Metabolite Profiling of Root Exudates of Common Bean under Phosphorus Deficiency
Abstract
:1. Introduction
2. Results and Discussion
2.1. Shoot Growth and P Status of Common Bean
DAT | P concentration | Shoot dry weight | Shoot P concentration | ||||||
---|---|---|---|---|---|---|---|---|---|
(mg P L-1) | (mg/plant) | (mg P/g) | |||||||
1 | 0 | 0.208 | ± | 0.008 | a | 4.75 | ± | 0.28 | b |
1 | 1 | 0.194 | ± | 0.019 | a | 5.58 | ± | 0.31 | b |
1 | 8 | 0.202 | ± | 0.013 | a | 6.50 | ± | 0.06 | a |
10 | 0 | 0.480 | ± | 0.019 | b | 1.83 | ± | 0.13 | c |
10 | 1 | 0.558 | ± | 0.048 | b | 2.69 | ± | 0.22 | b |
10 | 8 | 0.919 | ± | 0.067 | a | 6.33 | ± | 0.25 | a |
20 | 0 | 0.861 | ± | 0.111 | b | 1.35 | ± | 0.04 | b |
20 | 1 | 0.840 | ± | 0.006 | b | 1.86 | ± | 0.2 | b |
20 | 8 | 1.943 | ± | 0.176 | a | 2.85 | ± | 0.39 | a |
2.2. Response of Metabolites in Root Exudates to P Deficiency
Metabolite | 1 | 10 | 20 | Metabolite | 1 | 10 | 20 | Metabolite | 1 | 10 | 20 |
---|---|---|---|---|---|---|---|---|---|---|---|
Amino acid, amine, amino and acid derivative | Oxamate | 1.88 | 0.82 | 2.09 | 2-Aminoadipate | 0.46 | 0.48 | 0.51 | |||
Cadaverine | 20.00 | 0.00 | 0.79 | Pipecolate | 0.44 | 0.33 | 0.43 | 2-Aminobutyrate | 20.00 | 0.00 | 0.20 |
Cyclohexylamine | 1.53 | Shikimate | 0.27 | 20.00 | 3-Hydroxypropionate | 20.00 | 0.25 | 0.31 | |||
Diethanolamine | 1.16 | 0.82 | 0.40 | Sinapate | 20.00 | 1.21 | 3-Methyladenine | 20.00 | 0.17 | 0.08 | |
Isobutylamine | 3.60 | 10.00 | Succinate | 0.58 | 0.25 | 0.37 | 3-MethylHis | 1.12 | 0.46 | ||
Serotonin | 3.43 | 1.09 | Tartrate | 2.69 | 1.15 | 2.27 | 4-Amino-3-hydroxybutanoate | 2.59 | 0.55 | 0.60 | |
Allantoate | 1.51 | 4.39 | trans-Cinnamate | 0.83 | 0.50 | 4-Coumarate;Coumarate | 20.00 | 1.16 | |||
Arginine | 1.03 | 3.45 | 4.85 | P compound | 4-Hydroxybenzoate | 1.57 | 20.00 | 0.49 | |||
Asparagine | 1.53 | 6.65 | 6.59 | ADP+dGDP | 0.99 | 0.36 | 0.46 | 5-Amino-4-oxovalerate | 0.20 | 0.37 | |
Citrulline | 1.67 | 2.33 | 1.88 | AMP | 0.93 | 0.00 | 0.56 | 5-Aminopentanoate | 5.28 | 0.03 | 1.27 |
Creatine | 1.92 | 0.60 | 0.16 | cCMP | 0.90 | 0.00 | 6-Hydroxynicotinate | 1.00 | 20.00 | ||
Creatinine | 2.01 | 0.80 | 0.47 | cGMP | 2.78 | ABA | 0.75 | 7.79 | 12.02 | ||
Cysteine | 1.11 | 0.00 | CMP | 0.52 | 0.22 | 0.42 | Acetoacetate;2-Oxobutyrate | 1.19 | 0.00 | 20.00 | |
Cystine | 0.00 | 0.84 | 0.33 | F1,6P;G1,6P | 0.00 | 0.00 | 0.00 | Allantoin | 1.16 | 2.20 | 3.44 |
DimethylGly | 1.94 | 0.32 | 0.22 | G1P+Gal1P | 0.37 | 0.00 | 0.19 | Anthranilate+Trigonelline | 0.80 | 0.61 | 0.35 |
GABA | 1.58 | 0.68 | 0.47 | G6P+F6P+M6P | 0.25 | 0.00 | 0.00 | Atropine | 0.77 | 0.45 | |
