Advances in Electronic-Nose Technologies for the Detection of Volatile Biomarker Metabolites in the Human Breath
Abstract
:1. Introduction
2. Biomarkers of Disease
2.1. Chemical Classes of Disease Biomarkers
2.2. Origins of Disease Biomarkers
2.2.1. Physicochemical Characteristics of VOCs
2.2.2. Exogenous VOCs
2.2.3. Endogenous VOCs
3. Specificity of Disease-Associated Biomarkers
3.1. Biomarkers of Metabolic Diseases
Biomarker Compounds 1 | Chemical Class | Associated Diseases/Disorders/Conditions 2 | References |
---|---|---|---|
2,3-butanedione | diketone | URTI | [37] |
2-butenal | aldehyde | URTI | [37] |
2-butene | alkene | URTI | [37] |
2-imidazoleacetic acid | imidazole | Histidinemia | [38] |
2-imidazolelactic acid | imidazole | Histidinemia | [38] |
2-imidazolepyruvic acid | imidazole | Histidinemia | [38] |
2-oxoisocaproic acid | carboxylic acid | BCKD | [38] |
2-pentylfuran | furan derivative | Aspergillosis (invasive) | [39] |
cadaverine | diamine | Cystinuria | [38,40] |
ethylbenzene | benzene derivative | Hyperglycemia | [41,42] |
formaldehyde | aldehyde | PLC | [43] |
methyl methacrylate | methyl ester | URTI | [37] |
methyl nicotinate | methyl ester | Tuberculosis | [44] |
phenylacetic acid | benzene derivative | Phenylketonuria | [38] |
phenyllactic acid | benzene derivative | Phenylketonuria | [38] |
phenylpyruvic acid | benzene derivative | Phenylketonuria | [38] |
p-hydroxyphenylpyruvic acid | benzene derivative | Tyrosinemia | [38] |
piperidine | heterocyclic amine | Cystinuria | [38,40] |
putrescine | diamine | Cystinuria | [38,40] |
pyrrolidine | heterocyclic amine | Cystinuria | [38,40] |
trans-3-methyl-2 hexenoic acid | fatty acid | SFS | [45] |
vinyl butyrate | vinyl ester | URTI | [37] |
xylene | dimethyl benzene | Hyperglycemia | [41,42] |
3.2. Biomarkers of Infectious Diseases
Biomarker Compounds 1 | Chemical Structure | Associated Diseases/Disorders/Conditions 2 | References |
---|---|---|---|
Acetaldehyde | AFDL | [46] | |
URTI | [37] | ||
Acetoin(3-hydroxy-2-butanone) | Lung cancer | [47] | |
NSCLC | [47] | ||
Acetone | ARDS | [48,49] | |
Lung cancer | [50] | ||
CIP | [48] | ||
CPD | [51] | ||
Cystic fibrosis | [52] | ||
Diabetes mellitus | [41,53] | ||
Hepatic cirrhosis | [54] | ||
Ketosis, starvation | [55] | ||
PLC | [43] | ||
Alkanes, short-chain HC(e.g., ethane) | AHI | [56] | |
Asthma | [57,58,59] | ||
COPD | [60] | ||
Cystic fibrosis | [52,61] | ||
IBD | [62,63,64,65] | ||
IHD, angina | [66,67] | ||
ILD | [68,69] | ||
Lung cancer | [66,70,71,72] | ||
Oxidative stress | [73] | ||
Schizophrenia | [74,75,76] | ||
1-Butanol | Lung cancer | [47] | |
NSCLC | [47] | ||
Carbon disulfide | Cystic fibrosis | [52,77] | |
Schizophrenia | [74,75,76] | ||
Dimethyl sulfide | Lung cancer | [78] | |
Chronic hepatitis | [79] | ||
Cystic fibrosis | [52,77] | ||
Endocarditis (infective) | [80,81,82,83] | ||
Hepatic cirrhosis | [79,84,85,86] | ||
Hepatic coma | [79,86, 87] | ||
Ethanol | CPD | [51] | |
Cystic fibrosis | [52] | ||
Diabetes mellitus | [41,53] | ||
Hydrogen sulfide | Endocarditis (infective) | [80,81,82,83] | |
Hepatic cirrhosis | [84] | ||
Isoprene | AFDL | [46] | |
ARDS | [48,49] | ||
Asthma | [57,58,59] | ||
CIP | [48] | ||
Cystic fibrosis | [52,88] | ||
Lung cancer | [50] | ||
PLC | [43] | ||
8-Isoprostane(8β-prostane) | Asthma | [89] | |
COPD | [90] | ||
Oxidative stress | [89] | ||
Leukotriene B4 | Asthma | [91,92] | |
COPD | [90] | ||
Cystic fibrosis | [93] | ||
Methanol | Cystic fibrosis | [52] | |
Lung cancer | [50] | ||
Methyl nitrate | Diabetes mellitus | [41,53] | |
Hyperglycemia | [41,42] | ||
Methylated alkanes(e.g., 2-methylpropane) | Breast cancer | [94] | |
IHD, angina | [66,67] | ||
Lung cancer | [66,70] | ||
Oxidative stress | [73] | ||
Methyl-mercaptan | Chronic hepatitis | [79] | |
Endocarditis (infective) | [80,81,82,83] | ||
Hepatic cirrhosis | [79,86] | ||
Hepatic coma | [79,86,87] | ||
Nitric oxide | Asthma | [95] | |
COPD | [96] | ||
Nitrotyrosine | COPD | [97] | |
Cystic fibrosis | [97] | ||
Pentane | AHI | [56] | |
ARDS | [48,49] | ||
Asthma | [57,58,59] | ||
CIP | [48] | ||
Cystic fibrosis | [52] | ||
IBD | [62,63,64,65] | ||
Lung cancer | [98] | ||
Rheumatoid arthritis | [99] | ||
Schizophrenia | [74,75,76] | ||
Propane | Cystic fibrosis | [52] | |
IBD | [62,63,64,65] | ||
o-Toluidine | Lung cancer | [100] | |
PLC | [43] |
4. Applications of Biomarker Detection in Disease Diagnosis
4.1. Conventional Methods of Biomarker Detection
4.2. Electronic-Nose Technologies for Biomarker Detection
Disease Detection/Discrimination 1 | Organ | N2 | Study Locations 3 | E-Nose Type/No. Sensors 4 | References |
---|---|---|---|---|---|
ARDS-MPM | Lung | 78 | St. Vincent and Price of Wales Hospital, Sydney, Australia | CP 32 | [104] |
Asthma | Lung | 40 | Leiden University MC, Leiden, the Netherlands | CP 32 | [105] |
51 | Instituto Dermopatico deli’ Immacolata, Rome, Italy | QMB 8 | [106] | ||
