A Comprehensive Review on Medicinal Plants as Antimicrobial Therapeutics: Potential Avenues of Biocompatible Drug Discovery
Abstract
:1. Introduction
- Enzymatic inactivation
- Modification of drug targets
- Mechanical protection provided by biofilm formation.
2. New Approaches for Herbal Drugs Usage: in silico Drug Discovery
3. Exploring Botanicals as Bio-Compatible Therapeutics
4. Plant Secondary Metabolites: Key Target Player
5. Mechanism of Action of Botanicals: Proof Based Research
6. Herbal Drug Formulations
7. Bio-Enhancers: Combining Traditional and Modern Medicine
- Expansion of antimicrobial spectrum
- Prevention of the emergence of drug resistant mutants
- Minimizing the toxicity level.
8. Bio-Enhancers May Act By
- Increasing drug ADME (Absorption, Distribution, Metabolism, and Excretion)
- Modulating biotransformation of drugs in the liver and intestines
- Modulating active transport phenomenon
- Decreasing elimination
- Boost the immune system.
9. Concluding Remarks and Future Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations–The Review on Antimicrobial Resistance Chaired by Jim O’Neill; Wellcome Trust; HM Government: London, UK, 2016.
- De Kraker, M.E.A.; Stewardson, J.; Harbath, S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med. 2016, 13, e1002184. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.D.; Wright, G.D. Antibacterial drug discovery in the resistance era. Nature 2016, 529, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Chandra, H.; Bishnoi, P.; Yadav, A.; Patni, B.; Mishra, A.P.; Nautiyal, A.R. Antimicrobial Resistance and the Alternative Resources with Special Emphasis on Plant-Based Antimicrobials—A Review. Plants 2017, 6, 16. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Song, J.; Sun, C.; Xu, J.; Zhu, Y.; Verpoorte, R.; Fan, T.P. Herbal genomics: Examining the biology of traditional medicines. Science 2015, 347, S27–S29. [Google Scholar]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef] [Green Version]
- Chin, Y.W.; Balunas, M.J.; Chai, H.B.; Kinghorn, A.D. Drug discovery from natural sources. AAPS J. 2006, 8, E239–E253. [Google Scholar] [CrossRef] [Green Version]
- Robinson, M.M.; Zhang, X. The World Medicines Situation 2011, Traditional Medicines: Global Situation, Issues and Challenges; World Health Organization: Geneva, Switzerland, 2011; pp. 1–4. [Google Scholar]
- Chavan, S.S.; Damale, M.G.; Devanand, B. Antibacterial and Antifungal Drugs from Natural Source: A Review of Clinical Development; Natural Products in Clinical Trials: Sharjah, UAE, 2018; Volume 1, p. 114. [Google Scholar]
- Tortorella, E.; Tedesco, P.; Esposito, P.F.; January, G.G.; Fani, R.; Jaspars, M.; de Pascale, D. Antibiotics from deep-sea microorganisms: Current discoveries and perspectives. Mar. Drugs 2018, 16, 355. [Google Scholar] [CrossRef]
- Penesyan, A.; Khelleberg, S.; Egan, S. Development of novel drugs from marine surface associated microorganisms. Mar. Drugs 2010, 8, 438–459. [Google Scholar] [CrossRef]
- David, B.; Wolfender, J.-L.; Dias, D.A. The pharmaceutical industry and natural products: Historical status and new trends. Phytochem Rev. 2015, 14, 299–315. [Google Scholar] [CrossRef]
- Pye, C.R.; Bertin, M.J.; Lokey, R.S.; Gerwick, W.H.; Linington, R.G. Retrospective analysis of natural products provides insights for future discovery trends. Proc. Natl. Acad. Sci. USA 2017, 114, 5601–5606. [Google Scholar] [CrossRef] [Green Version]
