Lipidomic Analysis of Plastidial Octanoyltransferase Mutants of Arabidopsis thaliana
Abstract
:1. Introduction
2. Results
2.1. Total Fatty Acid Composition of Mutant Seeds
2.2. Lipid Analysis of Mutant Seedlings
2.3. Analysis of Lipid Components in Mutant Seeds
2.4. Non-Targeted Lipidomic Metabolic Analysis
2.5. Analysis of Differential Lipid Metabolites
3. Discussion
4. Materials and Methods
4.1. Plants and Growth Conditions
4.2. Confirmation of Homozygous Lines Lip2p1 and Lip2p2
4.3. Total Fatty Acid Composition of Mutant Seeds
4.4. Lipid Analysis of Mutant Seedlings
4.5. Sample Preparation for Lipidomics and LC-HRMS2 Analyses
4.6. Data Processing and Annotation
4.7. Statistical Analysis for Lipidomic Data
4.8. Protein Modelling
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ohlrogge, J.B.; Kuhn, D.N.; Stumpf, P.K. Subcellular localization of acyl carrier protein in leaf protoplasts of Spinacia oleracea. Proc. Natl. Acad. Sci. USA 1979, 76, 1194–1198. [Google Scholar] [CrossRef] [PubMed]
- Schwender, J.; Goffman, F.; Ohlrogge, J.B.; Shachar-Hill, Y. Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature 2004, 432, 779–782. [Google Scholar] [CrossRef] [PubMed]
- Alonso, A.P.; Goffman, F.D.; Ohlrogge, J.B.; Shachar-Hill, Y. Carbon conversion efficiency and central metabolic fluxes in developing sunflower (Helianthus annuus L.) embryos. Plant J. 2007, 52, 296–308. [Google Scholar] [CrossRef] [PubMed]
- Troncoso-Ponce, M.A.; Kruger, N.J.; Ratcliffe, G.; Garcés, R.; Martínez-Force, E. Characterization of glycolytic initial metabolites and enzyme activities in developing sunflower (Helianthus annuus L.) seeds. Phytochemistry 2009, 70, 1117–1122. [Google Scholar] [CrossRef]
- Reed, L.J.; Hackert, M.L. Chemistry and function of lipoic Acid. Compr. Biochem. 1966, 14, 99–126. [Google Scholar]
- Zhao, X.; Miller, J.R.; Jiang, Y.; Marletta, M.A.; Cronan, J.E. Assembly of the covalent linkage between lipoic acid and its cognate enzymes. Chem. Biol. 2003, 10, 1293–1302. [Google Scholar] [CrossRef] [PubMed]
- Mattevi, A.; Obmolova, G.; Schulze, E.; Kalk, K.H.; Westphal, A.H.; de Kok, A.; Hol, W.G. Atomic structure of the cubic core of the pyruvate dehydrogenase multienzyme complex. Science 1992, 20, 1544–1550. [Google Scholar] [CrossRef] [PubMed]
- Perham, R.N. Swinging arms and swinging domains in multifunctional enzymes: Catalytic machines for multistep reactions. Annu. Rev. Biochem. 2000, 69, 961–1004. [Google Scholar] [CrossRef]
- Douce, R.; Bourguignon, J.; Neuburger, M.; Rebeille, F. The glycine decarboxylase system: A fascinating complex. Trends Plant Sci. 2001, 6, 167–176. [Google Scholar] [CrossRef]
- Mooney, B.P.; Miernyk, J.A.; Randall, D.D. The complex fate of α-ketoacids. Annu. Rev. Plant Biol. 2002, 53, 357–375. [Google Scholar] [CrossRef] [PubMed]
- Cronan, J.E. Assembly of lipoic acid on its cognate enzymes: An extraordinary and essential biosynthetic pathway. Microbiol. Mol. Biol. Rev. 2016, 80, 429–450. [Google Scholar] [CrossRef] [PubMed]
- Ewald, R.; Hoffmann, C.; Neuhaus, E.; Bauwe, H. Two redundant octanoyltransferases and one obligatory lipoyl synthase provide protein lipoylation autonomy to plastids of Arabidopsis. Plant Biol. 2014, 16, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Behal, R.; Oliver, D.J. Disruption of plE2, the gene for the E2 subunit of the plastid pyruvate dehydrogenase complex, in Arabidopsis causes an early embryo lethal phenotype. Plant Mol. Biol. 2003, 52, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Pluskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010, 11, 395. [Google Scholar] [CrossRef]
- Koelmel, J.P.; Kroeger, N.M.; Ulmer, C.Z.; Bowden, J.A.; Patterson, R.E.; Cochran, J.A.; Beecher, C.W.W.; Garrett, T.J.; Yost, R.A. LipidMatch: An automated workflow for rule-based lipid identification using untargeted high-resolution tandem mass spectrometry data. BMC Bioinform. 2017, 18, 331. [Google Scholar] [CrossRef]
- Kind, T.; Liu, K.H.; Lee, D.Y.; DeFelice, B.; Meissen, J.K.; Fiehn, O. LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat. Methods 2013, 10, 755–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Randall, D.D.; Miernyk, J.A.; Fang, T.K.; Budde, R.J.A.; Schuller, K.A. Regulation of the pyruvate dehydrogenase complexes in plants. Ann. N. Y. Acad. Sci. 1989, 573, 192–205. [Google Scholar] [CrossRef]