Asthma-COPD | Lung | 90 | Academic MC Amsterdam, Haga Teaching Hospital, The Hague; Albert Schweitzer Hospital, Dordrech, the Netherlands | CP 32 | [107] |
100 | Academic MC Amsterdam, Haga Teaching Hospital, The Hague; Albert Schweitzer Hospital, Dordrech, the Netherlands | CP 32 | [108] | ||
44 | University of New South Wales, Sydney, Australia | CP 32 | [109] | ||
Cancer | Lung | 62 | C. Forlanini Hospital, Rome, Italy | QMB 8 | [71] |
135 | Cleveland Clinic, Ohio, USA | CP 32 | [110] | ||
143 | Cleveland Clinic, Ohio, USA | CM 36 | [111] | ||
92 | C. Forlanini Hospital, Rome, Italy | QMB 8 | [112] | ||
229 | Cleveland Clinic, Ohio, USA | CM 36 | [113] | ||
COPD | Lung | 43 | Phillipps University, Marburg, Germany | CP 32 | [114] |
COPD-Cancer | Lung | 30 | Leiden University MC, Leiden, the Netherlands | CP 32 | [115] |
Endocarditis (infective) | Heart | 78 | Osaka University, Osaka, Japan. | MOS 6 | [116] |
IPA | Lung | 53 | University of Amsterdam, Amsterdam, The Netherlands | CP 32 | [117] |
MPM | Lung | 39 | University of Bari Aldo Moro, Bari, Italy | CP 32 | [118] |
Pneumonia | Lung | 400 | Dept. of Anesthesia, University of Pennsylvania, Philadelphia, PA, USA | BS | [119] |
TB | Lung | 46 | Cranfield University, Silsoe, Bedfordshire, UK | CP 14 | [120] |
134 | Cranfield University, Silsoe, Bedfordshire, UK | CP 14 | [121] | ||
279 | University of Santo Tomas, Manila, Philippines; De La Salle University Hospital, Cavite, Philippines; Homerton University Hospital, London, UK; Hinduja Hospital, Mumbai, India | SAW 1 | [122] | ||
URTI | Respiratory tract | NS | University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, USA | CP 32 | [123] |
VAP | Lung | 25 | University of Pennsylvania, Philadelphia, Pennsylvania, USA | CP 32 | [124] |
38 | University of Pennsylvania, Philadelphia, Pennsylvania, USA | CP 32 | [119] | ||
44 | University of Pennsylvania, Philadelphia, Pennsylvania, USA | CP 32 | [125] |
5. Conclusions and Future Prospects
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Singeap, A.M.; Trifan, A.; Cojocariu, C.; Stanciu, C. Colon capsule endoscopy compared to colonoscopy for colorectal neoplasms diagnosis: An initial experience and a brief review of the literature. Rev. Med. Chir. Soc. Med. Nat. Iasi 2012, 116, 145–149. [Google Scholar] [PubMed]
- Brandman, S.; Ko, J.P. Pulmonary nodule detection, characterization, and management with multidetector computed tomography. J. Thorac. Imaging 2011, 26, 90–105. [Google Scholar] [CrossRef] [PubMed]
- Hochhegger, B.; Marchiori, E.; Sedlaczek, O.; Irion, K.; Heussel, C.P.; Ley, S.; Ley-Zaporozhan, J.; Soares, S.A.J.; Kauczor, H.U. MRI in lung cancer: A pictorial essay. Br. J. Radiol. 2011, 84, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Apantaku, L.M. Breast cancer diagnosis and screening. Am. Fam. Phys. 2000, 62, 596–602. [Google Scholar]
- Truong, M.T.; Viswanathan, C.; Erasmus, J.J. Positron emission tomography/computed tomography in lung cancer staging, prognosis and assessment of therapeutic response. J. Thorac. Imaging 2011, 26, 132–146. [Google Scholar] [CrossRef] [PubMed]
- Hunt, K.K.; Newman, L.A.; Copeland, E.M.; Bland, K.I. The Breast. In Schwart’z Principles of Surgery, 9th ed.; Brunicardi, F., Andersen, D., Billiar, T., Eds.; McGraw-Hill: New York, NY, USA, 2011; pp. 791–796. [Google Scholar]
- Todd, J.; McGrath, E.E. Chest X-ray mass in a patient with lung cancer! QJM 2011, 104, 903–904. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.D.; Baietto, M. Advances in electronic-nose technologies developed for biomedical applications. Sensors 2011, 11, 1105–1176. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.D.; Baietto, M. Applications and advances in electronic-nose technologies. Sensors 2009, 9, 5099–5148. [Google Scholar] [CrossRef] [PubMed]
- Kybert, N.J.; Egan, L.; Waldman, R.Z.; Zeng, X.-N.; Krein, M.; Preti, G.; Stuart, J.A.; Johnson, A.T.C. Analysis of sweat simulant mixtures using multiplexed arrays of DNA-carbon nanotube vapor sensors. J. Forensic Sci. Criminol. 2014, 1, 1–6. [Google Scholar] [CrossRef]
- Wilson, A.D. Diverse applications of electronic-nose technologies in agriculture and forestry. Sensors 2013, 13, 2295–2348. [Google Scholar] [CrossRef] [PubMed]
- Haick, H.; Broza, Y.Y.; Mochalski, P.; Ruzsanyi, V.; Amann, A. Assessment, origin, and implementation of breath volatile cancer markers. Chem. Soc. Rev. 2014, 43, 1423–1449. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.; Cataneo, R.N.; Chaturvedi, A.; Kaplan, P.D.; Libardoni, M.; Mundada, M.; Patel, U.; Zhang, X. Detection of an extended human volatome with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. PLoS One 2013, 8, e75274. [Google Scholar] [CrossRef] [PubMed]