Glutamine | 1.82 | 3.46 | 1.17 | Galacturonate1P | 1.84 | 0.00 | 0.66 | b-Imidazolelactate | 2.23 | 0.09 | |
Gly-Leu | 0.63 | 1.01 | 3.21 | GlcN6P | 1.00 | 0.35 | 0.47 | Biotin | 0.39 | ||
Glycine | 1.36 | 0.67 | 0.31 | GlcNAc6P | 0.00 | 0.53 | 0.17 | Carnitine | 2.70 | 0.41 | 0.65 |
Histidine | 1.97 | 3.31 | 0.90 | Gly3P | 0.70 | 0.02 | 0.38 | Castanospermine | 20.00 | 1.57 | 0.44 |
Ile+Leu | 1.06 | 0.45 | 0.32 | GMP | 0.56 | 0.50 | 0.68 | CysSG | 0.00 | 0.81 | |
Lysine | 1.35 | 0.61 | 0.40 | IMP | 0.47 | 0.62 | 1.14 | GalN;GlcN | 2.97 | 1.04 | 0.02 |
Methionine | 0.20 | 0.06 | PhenylP | 0.00 | Gentisate | 1.32 | 4.32 | 1.29 | |||
O-AcetylSer | 0.67 | 4.15 | 1.31 | Pyridoxamine5P | 0.31 | 0.00 | GlcNAc | 1.11 | 0.45 | 0.47 | |
Ornithine | 1.77 | 1.43 | 2.38 | UDP-Glc;UDP-Gal | 1.44 | 0.45 | 0.63 | Glucosaminate | 0.87 | 20.00 | 1.69 |
Phenylalanine | 0.97 | 0.36 | 0.24 | UMP | 0.58 | 0.17 | 0.35 | Glycerate | 1.11 | 0.48 | 0.44 |
Proline | 1.12 | 0.12 | 0.20 | Nucleic acid, nucleotide | Harman | 0.46 | 0.18 | ||||
Threonin | 1.18 | 0.70 | 0.40 | Deoxyadenosine | 3.32 | 2.78 | 4.44 | HMG | 0.55 | 0.37 | |
Tryptophan | 0.64 | 0.50 | 0.26 | Deoxycytidine | 1.47 | 2.49 | 3.57 | Homogentisate | 20.00 | ||
Tyramine | 20.00 | Deoxyguanosine | 1.98 | 5.17 | 4.07 | Imidazole-4-acetate | 2.15 | 1.00 | 0.46 | ||
Tyreonine | 0.86 | 0.37 | 0.25 | Guanine | 1.00 | 0.51 | 0.16 | Methionine sulfoxide | 0.14 | 0.33 | 0.19 |
Valine | 1.05 | 0.69 | 0.37 | Hypoxanthine | 0.79 | 0.37 | 0.20 | Mugineate | 3.03 | 1.11 | |
N-FormylMet | 1.64 | 10.00 | Methylthioadenosine | 0.48 | 0.99 | 1.05 | N-AcetylLeu | 2.98 | 0.36 | 0.45 | |
Octopine | 0.31 | 0.65 | 0.29 | NAD | 20.00 | N6-Methyl-2'-deoxyadenosine | 0.57 | 1.04 | 0.12 | ||
Histidinol | 20.00 | 1.08 | Homologue | Nicotinamide | 0.46 | 0.11 | 0.25 | ||||
Carboxylic acid | HomoGln+Ala-Ala | 0.79 | 0.85 | 0.35 | Octylamine | 3.80 | 0.00 | 2.21 | |||
2-Furoate | 0.69 | 0.48 | 1.63 | HomoIle;HomoLeu | 1.19 | 1.28 | 0.27 | Ophthalmate | 1.34 | 0.49 | |
2-Hydroxyisobutyrate | 1.07 | 1.49 | 2.14 | HomoLys | 0.00 | 1.40 | 0.80 | PhenylacetylGly | 0.48 | 0.50 | 0.38 |
3-Dehydroshikimate | 1.08 | 0.14 | 0.69 | HomoPhe | 0.22 | 0.19 | Pimelate | 0.00 | 0.81 | 0.43 | |
4-Oxovalerate | 0.34 | 0.34 | 0.18 | HomoPro | 0.00 | 1.02 | Putrescine | 1.18 | 0.81 | 0.40 | |
4-Pyridoxate | 0.63 | 0.39 | HomoThe | 2.77 | 1.29 | 0.67 | Pyrrolidine | 0.25 | 0.95 | ||
Adipate | 0.59 | 0.33 | 0.48 | Vitamine | S-SulfoCys | 0.00 | 0.00 | ||||
Arginosuccinate | 5.47 | Choline | 0.44 | 0.51 | 0.35 | SAH | 0.49 | 0.59 | |||