- Boucher, H.W.; Ambrose, P.G.; Chambers, H.F.; Ebright, R.H.; Jezek, A.; Murray, B.E.; Newland, J.G.; Ostrowsky, B.; Rex, J.H. White paper: Developing antimicrobial drugs for resistant pathogens, narrow-spectrum indications, and unmet needs. J. Infect. Dis. 2017, 216, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Luepke, K.H.; Suda, K.J.; Boucher, H.; Russo, R.L.; Bonney, M.W.; Hunt, T.D.; Mohr, J.F., 3rd. Past, present, and future of antibacterial economics: Increasing bacterial resistance, limited antibiotic pipeline, and societal implications. Pharmacotherapy 2017, 37, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, T.; Reker, D.; Schneider, P.; Schneider, G. Counting on natural products for drug design. Nat. Chem. 2016, 8, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Patwardhan, B.; Warude, D.; Pushpangadan, P.; Bhatt, N. Ayurveda and traditional Chinese medicine: A comparative overview. Evid. Based Complement. Altern. Med. 2005, 2, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Jianjun, T.; Zhou, Z. Traditional Chinese Medicine as Prevention and Treatment Strategies of HIV Infection. J. Drug 2016, 1, 28–36. [Google Scholar]
- Butler, M.S.; Robertson, A.A.V.; Cooper, M.A. Natural product and natural product derived drugs in clinical trials. Nat. Prod. Rep. 2014, 31, 1612–1661. [Google Scholar] [CrossRef]
- Wood, M. The Book of Herbal Wisdom: Using Plants as Medicines; North Atlantic Books: Berkeley, CA, USA, 2017. [Google Scholar]
- Blair, J.M.A.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.O.; Piddock, L.J. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2015, 13, 42–51. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef] [Green Version]
- National Center for Complementary and Integrative Health. Natural Product Libraries; National Institutes of Health: Bethesda, MD, USA, 2017. Available online: https://nccih.nih.gov/grants/naturalproducts/libraries (accessed on 20 August 2019).
- Owen, J.G.; Reddy, B.V.; Ternei, M.A.; Charlop-Powers, Z.; Calle, P.Y.; Kim, J.H.; Brady, S.F. Mapping gene clusters within arrayed metagenomic libraries to expand the structural diversity of biomedically relevant natural products. Proc. Natl. Acad. Sci. USA 2013, 110, 11797–11802. [Google Scholar] [CrossRef] [Green Version]
- Medina-Franco, J.L. Discovery and development of lead compounds from natural sources using computational approaches. In Evidence-Based Validation of Herbal Medicine; Elsevier: Amsterdam, The Netherlands, 2015; pp. 455–475. [Google Scholar]
- Baxevanis, A.D.; Bateman, A. The importance of biological databases in biological discovery. Curr. Protoc. Bioinform. 2015, 50, 1.1.1–1.1.8. [Google Scholar] [CrossRef]
- Prachayasittikul, V.; Worachartcheewan, A.; Shoombuatong, W.; Songtawee, N.; Simeon, S.; Prachayasittikul, V.; Nantasenamat, C. Computer-aided drug design of bioactive natural products. Curr. Top. Med. Chem. 2015, 15, 1780–1800. [Google Scholar] [CrossRef] [PubMed]
- Lagunin, A.A.; Goel, R.K.; Gawande, D.Y.; Pahwa, P.; Gloriozova, T.A.; Dmitriev, A.V.; Ivanov, S.M.; Rudik, A.V.; Konova, V.I.; Pogodin, P.V.; et al. Chemo-and bioinformatics resources for in silico drug discovery from medicinal plants beyond their traditional use: A critical review. Nat. Prod. Rep. 2014, 31, 1585–1611. [Google Scholar] [CrossRef]
- Xin-Zhuan, S.; Miller, L.H. The discovery of artemisinin and the Nobel Prize in Physiology or Medicine. Sci. China Life Sci. 2015, 58, 1175–1179. [Google Scholar] [Green Version]
- Shen, Q.; Zhang, L.; Liao, Z.; Brodelius, P.E. The Genome of Artemisia annua Provides Insight into the Evolution of Asteraceae Family and Artemisinin Biosynthesis. Mol. Plant 2018, 1, 776–788. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Chakraborty, R. Revival, modernization and integration of Indian traditional herbal medicine in clinical practice: Importance, challenges and future. J. Tradit. Complement. Med. 2017, 7, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The traditional medicine and modern medicine from natural products. Molecules 2016, 21, 559. [Google Scholar] [CrossRef]