- Španěl, P.; Smith, D. On-line measurement of the absolute humidity of air, breath and liquid headspace samples by selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 2001, 15, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.; Turner, C.; Španěl, P. Volatile metabolites in the exhaled breath of healthy volunteers: Their levels and distributions. J. Breath Res. 2007, 1, 1–12. [Google Scholar] [CrossRef]
- Diskin, A.M.; Španěl, P.; Smith, D. Time variation of ammonia, acetone, isoprene and ethanol in breath: A quantitative SIFT-MS study over 30 days. Physiol. Meas. 2003, 24, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Turner, C.; Španěl, P.; Smith, D. A longitudinal study of methanol in the exhaled breath of 30 healthy volunteers using selected ion flow tube mass spectrometry, SIFT-MS. Physiol. Meas. 2006, 27, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Turner, C.; Španěl, P.; Smith, D. A longitudinal study of ammonia, acetone and propanol in the exhaled breath of 30 subjects using selected ion flow tube mass spectrometry, SIFT-MS. Physiol. Meas. 2006, 27, 321–337. [Google Scholar] [CrossRef] [PubMed]
- Turner, C.; Španěl, P.; Smith, D. A longitudinal study of breath isoprene in healthy volunteers using selected ion flow tube mass spectrometry (SIFT-MS). Physiol. Meas. 2006, 27, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Turner, C.; Španěl, P.; Smith, D. A longitudinal study of ethanol and acetaldehyde in the exhaled breath of healthy volunteers using selected-ion flow-tube mass spectrometry. Rapid Commun. Mass Spectrom. 2006, 20, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.C.; Babb, A.L.; Hlastala, M.P. Modeling soluble gas exchange in the airways and alveoli. Ann. Biomed. Eng. 2003, 31, 1402–1422. [Google Scholar] [CrossRef] [PubMed]
- King, J.; Koc, H.; Unterkofler, K.; Mochalski, P.; Kupferthaler, A.; Teschl, G.; Teschl, S.; Hinterhuber, H.; Amann, A. Physiological modeling of isoprene dynamics in exhaled breath. J. Theor. Biol. 2010, 267, 626–637. [Google Scholar] [CrossRef] [PubMed]
- King, J.; Unterkofler, K.; Teschl, G.; Teschl, S.; Koc, H.; Hinterhuber, H.; Amann, A. A mathematical model for breath gas analysis of volatile organic compounds with special emphasis on acetone. J. Math. Biol. 2011, 63, 959–999. [Google Scholar] [CrossRef] [PubMed]
- King, J.; Unterkofler, K.; Teschl, G.; Teschl, S.; Mochalski, P.; Koc, H.; Hinterhuber, H.; Amann, A. A modeling based evaluation of isothermal rebreathing for breath gas analysis of highly soluble volatile organic compounds. J. Breath Res. 2012, 6, 016005. [Google Scholar] [CrossRef] [PubMed]
- Kallioma ki, P.-L.; Korhonen, O.; Vaaranen, V.; Kallioma ki, K.; Koponen, M. Lung retention and clearance of shipyard arc welders. Int. Arch. Occup. Environ. Health 1978, 42, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Jakubowski, M.; Czerczak, S. Calculating the retention of volatile organic compounds in the lung on the basis of their physicochemical properties. Environ. Toxicol. Pharmacol. 2009, 28, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Buszewski, B.; Kesy, M.; Ligor, T.; Amann, A. Human exhaled air analytics: Biomarkers of diseases. Biomed. Chromatogr. 2007, 21, 553–566. [Google Scholar] [CrossRef] [PubMed]
- Halliwel, B. Free radicals, antioxidants, and human disease: Where are we now? J. Lab. Clin. Med. 1992, 119, 598–620. [Google Scholar] [PubMed]
- Barr, D.D.; Wang, R.Y.; Needham, L.L. Biologic monitoring of exposure to environmental chemicals throughout the life stages: Requirements and issues for consideration for the National Children’s Study. Environ. Health Perspect. 2005, 113, 1083–1091. [Google Scholar] [CrossRef] [PubMed]
- Schubert, J.K.; Miekisch, W.; Birken, T.; Geiger, K.; Noeldge-Schomburg, G. Impact of inspired substance concentrations on the results of breath analysis in mechanically ventilated patients. Biomarkers 2005, 10, 138–152. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.; Greenberg, J.; Sabas, M. Alveolar gradient of pentane in normal human breath. Free Radic. Res. 1994, 20, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Miekisch, W.; Schubert, J.K.; Noeldge-Schomburg, G. Diagnostic potential of breath analysis—Focus on volatile organic compounds. Clin. Chim. Acta 2004, 347, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Broza, Y.Y.; Haick, H. Nanomaterial-based sensors for detection of disease by volatile organic compounds. Nanomedicine 2013, 8, 785–806. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Zhang, X.; Li, N. Investigation of volatile biomarkers in lung cancer blood using solid-phase microextraction and capillary gas chromatography-mass spectrometry. J. Chromatogr. B Biomed. Appl. 2004, 808, 269–277. [Google Scholar] [CrossRef]
- Xue, R.; Dong, L.; Zhang, S.; Deng, C.; Liu, T.; Wang, J.; Shen, X. Investigation of volatile biomarkers in liver cancer blood using solid-phase microextraction and gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 2008, 22, 1181–1186. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.D. Chapter 15. Future Applications of Electronic-Nose Technologies in Healthcare and Biomedicine. In Wide Spectra of Quality Control; Akyar, I., Ed.; InTech: Rijeka, Croatia, 2011; pp. 267–290. [Google Scholar]
