,8] |
ERBB3 | [7] |
ERalpha (ESR1) | [8] |
FGF2 (FGFR2) | [7] |
FOXA1 | [8] |
HSPB1 | [7] |
JAG1 | [8] |
MYOF | [7] |
PDGFA | [7] |
PDGFB | [7] |
PDGFC | [7] |
PDGFD | [7] |
PDGFRA | [7] |
STAT3 | [7] |
f-STK (SPRY4) | [7] |
TOP2A | [8] |
TP53 | [8] |
TWIST1 | [8] |
VEGFC | [7] |
VEGFD (FGF6) | [7] |
VEGFR3 (FLT4) | [7] |
WNT5A | [8] |
B-catenin (CTNNB1) | [8] |
Pathway | Number of Proteins | Strength | FDR |
---|---|---|---|
Melanoma | 9 of 64 | 1.99 | 3.60 × 10−4 |
Choline metabolism in cancer | 7 of 87 | 1.75 | 1.69 × 10−9 |
Endometrial cancer | 4 of 52 | 1.73 | 1.76 × 10−5 |
Glioma | 5 of 67 | 1.72 | 8.47 × 10−7 |
Thyroid cancer | 2 of 32 | 1.64 | 7.60 × 10−3 |
Central carbon metabolism in cancer | 4 of 65 | 1.63 | 3.91 × 10−5 |
Bladder cancer | 2 of 35 | 1.60 | 8.30 × 10−3 |
Gastric cancer | 7 of 127 | 1.59 | 1.60 × 10−8 |
Breast cancer | 7 of 131 | 1.57 | 1.83 × 10−8 |
MicroRNAs in cancer | 7 of 141 | 1.54 | 2.79 × 10−8 |
Non-small cell lung cancer | 3 of 62 | 1.53 | 1.10 × 10−3 |
Pancreatic cancer | 3 of 64 | 1.52 | 1.20 × 10−3 |
Acute myeloid leukemia | 3 of 65 | 1.51 | 1.20 × 10−3 |
Proteoglycans in cancer | 8 of 187 | 1.48 | 6.60 × 10−9 |
Colorectal cancer | 3 of 75 | 1.45 | 1.70 × 10−3 |
PD-L1 expression and PD-1 checkpoint pathway in cancer | 3 of 83 | 1.40 | 2.10 × 10−3 |
Basal cell carcinoma | 2 of 55 | 1.40 | 1.81 × 10−2 |
Pathways in cancer | 15 of 475 | 1.34 | 1.93 × 10−15 |
Kaposi sarcoma-associated herpesvirus infection | 5 of 162 | 1.33 | 4.81 × 10−5 |
Renal cell carcinoma | 2 of 66 | 1.33 | 2.38 × 10−2 |
Hepatocellular carcinoma | 4 of 140 | 1.30 | 5.50 × 10−4 |
Transcriptional misregulation in cancer | 3 of 154 | 1.13 | 9.10 × 10−3 |
Classifier | TP Rate | FP Rate | Precision | Recall | F-Measure | MCC | AUC | AUCPR | Class |
---|---|---|---|---|---|---|---|---|---|
Random F | 0.857 | 0.154 | 0.818 | 0.857 | 0.837 | 0.701 | 0.886 | 0.819 | select |
Random F | 0.846 | 0.143 | 0.880 | 0.846 | 0.863 | 0.701 | 0.886 | 0.904 | random |
MLP | 0.810 | 0.154 | 0.810 | 0.810 | 0.810 | 0.656 | 0.846 | 0.800 | select |
MLP | 0.846 | 0.190 | 0.846 | 0.846 | 0.846 | 0.656 | 0.846 | 0.867 | random |
Parameter | Random Forest | MLP | REPTree | J48 | SGD |
---|---|---|---|---|---|
Correctly Classified Instances | 85.11% | 82.98% | 80.85% | 80.85% | 76.60% |
Kappa statistic | 0.70 | 0.65 | 0.61 | 0.61 | 0.53 |
Mean absolute error | 0.25 | 0.19 | 0.27 | 0.27 | 0.23 |
Root mean squared error | 0.35 | 0.39 | 0.40 | 0.40 | 0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulkarni, V.; Tsigelny, I.F.; Kouznetsova, V.L. Implementation of Machine Learning-Based System for Early Diagnosis of Feline Mammary Carcinomas through Blood Metabolite Profiling. Metabolites 2024, 14, 501. https://doi.org/10.3390/metabo14090501
Kulkarni V, Tsigelny IF, Kouznetsova VL. Implementation of Machine Learning-Based System for Early Diagnosis of Feline Mammary Carcinomas through Blood Metabolite Profiling. Metabolites. 2024; 14(9):501. https://doi.org/10.3390/metabo14090501
Chicago/Turabian StyleKulkarni, Vidhi, Igor F. Tsigelny, and Valentina L. Kouznetsova. 2024. "Implementation of Machine Learning-Based System for Early Diagnosis of Feline Mammary Carcinomas through Blood Metabolite Profiling" Metabolites 14, no. 9: 501. https://doi.org/10.3390/metabo14090501
APA StyleKulkarni, V., Tsigelny, I. F., & Kouznetsova, V. L. (2024). Implementation of Machine Learning-Based System for Early Diagnosis of Feline Mammary Carcinomas through Blood Metabolite Profiling. Metabolites, 14(9), 501. https://doi.org/10.3390/metabo14090501