- Gupta, P.D.; Birdi, T.J. Development of botanicals to combat antibiotic resistance. J. Ayurveda Integr. Med. 2017, 8, 266–275. [Google Scholar] [CrossRef]
- Shils, M.E.; Shike, M. (Eds.) Modern Nutrition in Health and Disease; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006. [Google Scholar]
- Chen, M.C.; Hao, Z.; Tian, Y.; Zhang, Q.Y.; Gao, P.J.; Jin, J.L. Different effects of six antibiotics and ten traditional Chinese medicines on shiga toxin expression by Escherichia coli O157:H7. Evid. Based Complement. Altern. Med. 2013, 2013, 121407. [Google Scholar]
- Stefanovic, O. Comic Synergistic antibacterial interaction between Melissa officinalis extracts and antibiotics. J. Appl. Pharm. Sci. 2012, 2, 1–5. [Google Scholar]
- Kasote, D.M.; Katyate, S.S.; Hedge, M.V.; Bae, H. Significance of antioxidant potential of plants and its relevance therapeutic applications. Int. J. Biol. Sci. 2015, 11, 982–991. [Google Scholar] [CrossRef]
- Fair, R.J.; Tor, Y. Antibiotics and bacterial resistance in the 21st century. Perspect. Med. Chem. 2014, 6, 25–64. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.B.; Young, K.; Silver, L.L. What is an “ideal” antibiotic? Discovery challenges and path forward. Biochem Pharmacol. 2017, 133, 63–73. [Google Scholar] [CrossRef]
- Alvin, A.; Miller, K.I.; Neilan, B.A. Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol. Res. 2014, 169, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Leonti, M. Traditional medicines and globalization: Current and future perspectives in ethnopharmacology. Front. Pharmacol. 2013, 4, 92. [Google Scholar] [CrossRef] [PubMed]
- Wink, M. Modes of action of herbal medicines and plant secondary metabolites. Medicines 2015, 2, 251–286. [Google Scholar] [CrossRef] [PubMed]
- Boy, H.I.; Rutilla, A.J.; Santos, K.A.; Ty, A.M.; Alicia, I.Y.; Mahboob, T.; Tangpoong, J.; Nissapatorn, V. Recommended Medicinal Plants as Source of Natural Products: A Review. Digit. Chin. Med. 2018, 1, 131–142. [Google Scholar] [CrossRef]
- Mawalagedera, S.M.; Symonds, M.R.; Callahan, D.L.; Gaskett, A.C.; Rønsted, N. Combining evolutionary inference and metabolomics to identify plants with medicinal potential. Front. Ecol. Evol. 2019, 7, 267. [Google Scholar] [CrossRef]
- Leicach, S.R.; Chludil, H.D. Plant secondary metabolites: Structure–activity relationships in human health prevention and treatment of common diseases. Stud. Nat. Prod. Chem. 2014, 42, 267–304. [Google Scholar]
- Moloney, M.G. Natural products as a source for novel antibiotics. Trends Pharmacol. Sci. 2016, 37, 689–701. [Google Scholar] [CrossRef]
- Soukup, R.W.; Soukup, K. The Series Progress in the Chemistry of Organic Natural Products: 75 Years of Service in the Development of Natural Product Chemistry. In Progress in the Chemistry of Organic Natural Products 100; Springer: Cham, Switzerland, 2015; pp. 453–588. [Google Scholar]
- Kabera, J.N.; Semana, E.; Mussa, A.R.; He, X. Plant secondary metabolites: Biosynthesis, classification, function and pharmacological properties. J. Pharm. Pharmacol. 2014, 2, 377–392. [Google Scholar]
- Alamgir, A.N.M. Pharmacognostical Botany: Classification of Medicinal and Aromatic Plants (MAPs), Botanical Taxonomy, Morphology, and Anatomy of Drug Plants. In Therapeutic Use of Medicinal Plants and Their Extracts; Springer: Cham, Switzerland, 2017; Volume 1, pp. 177–293. [Google Scholar]
- O’Connor, S.E. Engineering of secondary metabolism. Ann. Rev. Genet. 2015, 49, 71–94. [Google Scholar] [CrossRef] [PubMed]
- Katz, L.; Baltz, R.H. Natural product discovery: Past, present, and future. J. Ind. Microbiol. Biot. 2016, 43, 155–176. [Google Scholar] [CrossRef] [PubMed]