- Filipiak, W.; Sponring, A.; Baur, M.M.; Ager, C.; Filipiak, A.; Wiesenhofer, H.; Nagl, M.; Troppmair, J.; Amann, A. Characterization of volatile metabolites taken up by or released from Streptococcus pneumoniae and Haemophilus influenzae by using GC-MS. Microbiology 2012, 158, 3044–3053. [Google Scholar] [CrossRef] [PubMed]
- Bondy, P.K.; Rosenberg, L.E. Metabolic Control and Disease, 8th ed.; W.B. Sanders: Philadelphia, PA, USA, 1980; pp. 1010–1014. [Google Scholar]
- Chambers, S.T.; Syhre, M.; Murdoch, D.R.; McCartin, F.; Epton, M.J. Detection of 2-pentylfuran in the breath of patients with Aspergillus fumigatus. Med. Mycol. 2009, 47, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Milne, M.D. Disorders of amino-acid transport. Brit. Med. J. 1964, 1, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Novak, B.J.; Blake, D.R.; Meinardi, S.; Rowland, F.S.; Pontello, A.; Cooper, D.M.; Galassetti, P.R. Exhaled methyl nitrate as a noninvasive marker of hyperglycemia in type 1 diabetes. Proc. Nat. Acad. Sci. 2007, 104, 15613–15618. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Ngo, J.; Blake, D.; Meinardi, S.; Pontello, A.M.; Newcomb, R.; Galassetti, P.R. Improved predictive models for plasma glucose estimation from multi-linear regression analysis of exhaled volatile organic compounds. J. Appl. Physiol. 2009, 107, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Wehinger, A.; Schmid, A.; Mechtcheriakov, S.; Ledochowski, M.; Grabmer, C.; Gastl, G.A.; Amanng, A. Lung cancer detection by proton transfer reaction mass-spectrometric analysis of human breath gas. Int. J. Mass. Spectrom. 2007, 265, 49–59. [Google Scholar] [CrossRef]
- Syhre, M.; Manning, L.; Phuanukoonnon, S.; Harino, P.; Chambers, S.T. The scent of Mycobacterium tuberculosis–part II breath. Tuberculosis 2009, 89, 263–266. [Google Scholar] [CrossRef] [PubMed]
- Sidbury, J.B.; Smith, E.K.; Harlan, W. An inborn error of short-chain fatty acid metabolism: The odor of sweaty feet syndrome. J. Pediatr. 1967, 70, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Netzer, M.; Millonig, G.; Osl, M.; Pfeifer, B.; Praun, S.; Villinger, J.; Vogel, W.; Baumgartner, C. A new ensemble-based algorithm for identifying breath gas marker candidates in liver disease using ion molecule reaction mass spectrometry. Bioinformatics 2009, 25, 941–947. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Qin, T.; Liu, H.; Xu, G.B.; Pan, Y.Y.; Xiong, F.X.; Gu, K.S.; Sun, G.P.; Chen, Z.D. Quantitative breath analysis of volatile organic compounds of lung cancer patients. Lung Cancer 2010, 67, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Scholpp, J.; Schubert, J.K.; Miekisch, W.; Geiger, K. Breath markers and soluble lipid peroxidation markers in critically ill patients. Clin. Chem. Lab. Med. 2002, 40, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Schubert, J.K.; Muller, W.P.; Benzing, A.; Geiger, K. Application of a new method for analysis of exhaled gas in critically ill patients. Intensive Care Med. 1998, 24, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Bajtarevic, A.; Ager, C.; Pienz, M.; Klieber, M.; Schwarz, K.; Ligor, M.; Ligor, T.; Filipiak, W.; Denz, H.; Fiegl, M.; et al. Noninvasive detection of lung cancer by analysis of exhaled breath. BMC Cancer 2009, 9, 348–364. [Google Scholar] [CrossRef] [PubMed]
- Skrupskii, V.A. Gas chromatographic analysis of ethanol and acetone in the air exhaled by patients. Clin. Lab. Diagn. 1995, 4, 35–38. [Google Scholar]
- Barker, M.; Hengst, M.; Schmid, J.; Buers, H.J.; Mittermaier, B.; Klemp, D.; Koppmann, R. Volatile organic compounds in the exhaled breath of young patients with cystic fibrosis. Eur. Respir. J. 2006, 27, 929–936. [Google Scholar] [PubMed]
- Ping, W.; Yi, P.; Haibao, X.; Farange, S. A novel method for diabetes diagnosis based on electronic nose. Biosens. Bioelectron. 1997, 12, 1031–1036. [Google Scholar] [CrossRef] [PubMed]
- Van den Velde, S.; Nevens, F.; van Hee, P.; van Steenberghe, D.; Quirynen, M. GC-MS analysis of breath odor compounds in liver patients. J. Chromatogr. B 2008, 875, 344–348. [Google Scholar] [CrossRef]
- Likhodii, S.S.; Musa, K.; Cunnane, S.C. Breath acetone as a measure of systemic ketosis assessed in a rat model of the ketogenic diet. Clin. Chem. 2002, 48, 115–120. [Google Scholar] [PubMed]
- Lettéron, P.; Duchatelle, V.; Berson, A.; Fromenty, B.; Fisch, C.; Degott, C.; Benhamou, J.P.; Pessayre, D. Increased ethane exhalation, an in vivo index of lipid peroxidation, in alcohol-abusers. Gut 1993, 34, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Olopade, C.O.; Zakkar, M.; Swedler, W.I.; Rubinstein, I. Exhaled pentane levels in acute asthma. Chest 1997, 111, 862–865. [Google Scholar] [CrossRef] [PubMed]