Benzoate | 0.90 | 0.43 | 0.20 | Nicotinate | 1.16 | 0.23 | 0.44 | Spermidine | 20.00 | 1.06 | 0.32 |
Citrate | 2.85 | 20.00 | 3.00 | Folate | 0.00 | Stachydrine | 0.79 | 0.99 | 0.34 | ||
Cysteate | 0.72 | 0.37 | Sugars | SulfinoAla | 1.09 | 0.42 | |||||
Fumarate | 1.82 | 0.43 | 0.66 | N-AcetylGlu | 0.39 | 0.87 | Trimethylamine-N-oxide | 2.48 | 3.76 | 4.25 | |
Glutarate | 0.18 | 0.29 | 0.57 | Peptide | tZ | 20.00 | 1.34 | 0.45 | |||
Glyoxylate | 2.32 | 0.33 | 0.79 | Carnosine | 1.51 | 0.33 | tZR | 1.08 | 1.19 | 0.27 | |
Hippurate | 1.28 | 2.07 | 20.00 | Others | Urocanate | 1.09 | 0.41 | 0.72 | |||
Itaconate | 1.35 | 1.85 | 2.45 | Agmatine | 4.61 | 1.15 | Vanillate | 20.00 | |||
Lactate | 1.72 | 20.00 | 0.64 | IsoAsn | 0.84 | 0.42 | Vanillylmandelate | 20.00 | |||
Malonate | 1.60 | 0.58 | 0.37 | O-SuccinylhomoSer | 0.27 | 0.90 | 0.33 | Xanthine | 0.00 | 0.44 | |
Mevalonolactone | 2.53 | 0.54 | 0.15 | 1-Aminopropanediol | 20.00 | 0.97 | Xanthurenate | 1.22 | 0.78 | 0.43 | |
Mucate | 1.29 | 5.48 | 2.40 |
2.3. Functional Roles of Metabolites in Rhizosphere under P Deficiency
3. Experimental Section
3.1. Plant Materials and Growth Conditions
3.2. Root Exudate Collection
3.3. Capillary Electrophoresis Mass Spectrometry
4. Conclusions
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cordell, D.; Drangert, J.O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Change-Hum. Policy Dimens. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Amtmann, A.; Hammond, J.P.; Armengaud, P.; White, P.J. Nutrient sensing and signalling in plants: Potassium and phosphorus. Adv. Bot. Res. 2006, 43, 209–257. [Google Scholar]
- Hernandez, G.; Ramirez, M.; Valdes-Lopez, O.; Tesfaye, M.; Graham, M.A.; Czechowski, T.; Schlereth, A.; Wandrey, M.; Erban, A.; Cheung, F.; et al. Phosphorus stress in common bean: Root transcript and metabolic responses. Plant. Physiol. 2007, 144, 752–767. [Google Scholar] [CrossRef]
- Haase, S.; Neumann, G.; Kania, A.; Kuzyakov, Y.; Romheld, V.; Kandeler, E. Elevation of atmospheric CO2 and n-nutritional status modify nodulation, nodule-carbon supply, and root exudation of phaseolus vulgaris l. Soil Biol. Biochem. 2007, 39, 2208–2221. [Google Scholar] [CrossRef]
- Mimmo, T.; Sciortino, M.; Ghizzi, M.; Gianquinto, G.; Gessa, C.E. The influence of aluminium availability on phosphate uptake in phaseolus vulgaris l. And phaseolus lunatus l. Plant Physiol. Biochem. 2009, 47, 68–72. [Google Scholar] [CrossRef]
- Mimmo, T.; Ghizzi, M.; Cesco, S.; Tomasi, N.; Pinton, R.; Puschenreiter, M. Aluminium-phosphate interactions in the rhizosphere of two bean species: Phaseolus lunatus l. And phaseolus vulgaris l. J. Sci. Food Agric. 2013, 93, 3891–3896. [Google Scholar] [CrossRef]