- Garnatje, T.; Peñuelas, J.; Vallès, J. Ethnobotany, phylogeny, and omics for human health and food security. Trends Plant Sci. 2017, 22, 187–191. [Google Scholar] [CrossRef]
- Hussain, M.S.; Fareed, S.; Ansari, S.; Rahman, M.A.; Ahmad, I.Z.; Saeed, M. Current approaches toward production of secondary plant metabolites. J. Pharm. Bioallied Sci. 2012, 4, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Szychowski, J.; Truchon, J.-F.; Bennani, Y.L. Natural products in medicine: Transformational outcome of synthetic chemistry. J. Med. Chem. 2014, 57, 9292–9308. [Google Scholar] [CrossRef] [PubMed]
- Jakobek, L. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem. 2015, 175, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Vadhana, P.; Singh, B.R.; Bharadwaj, M.; Singh, S.V. Emergence of herbal antimicrobial drug resistance in clinical bacterial isolates. Pharm. Anal. Acta. 2015, 6, 434. [Google Scholar] [CrossRef]
- Ody, P. The Complete Medicinal Herbal: A Practical Guide to the Healing Properties of Herbs; Skyhorse Publishing Inc.: New York, NY, USA, 2017. [Google Scholar]
- De Filippis, L.F.; Mohamed, M.A.; Ahmad, P. Plant secondary metabolites: From molecular biology to health products. In Plant-Environment Interaction: Responses and Approaches to Mitigate Stress; John Wiley & Sons Ltd.: Srinagar, India, 2016; pp. 263–299. [Google Scholar]
- Chitemerere, T.A.; Mukanganyama, S. Evaluation of cell membrane integrity as a potential antimicrobial target for plant products. BMC Complement. Altern. Med. 2014, 14, 278. [Google Scholar] [CrossRef]
- Anandhi, D.; Srinivasan, P.T.; Kumar, G.; Jagatheesh, S. DNA fragmentation induced by the glycosides and flavonoids from C. coriaria. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 666–673. [Google Scholar]
- Zhao, X.; Zhao, F.; Zhong, N. Quorum Sensing Inhibition and Anti-Biofilm Activity of Traditional Chinese Medicines. In Food Safety-Some Global Trends; IntechOpen: London, UK, 2018; p. 37. [Google Scholar]
- Radulovic, N.S.; Blagojevic, P.D.; Stojanovic-Radic, Z.Z.; Stojanovic, N.M. Antimicrobial plant metabolites: Structural diversity and mechanism of action. Curr. Med. Chem. 2013, 20, 932–952. [Google Scholar]
- Mogosanu, G.D.; Grumezescu, A.M.; Huang, K.S.; Bejenaru, L.E.; Bejenaru, C. Prevention of microbial communities: Novel approaches based natural products. Curr. Pharm. Biotechnol. 2015, 16, 94–111. [Google Scholar] [CrossRef] [PubMed]
- Bazaka, K.; Jacob, M.V.; Chrzanowski, W.; Ostrikov, K. Anti-bacterial surfaces: Natural agents, mechanisms of action, and plasma surface modification. RSC Adv. 2015, 5, 48739–48759. [Google Scholar] [CrossRef]
- Díaz-de-Cerio, E.; Verardo, V.; Gómez-Caravaca, A.M.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Health effects of Psidium guajava L. leaves: An overview of the last decade. Int. J. Mol. Sci. 2017, 8, 897. [Google Scholar] [CrossRef] [PubMed]
- Rajasekaran, E.; Palombo, E.; Yeo, T.; Ley, D.L.S.; Tu, C.L.; Malherbe, F.; Grollo, L. Evidence of synergistic activity of medicinal plant extracts against neuraminidase inhibitor resistant strains of influenza viruses. Adv. Microbiol. 2014, 4, 1260–1277. [Google Scholar] [CrossRef]
- Gupta, P.D.; Bhatter, P.D.; D’souza, D.; Tolani, M.; Daswani, P.; Tetali, P. Evaluating the anti-Mycobacterium tuberculosis activity of Alpinia galanga (L.) Willd. Axenically under reducing oxygen conditions and intracellular assays. BMC Complement. Altern. Med. 2014, 14, 84. [Google Scholar] [CrossRef]
- Ganjhu, R.K.; Mudgal, P.P.; Maity, H.; Dowarha, D.; Devadiga, S.; Nag, S.; Arunkumar, G. Herbal plants and plant preparations as remedial approach for viral diseases. Virus Dis. 2015, 26, 225–236. [Google Scholar] [CrossRef]