- Paredi, P.; Kharitonov, S.A.; Barnes, P.J. Elevation of exhaled ethane concentration in asthma. Am. J. Respir. Crit. Care Med. 2000, 162, 1450–1454. [Google Scholar] [CrossRef] [PubMed]
- Larstad, M.A.; Toren, K.; Bake, B.; Olin, A.C. Determination of ethane, pentane and isoprene in exhaled air–effects of breath-holding, flow rate and purified air. Acta Physiol. (Oxf.) 2007, 189, 87–98. [Google Scholar] [CrossRef]
- Paredi, P.; Kharitonov, S.A.; Leak, D.; Ward, S.; Cramer, D.; Barnes, P.J. Exhaled ethane, a marker of lipid peroxidation, is elevated in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2000, 162, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Paredi, P.; Kharitonov, S.A.; Leak, D.; Shah, P.L.; Cramer, D.; Hodson, M.E.; Barnes, P.J. Exhaled ethane is elevated in cystic fibrosis and correlates with carbon monoxide levels and airway obstruction. Am. J. Respir. Crit. Care Med. 2000, 161, 1247–1251. [Google Scholar] [CrossRef] [PubMed]
- Ondrula, D.; Nelson, R.L.; Andrianopoulos, G.; Schwartz, D.; Abcarian, H.; Birnbaum, A.; Skosey, J. Quantitative determination of pentane in exhaled air correlates with colonic inflammation in the rat colitis model. Dis. Colon. Rectum 1993, 36, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Kokoszka, J.; Nelson, R.L.; Swedler, W.I.; Skosey, J.; Abcarian, H. Determination of inflammatory bowel disease activity by breath pentane analysis. Dis. Colon. Rectum 1993, 36, 597–601. [Google Scholar] [CrossRef] [PubMed]
- Sedghi, S.; Keshavarzian, A.; Klamut, M.; Eiznhamer, D.; Zarling, E.J. Elevated breath ethane levels in active ulcerative colitis: Evidence for excessive lipid peroxidation. Am. J. Gastroenterol. 1994, 89, 2217–2221. [Google Scholar] [PubMed]
- Pelli, M.A.; Trovarelli, G.; Capodicasa, E.; de Medio, G.E.; Bassotti, G. Breath alkanes determination in ulcerative colitis and Crohn’s disease. Dis. Colon. Rectum 1999, 42, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.; Cataneo, R.N.; Cummin, A.R.; Gagliardi, A.J.; Gleeson, K.; Greenberg, J.; Maxfield, R.A.; Rom, W.N. Detection of lung cancer with volatile markers in the breath. Chest 2003, 123, 2115–2123. [Google Scholar] [CrossRef] [PubMed]
- Dobbelaar, P.; Mottram, T.T.; Nyabadza, C.; Hobbs, P.J.; Elliott-Martin, R.J.; Schukken, Y.H. Detection of ketosis in dairy cows by analysis of exhaled breath. Vet. Quart. 1996, 18, 151–152. [Google Scholar] [CrossRef]
- Kanoh, S.; Kobayashi, H.; Motoyoshi, K. Exhaled ethane: An in vivo biomarker of lipid peroxidation in interstitial lung diseases. Chest 2005, 128, 2387–2392. [Google Scholar] [CrossRef] [PubMed]
- Dragonieri, S.; Brinkman, P.; Mouw, E.; Zwinderman, A.H.; Carratứ, P.; Resta, O.; Sterk, P.J.; Jonkers, R.E. An electronic nose discriminates exhaled breath of patients with untreated pulmonary sarcoidosis from controls. Respir. Med. 2013, 107, 1073–1078. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.; Gleeson, K.; Huges, J.M.B.; Greenberg, J.; Cataneo, R.N.; Baker, L.; McYay, W.P. Volatile organic compounds in breath as markers of lung cancer: A cross-sectional study. Lancet 1999, 353, 1930–1933. [Google Scholar] [CrossRef] [PubMed]
- Di Natale, C.; Macagnano, A.; Martinelli, E.; Paolesse, R.; D’Arcangelo, G.; Roscioni, C.; Finazzi-Agro, A.; D’Amico, A. Lung cancer identification by the analysis of breath by means of an array of non-selective gas sensors. Biosens. Bioelectron. 2003, 18, 1209–1218. [Google Scholar] [CrossRef] [PubMed]
- Skeldon, K.D.; McMillan, L.C.; Wyse, C.A.; Monk, S.D.; Gibson, G.; Patterson, C.; France, T.; Longbottom, C.; Padgett, M.J. Application of laser spectroscopy for measurement of exhaled ethane in patients with lung cancer. Respir. Med. 2006, 100, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Hakim, M.; Broza, Y.Y.; Barash, O.; Peled, N.; Phillips, M.; Amann, A.; Haick, H. Volatile organic compounds of lung cancer and possible biochemical pathways. Chem. Rev. 2012, 112, 5949–5966. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.; Sines, J. Demonstration of a peculiar odor in the sweat of schizophrenic patients. AMA Arch. Gen. Psych. 1960, 2, 184–188. [Google Scholar] [CrossRef]
- Smith, K.; Thompson, G.F.; Koster, H.D. Sweat in schizophrenic patients: Identification of the odorous substance. Science 1969, 166, 398–399. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.; Sabas, M.; Greenberg, J. Increased pentane and carbon disulphide in the breath of patients with schizophrenia. J. Clin. Pathol. 1993, 46, 861–864. [Google Scholar] [CrossRef] [PubMed]
- Kamboures, M.A.; Blake, D.R.; Cooper, D.M.; Newcomb, R.L.; Barker, M.; Larson, J.K.; Meinardi, S.; Nussbaum, E.; Rowland, F.S. Breath sulfides and pulmonary function in cystic fibrosis. Proc. Natl. Acad. Sci. USA 2005, 102, 15762–15767. [Google Scholar] [CrossRef] [PubMed]