- Monton, M.R.N.; Soga, T. Metabolome analysis by capillary electrophoresis-mass spectrometry. J. Chromatogr. A 2007, 1168, 237–246. [Google Scholar] [CrossRef]
- Sato, S.; Soga, T.; Nishioka, T.; Tomita, M. Simultaneous determination of the main metabolites in rice leaves using capillary electrophoresis mass spectrometry and capillary electrophoresis diode array detection. Plant J. 2004, 40, 151–163. [Google Scholar] [CrossRef]
- Oikawa, A.; Matsuda, F.; Kikuyama, M.; Mimura, T.; Saito, K. Metabolomics of a single vacuole reveals metabolic dynamism in an alga chara australis. Plant Physiol. 2011, 157, 544–551. [Google Scholar] [CrossRef]
- Tawaraya, K.; Horie, R.; Saito, A.; Shinano, T.; Wagatsuma, T.; Saito, K.; Oikawa, A. Metabolite profiling of shoot extracts, root extracts, and root exudates of rice plant under phosphorus deficiency. J. Plant Nutr. 2013, 36, 1138–1159. [Google Scholar] [CrossRef]
- Broughton, W.J.; Hernandez, G.; Blair, M.; Beebe, S.; Gepts, P.; Vanderleyden, J. Beans (phaseolus spp.)—Model food legumes. Plant Soil 2003, 252, 55–128. [Google Scholar] [CrossRef]
- Föhse, D.; Claassen, N.; Jungk, A. Phosphorus efficiency of plants ii. Significance of root radius, root haris and cation-anion balance for phosphorus influx in seven plant species. Plant Soil 1991, 132, 261–272. [Google Scholar]
- Graham, P.H.; Rosas, J.C.; de Jensen, C.E.; Peralta, E.; Tlusty, B.; Acosta-Gallegos, J.; Pereira, P.A.A. Addressing edaphic constraints to bean production: The bean/cowpea crsp project in perspective. Field Crop. Res. 2003, 82, 179–192. [Google Scholar] [CrossRef]
- Reuter, D.J.; Edwards, D.G.; Wilhelm, N.S. Temperate and tropical crops. In Plant Analysis: An Interpretation Manual; Reuter, D.J., Robinson, J.B., Eds.; CSIRO Publishing: Collingwood, Victoria, Australia, 1997; pp. 81–284. [Google Scholar]
- Hernandez, G.; Valdes-Lopez, O.; Ramirez, M.; Goffard, N.; Weiller, G.; Aparicio-Fabre, R.; Fuentes, S.I.; Erban, A.; Kopka, J.; Udvardi, M.K.; et al. Global changes in the transcript and metabolic profiles during symbiotic nitrogen fixation in phosphorus-stressed common bean plants. Plant Physiol. 2009, 151, 1221–1238. [Google Scholar] [CrossRef]
- Kollist, H.; Jossier, M.; Laanemets, K.; Thomine, S. Anion channels in plant cells. FEBS J. 2011, 278, 4277–4292. [Google Scholar] [CrossRef]
- Sasaki, T.; Yamamoto, Y.; Ezaki, B.; Katsuhara, M.; Ahn, S.J.; Ryan, P.R.; Delhaize, E.; Matsumoto, H. A wheat gene encoding an aluminum-activated malate transporter. Plant J. 2004, 37, 645–653. [Google Scholar] [CrossRef]