- Ohlrogge, J.B.; Jaworski, J.G. Regulation of fatty acid synthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1997, 48, 109–136. [Google Scholar] [CrossRef] [PubMed]
- Yasuno, R.; Wada, H. The biosynthetic pathway for lipoic acid is present in plastids and mitochondria in Arabidopsis thaliana. FEBS Lett. 2002, 24, 110–114. [Google Scholar] [CrossRef]
- Wada, M.; Yasuno, R.; Jordan, S.W.; Cronan, J.E.; Wada, H. Lipoic acid metabolism in Arabidopsis thaliana: Cloning and characterization of a cDNA encoding lipoyltransferase. Plant Cell Physiol. 2001, 42, 650–656. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Zhao, X.; Eddine, A.N.; Geerlof, A.; Li, X.; Cronan, J.E.; Kaufmann, S.H.; Wilmanns, M. The Mycobacterium tuberculosis LipB enzyme functions as a cysteine/lysine dyad acyltransferase. Proc. Natl. Acad. Sci. USA 2006, 103, 8662–8667. [Google Scholar] [CrossRef] [PubMed]
- Zornetzer, G.A.; Fox, B.G.; Markley, J.L. Solution structures of spinach acyl carrier protein with decanoate and stearate. Biochemistry 2006, 45, 5217–5227. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Chuang, J.L.; Tso, S.C.; Wynn, R.M.; Chuang, D.T. Crystal structure of pyruvate dehydrogenase kinase 3 bound to lipoyl domain 2 of human pyruvate dehydrogenase complex. EMBO J. 2005, 24, 1763–1774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serrano-Vega, M.J.; Garcés, R.; Martínez-Force, E. Cloning, characterization and structural model of a FatA-type thioesterase from sunflower seeds (Helianthus annuus L.). Planta 2005, 221, 868–880. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Soisson, S.M.; Young, K.; Shoop, W.; Kodali, S.; Galgoci, A.; Painter, R.; Parthasarathy, G.; Tang, Y.S.; Cummings, R.; et al. Platensimycin is a selective FabF inhibitor with potent antibiotic properties. Nature 2006, 441, 358–361. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.Z.; Xue, H.W. Arabidopsis β-ketoacyl-[Acyl Carrier Protein] Synthase I is crucial for fatty acid synthesis and plays a role in chloroplast division and embryo development. Plant Cell 2010, 22, 3726–3744. [Google Scholar] [CrossRef] [PubMed]
- Takami, T.; Shibata, M.; Kobayashi, Y.; Shikanai, T. De novo biosynthesis of fatty acids plays critical roles in the response of the photosynthetic machinery to low temperature in Arabidopsis. Plant Cell Physiol. 2010, 51, 1265–1275. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar]
- Chambers, M.C.; MacLean, B.; Burke, R.; Amode, D.; Ruderman, D.L.; Neumann, S.; Gatto, L.; Fischer, B.; Pratt, B.; Egertson, J.; et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 2012, 30, 918–920. [Google Scholar] [CrossRef]
- Xia, J.; Wishart, D.S. Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. Curr. Protoc. Bioinform. 2016, 55, 14.10.1–14.10.91. [Google Scholar] [CrossRef]
- Guex, N.; Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 1997, 18, 2714–2723. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera: A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins-Noguerol, R.; Moreno-Pérez, A.J.; Acket, S.; Makni, S.; Garcés, R.; Troncoso-Ponce, A.; Salas, J.J.; Thomasset, B.; Martínez-Force, E. Lipidomic Analysis of Plastidial Octanoyltransferase Mutants of Arabidopsis thaliana. Metabolites 2019, 9, 209. https://doi.org/10.3390/metabo9100209
Martins-Noguerol R, Moreno-Pérez AJ, Acket S, Makni S, Garcés R, Troncoso-Ponce A, Salas JJ, Thomasset B, Martínez-Force E. Lipidomic Analysis of Plastidial Octanoyltransferase Mutants of Arabidopsis thaliana. Metabolites. 2019; 9(10):209. https://doi.org/10.3390/metabo9100209
Chicago/Turabian StyleMartins-Noguerol, Raquel, Antonio Javier Moreno-Pérez, Sebastien Acket, Salim Makni, Rafael Garcés, Adrián Troncoso-Ponce, Joaquín J. Salas, Brigitte Thomasset, and Enrique Martínez-Force. 2019. "Lipidomic Analysis of Plastidial Octanoyltransferase Mutants of Arabidopsis thaliana" Metabolites 9, no. 10: 209. https://doi.org/10.3390/metabo9100209
APA StyleMartins-Noguerol, R., Moreno-Pérez, A. J., Acket, S., Makni, S., Garcés, R., Troncoso-Ponce, A., Salas, J. J., Thomasset, B., & Martínez-Force, E. (2019). Lipidomic Analysis of Plastidial Octanoyltransferase Mutants of Arabidopsis thaliana. Metabolites, 9(10), 209. https://doi.org/10.3390/metabo9100209