- Kischkel, S.; Miekisch, W.; Sawacki, A.; Straker, E.M.; Trefz, P.; Amann, A.; Schubert, J.K. Breath biomarkers for lung cancer detection and assessment of smoking related effects-confounding variables, influence of normalization and statistical algorithms. Clin. Chim. Acta 2010, 411, 1637–1644. [Google Scholar] [CrossRef] [PubMed]
- Kaji, H.; Hisamura, M.; Saito, N.; Murao, M. Gas chromatographic determination of volatile sulphur compounds in expired alveolar air in hepatopathic patients. J. Chromatogr. 1978, 145, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Van den Velde, S.; van Steenberghe, D.; van Hee, P.; Quirynen, M. Detection of odorous compounds in breath. J. Dent. Res. 2009, 88, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Okell, C.C.; Elliott, S.D. Bacteraemia and oral sepsis with special reference to the aetiology of subacute endocarditis. Lancet 1935, 2, 869–872. [Google Scholar] [CrossRef]
- Drangsholt, M.T. A new causal model of dental diseases associated with endocarditis. Ann. Periodontol. 1998, 3, 184–196. [Google Scholar] [CrossRef] [PubMed]
- Lacassin, F.; Hoen, B.; Leport, C.; Selton-Suty, C.; Delahaye, F.; Goulet, V.; Etienne, J.; Briançon, S. Procedures associated with infective endocarditis in adults: A case-control study. Eur. Heart J. 1995, 16, 1968–1974. [Google Scholar] [PubMed]
- Chen, S.; Mahadevan, V.; Zieve, L. Volatile fatty acids in the breath of patients with cirrhosis of the liver. J. Lab. Clin. Med. 1970, 75, 622–627. [Google Scholar] [PubMed]
- Van den Velde, S.; Nevens, F.; van Hee, P.; van Steenberghe, D.; Quirynen, M. GC-MS analysis of breath odor compounds in liver patients. J. Chromatogr. B 2008, 875, 344–348. [Google Scholar] [CrossRef]
- Kaji, H.; Hisamura, M.; Sato, N.; Murao, M. Evaluation of volatile sulfur compounds in the expired alveolar gas in patients with liver cirrhosis. Clin. Chim. Acta 1978, 85, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Hisamura, M. Quantitative analysis of methyl mercaptan and dimethyl sulfide in human expired alveolar gas and its clinical application: Study in normal subjects and patients with liver diseases. Nippon Naika Gakkai Zasshi 1979, 68, 1284–1292. [Google Scholar] [CrossRef] [PubMed]
- McGrath, L.T.; Patrick, R.; Mallon, P.; Dowey, L.; Silke, B.; Norwood, W.; Elborn, S. Breath isoprene during acute respiratory exacerbation in cystic fibrosis. Eur. Respir. J. 2000, 16, 1065–1069. [Google Scholar] [CrossRef] [PubMed]
- Montuschi, P.; Corradi, M.; Ciabattoni, G.; Nightingale, J.; Kharitonov, S.A.; Barnes, P.J. Increased 8-isoprostane, a marker of oxidative stress, in exhaled condensate of asthma patients. Am. J. Respir. Crit. Care Med. 1999, 160, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Borrill, Z.L.; Starkey, R.C.; Singh, S.D. Variability of exhaled breath condensate leukotriene B4 and 8-isoprostane in COPD patients. Int. J. Chron. Obstruct. Pulmon. Dis. 2007, 2, 71–76. [Google Scholar] [PubMed]
- Kostikas, K.; Papatheodorou, G.; Psathakis, K.; Panagou, P.; Loukides, S. Prostaglandin E2 in the expired breath condensate of patients with asthma. Eur. Respir. J. 2003, 22, 743–747. [Google Scholar] [CrossRef] [PubMed]
- Kostikas, K.; Gaga, M.; Papatheodorou, G.; Karamanis, T.; Orphanidou, D.; Loukides, S. Leukotriene B4 in exhaled breath condensate and sputum supernatant in patients with COPD and asthma. Chest 2005, 127, 1553–1559. [Google Scholar] [CrossRef] [PubMed]
- Carpagnano, G.E.; Barnes, P.J.; Geddes, D.M.; Hodson, M.E.; Kharitonov, S.A. Increased leukotriene B4 and interleukin-6 in exhaled breath condensate in cystic fibrosis. Am. J. Resp. Crit. Care 2003, 167, 1109–1112. [Google Scholar] [CrossRef]
- Phillips, M.; Cataneo, R.N.; Ditkoff, B.A.; Fisher, P.; Greenberg, J.; Gunawardena, R.; Kwon, C.S.; Rahbari-Oskoui, F.; Wong, C. Volatiles markers of breast cancer in the breath. Breast J. 2003, 9, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.D.; Cowan, J.O.; Filsell, S.; McLachlan, C.; Monti-Sheehan, G.; Jackson, P.; Taylor, D.R. Diagnosing asthma: Comparisons between exhaled nitric oxide measurements and conventional tests. Am. J. Respir. Crit. Care Med. 2004, 169, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Corradi, M.; Majori, M.; Cacciani, G.C.; Consigli, G.F.; de’Munari, E.; Pesci, A. Increased exhaled nitric oxide in patients with stable chronic obstructive pulmonary disease. Thorax 1999, 54, 572–575. [Google Scholar] [CrossRef] [PubMed]
- Balint, B.; Kharitonov, S.A.; Hanazawa, T.; Donnelly, L.E.; Shah, P.L.; Hodson, M.E.; Barnes, P.J. Increased nitrotyrosine in exhaled breath condensate in cystic fibrosis. Eur. Respir. J. 2001, 17, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Crohns, M.; Saarelainen, S.; Laitinen, J.; Peltonen, K.; Alho, H.; Kellokumpu-Lehtinen, P. Exhaled pentane as a possible marker for survival and lipid peroxidation during radiotherapy for lung cancer—a pilot study. Free Radic. Res. 2009, 43, 965–974. [Google Scholar] [CrossRef] [PubMed]