- Hocking, P.J. Organic acid exuded from roots in phosphorus uptake and aluminium tolerance of plants in acid soils. Adv. Agron. 2001, 74, 63–97. [Google Scholar] [CrossRef]
- Pennanen, T.; Caul, S.; Daniell, T.J.; Griffiths, B.S.; Ritz, K.; Wheatley, R.E. Community-level responses of metabolically-active soil microorganisms to the quantity and quality of substrate inputs. Soil Biol. Biochem. 2004, 36, 841–848. [Google Scholar] [CrossRef]
- Griffiths, B.S.; Ritz, K.; Ebblewhite, N.; Dobson, G. Soil microbial community structure: Effects of substrate loading rates. Soil Biol. Biochem. 1999, 31, 145–153. [Google Scholar]
- Yang, J.C.; Zhang, J.H.; Wang, Z.Q.; Zhu, Q.S.; Liu, L.J. Abscisic acid and cytokinins in the root exudates and leaves and their relationship to senescence and remobilization of carbon reserves in rice subjected to water stress during grain filling. Planta 2002, 215, 645–652. [Google Scholar] [CrossRef]
- Wagatsuma, T.; Kawashima, T.; Tawaraya, K. Comparative stainability of plant root cells with basic dye (methylene blue) in association with aluminium tolerance. Commun. Soil Sci. Plant. Anal. 1988, 19, 1207–1215. [Google Scholar] [CrossRef]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis Part 2 Chemical and Microbiological Properties; Page, A.L., Ed.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar]
- Watanabe, M.; Kusano, M.; Oikawa, A.; Fukushima, A.; Noji, M.; Saito, K. Physiological roles of the beta-substituted alanine synthase gene family in arabidopsis. Plant Physiol. 2008, 146, 310–320. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Tawaraya, K.; Horie, R.; Saito, S.; Wagatsuma, T.; Saito, K.; Oikawa, A. Metabolite Profiling of Root Exudates of Common Bean under Phosphorus Deficiency. Metabolites 2014, 4, 599-611. https://doi.org/10.3390/metabo4030599
Tawaraya K, Horie R, Saito S, Wagatsuma T, Saito K, Oikawa A. Metabolite Profiling of Root Exudates of Common Bean under Phosphorus Deficiency. Metabolites. 2014; 4(3):599-611. https://doi.org/10.3390/metabo4030599
Chicago/Turabian StyleTawaraya, Keitaro, Ryota Horie, Saki Saito, Tadao Wagatsuma, Kazuki Saito, and Akira Oikawa. 2014. "Metabolite Profiling of Root Exudates of Common Bean under Phosphorus Deficiency" Metabolites 4, no. 3: 599-611. https://doi.org/10.3390/metabo4030599
APA StyleTawaraya, K., Horie, R., Saito, S., Wagatsuma, T., Saito, K., & Oikawa, A. (2014). Metabolite Profiling of Root Exudates of Common Bean under Phosphorus Deficiency. Metabolites, 4(3), 599-611. https://doi.org/10.3390/metabo4030599