- Humad, S.; Zarling, E.; Clapper, M.; Skosey, J.L. Breath pentane excretion as a marker of disease activity in rheumatoid arthritis. Free Radic. Res. Commun. 1988, 5, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Preti, G.; Labows, J.N.; Kostelc, J.G.; Aldinger, S.; Daniele, R. Analysis of lung air from patients with bronchogenic carcinoma and controls using gas chromatography-mass spectrometry. J. Chromatogr. 1988, 432, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ruzsanyi, V.; Fischer, L.; Herbig, J.; Ager, C.; Amann, A. Multi-capillary-column proton-transfer-reaction time-of-flight mass spectrometry. J. Chromatogr. A 2013, 1316, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Španěl, P.; Smith, D. Progress in SIFT-MS: Breath analysis and other applications. Mass Spectrom. Rev. 2011, 30, 236–267. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Sahay, P. Breath analysis using laser spectroscopic techniques: Breath biomarkers, spectral fingerprints, and detection limits. Sensors 2009, 9, 8230–8262. [Google Scholar] [CrossRef] [PubMed]
- Chapman, E.A.; Thomas, P.S.; Stone, E.; Lewis, C.; Yates, D.H. A breath test for malignant mesothelioma using an electronic nose. Eur. Respir. J. 2012, 40, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Dragonieri, S.; Schot, R.; Mertens, B.J.; le Cessie, S.; Gauw, S.A.; Spanevello, A.; Resta, O.; Willard, N.P.; Vink, T.J.; Rabe, K.F.; et al. An electronic nose in the discrimination of patients with asthma and controls. J. Allergy Clin. Immunol. 2007, 120, 856–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montuschi, P.; Santonico, M.; Mondino, C.; Pennazza, G.; Mantini, G.; Martinelli, E.; Capuano, R.; Ciabattoni, G.; Paolesse, R.; di Natale, C.; et al. Diagnostic performance of an electronic nose, fractional exhaled nitric oxide, and lung function testing in asthma. Chest 2010, 137, 790–796. [Google Scholar] [CrossRef] [PubMed]
- Fens, N.; Zwinderman, A.H.; van der Schee, M.P.; de Nijs, S.B.; Dijkers, E.; Roldaan, A.C.; Cheung, D.; Bel, E.H.; Sterk, P.J. Exhaled breath profiling enables discrimination of chronic obstructive pulmonary disease and asthma. Am. J. Respir. Crit. Care Med. 2009, 180, 1076–1082. [Google Scholar] [CrossRef] [PubMed]
- Fens, N.; Roldaan, A.C.; van der Schee, M.P.; Boksem, R.J.; Zwinderman, A.H.; Bel, E.H.; Sterk, P.J. External validation of exhaled breath profiling using an electronic nose in the discrimination of asthma with fixed airways obstruction and chronic obstructive pulmonary disease. Clin. Exp. Allergy 2011, 41, 1371–1378. [Google Scholar] [CrossRef] [PubMed]
- Timms, C.; Thomas, P.S.; Yates, D.H. Detection of gastro-oesophageal reflux disease (GORD) in patients with obstructive lung disease using exhaled breath profiling. J. Breath Res. 2012, 6, 016003. [Google Scholar] [CrossRef] [PubMed]
- Machado, R.F.; Laskowski, D.; Deffenderfer, O.; Burch, T.; Zheng, S.; Mazzone, P.J.; Mekhail, T.; Jennings, C.; Stoller, J.K.; Pyle, J.; et al. Detection of lung cancer by sensor array analyses of exhaled breath. Am. J. Respir. Crit. Care Med. 2005, 171, 1286–1291. [Google Scholar] [CrossRef] [PubMed]
- Mazzone, P.J.; Hammel, J.; Dweik, R.; Na, J.; Czich, C.; Laskowski, D.; Mekhail, T. Diagnosis of lung cancer by the analysis of exhaled breath with a colorimetric sensor array. Thorax 2007, 62, 565–568. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, A.; Pennazza, G.; Santonico, M.; Martinelli, E.; Roscioni, C.; Galluccio, G.; Paolesse, R.; Di Natale, C. An investigation on electronic nose diagnosis of lung cancer. Lung Cancer 2010, 68, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Mazzone, P.J.; Wang, X.F.; Xu, Y.; Mekhail, T.; Beukemann, M.C.; Na, J.; Kemling, J.W.; Suslick, K.S.; Sasidhar, M. Exhaled breath analysis with a colorimetric sensor array for the identification and characterization of lung cancer. J. Thorac. Oncol. 2012, 7, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Hattesohl, A.D.; Jorres, R.A.; Dressel, H.; Schmid, S.; Vogelmeier, C.; Greulich, T.; Noeske, S.; Bals, R.; Koczulla, A.R. Discrimination between COPD patients with and without alpha 1-antitrypsin deficiency using an electronic nose. Respirology 2011, 16, 1258–1264. [Google Scholar] [CrossRef] [PubMed]
- Dragonieri, S.; Annema, J.T.; Schot, R.; van der Schee, M.P.; Spanevello, A.; Carratu, P.; Resta, O.; Rabe, K.F.; Sterk, P.J. An electronic nose in the discrimination of patients with non-small cell lung cancer and COPD. Lung Cancer 2009, 64, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Anguri, H.; Nonaka, A.; Kataoka, K.; Nagata, H.; Kita, J.; Shizukuishi, S. Clinical assessment of oral malodor by the electronic nose system. J. Dent. Res. 2004, 83, 317–321. [Google Scholar] [CrossRef] [PubMed]
- De Heer, K.; van der Schee, M.P.; Zwinderman, K.; van den Berk, I.A.H.; Visser, C.E.; van Oers, R.; Sterk, P.J. Invasive pulmonary aspergillosis in prolonged chemotherapy-induced neutropenia: A proof-of-principle study. J. Clin. Microbiol. 2013, 51, 1490–1495. [Google Scholar] [CrossRef] [PubMed]
- De Gennaro, G.; Dragonieri, S.; Longobardi, F.; Musti, M.; Stallone, G.; Trizio, L.; Tutino, M. Chemical characterization of exhaled breath to differentiate between patients with malignant pleural mesothelioma from subjects with similar professional asbestos exposure. Anal. Bioanal. Chem. 2010, 398, 3043–3050. [Google Scholar] [CrossRef] [PubMed]
- Hanson, C.W., III; Thaler, E.R. Electronic nose prediction of a clinical pneumonia score: Biosensors and microbes. Anesthesiology 2005, 102, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Pavlou, A.; Magan, N.; Jones, J.; Brown, J.; Klatser, P.; Turner, A. Detection of Mycobacterium tuberculosis (TB) in vitro and in situ using an electronic nose in combination with a neural network system. Biosens. Bioelectron. 2004, 20, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Fend, R.; Kolk, A.H.J.; Bessant, C.; Buijtels, P.; Klatser, P.R.; Woodman, A.C. Prospects for clinical application of electronic-nose technology to early detection of Mycobacterium tuberculosis in culture and sputum. J. Clin. Microbiol. 2006, 44, 2039–2045. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.; Basa-Dalay, V.; Blais, J.; Bothamley, G.; Chaturvedi, A.; Modi, K.D.; Pandya, M.; Natividad, M.P.; Patel, U.; Ramraje, N.N.; et al. Point-of-care breath test for biomarkers of active pulmonary tuberculosis. Tuberculosis 2012, 92, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.Y.; Deffenderfer, O.F.; Hanson, W.; Phillips, M.P.; Thaler, E.R. Identification of upper respiratory bacterial pathogens with the electronic nose. Laryngoscope 2002, 112, 975–979. [Google Scholar] [CrossRef] [PubMed]
- Hockstein, N.G.; Thaler, E.R.; Torigian, D.; Miller, W.T., Jr.; Deffenderfer, O.; Hanson, C.W. Diagnosis of pneumonia with an electronic nose: Correlation of vapor signature with chest computed tomography scan findings. Laryngoscope 2004, 114, 1701–1705. [Google Scholar] [CrossRef] [PubMed]
- Hockstein, N.G.; Thaler, E.R.; Lin, Y.; Lee, D.D.; Hanson, C.W. Correlation of pneumonia score with electronic nose signature: A prospective study. Ann. Otol. Rhinol. Laryngol. 2005, 114, 504–508. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.; Španěl, P. The challenge of breath analysis for clinical diagnosis and therapeutic monitoring. Analyst 2007, 132, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.D. Electronic-nose applications in forensic science and for analysis of volatile biomarkers in the human breath. J. Forensic Sci. Criminol. 2014, 1, 1–21. [Google Scholar] [CrossRef]
- Bos, L.D.J.; Schultz, M.J.; Sterk, P.J. Exhaled breath profiling for diagnosing acute respiratory distress syndrome. BMC Pulm. Med. 2014, 14, 72. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.G.; Vaughan, A.; Dent, A.G.; O’Hare, P.E.; Goh, F.; Bowman, R.V.; Fong, K.M.; Ian, A.; Yang, I.A. Biomarkers of progression of chronic obstructive pulmonary disease (COPD). J. Thorac. Dis. 2014, 6, 1532–1547. [Google Scholar] [PubMed]
- Bos, L.D.J.; Martin-Loeches, I.; Kastelijn, J.B.; Gili, G.; Espasa, M.; Povoa, P.; Kolk, A.H.J.; Janssen, H.-G.; Sterk, P.J.; Artigas, A.; et al. The volatile metabolic fingerprint of ventilator-associated pneumonia. Intensive Care Med. 2014, 40, 761–776. [Google Scholar] [CrossRef] [PubMed]
- Bikov, A.; Hernadi, M.; Korosi, B.Z.; Kunos, L.; Zsamboki, G.; Sutto, Z.; Tarnoki, A.D.; Tarnoki, D.L.; Losonczy, G.; Horvath, I. Expiratory flow rate, breath hold and anatomic dead space influence electronic nose ability to detect lung cancer. BMC Pulm. Med. 2014, 14, 202. [Google Scholar] [PubMed]
- Van de Kant, K.D.; van der Sande, L.J.; Jöbsis, Q.; van Schayck, O.C.; Dompeling, E. Clinical use of exhaled volatile organic compounds in pulmonary diseases: A systematic review. Respir. Res. 2012, 13, 117. [Google Scholar] [CrossRef] [PubMed]
- Lourenço, C.; Turner, C. Breath analysis in disease diagnosis: Methodological considerations and applications. Metabolites 2014, 4, 465–498. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilson, A.D. Advances in Electronic-Nose Technologies for the Detection of Volatile Biomarker Metabolites in the Human Breath. Metabolites 2015, 5, 140-163. https://doi.org/10.3390/metabo5010140
Wilson AD. Advances in Electronic-Nose Technologies for the Detection of Volatile Biomarker Metabolites in the Human Breath. Metabolites. 2015; 5(1):140-163. https://doi.org/10.3390/metabo5010140
Chicago/Turabian StyleWilson, Alphus D. 2015. "Advances in Electronic-Nose Technologies for the Detection of Volatile Biomarker Metabolites in the Human Breath" Metabolites 5, no. 1: 140-163. https://doi.org/10.3390/metabo5010140
APA StyleWilson, A. D. (2015). Advances in Electronic-Nose Technologies for the Detection of Volatile Biomarker Metabolites in the Human Breath. Metabolites, 5(1), 140-163. https://doi.org/10.3390/metabo5010140