- Turmagambetova, A.S.; Alexyuk, P.G.; Bogoyavlenskiy, A.P.; Zaitseva, I.A.; Omirtaeva, E.S.; Alexyuk, M.S.; Sokolova, N.S.; Berezin, V.E. Adjuvant activity of saponins from Kazakhstani plants on the immune responses to subunit influenza vaccine. Arch. Virol. 2017, 162, 3817–3826. [Google Scholar] [CrossRef]
- Chanda, S.; Rakholiya, K. Indian combination therapy: Synergism between natural plant extracts and antibiotics against infectious diseases. In Science Against Microbial Pathogens: Communicating Current Research and Technological Advances; Mendez-Vilas, A., Ed.; Formatex Research Center: Badajoz, Spain, 2011; Volume 1, pp. 520–529. [Google Scholar]
- Pan, S.Y.; Litscher, G.; Gao, S.-H.; Zhou, S.-F.; Yu, Z.-L.; Chen, H.-Q.; Zhang, S.-F.; Tang, M.-K.; Sun, J.-N.; Ko, K.-M. Historical perspective of traditional indigenous medical practices: The current renaissance and conservation of herbal resources. Evid. Based Complement. Altern. Med. 2014, 2014, 525340. [Google Scholar] [CrossRef]
- Nelson, K.M.; Dahlin, J.L.; Bisson, J.; Graham, J.; Pauli, G.F.; Walters, M.A. The essential medicinal chemistry of curcumin: Miniperspective. J. Med. Chem. 2017, 60, 1620–1637. [Google Scholar] [CrossRef]
- Chauhan, M.; Suman, S.; Amit, R. Curcumin: A review. J. Appl. Pharm. Res. 2014, 2, 18–28. [Google Scholar]
- Aggarwal, B.B.; Kuzhuvelil, B.H. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int. J. Biochem. Cell Biol. 2009, 41, 40–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Boisselier, R.; Alexandre, J.; Lelong-Boulouard, V.; Debruyne, D. Focus on cannabinoids and synthetic cannabinoids. Clin. Pharmacol. Ther. 2017, 101, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Rahal, A.; Verma, A.K.; Mahima, A.K. Phytonutrients and nutraceuticals in vegetables and their multi-dimensional medicinal and health benefits for humans and their companion animals: A review. J. Biol. Sci. 2014, 14, 1–19. [Google Scholar]
- Fridlender, M.; Yoram, K.; Hinanit, K. Plant derived substances with anti-cancer activity: From folklore to practice. Front. Plant Sci. 2015, 6, 799. [Google Scholar] [CrossRef] [PubMed]
- Habeeb, F.; Shakir, E.; Bradbury, F.; Cameron, P.; Taravati, M.R.; Drummond, A.J.; Gray, A.I.; Ferro, V.A. Screening methods used to determine the anti-microbial properties of Aloe vera inner gel. Methods 2007, 42, 315–320. [Google Scholar] [CrossRef]
- Soejarto, D.D.; Addo, E.M.; Kinghorn, A.D. Highly sweet compounds of plant origin: From ethnobotanical observations to wide utilization. J. Ethnopharmacol. 2019, 243, 112056. [Google Scholar] [CrossRef] [PubMed]
- Schwab, W.; Davidovich-Rikanati, R.; Lewinsohn, E. Biosynthesis of plant-derived flavour compounds. Plant J. 2008, 54, 712–732. [Google Scholar] [CrossRef]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.; Lightfoot, D. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef]
- Appendino, G.; Minassi, A.; Taglialatela-Scafati, O. Recreational drug discovery: Natural products as lead structures for the synthesis of smart drugs. Nat. Prod. Rep. 2014, 31, 880–904. [Google Scholar] [CrossRef]
- Dudhatra, G.; Mody, S.; Awale, M.; Patel, H.B.; Modi, C.M.; Kumar, A.; Kamani, D.R.; Chauhan, B.N. A comprehensive review on pharmacotherapeutics of herbal bioenhancers. Sci. World. J. 2012, 2012, 637953. [Google Scholar] [CrossRef]
- Tatiraju, D.; Bagade, V.; Karambelkar, P.; Jadhav, V.; Kadam, V. Natural bioenhancers: An overview. J. Pharmacogn. Phytochem. 2013, 2, 55–60. [Google Scholar]
- Ruddaraju, L.K.; Pammi, S.V.N.; Guntuku, G.S.; Padavala, V.W.; Kolapalli, V.R.M. A review on anti-bacterials to combat resistance: From ancient era of plants and metals to present and future perspectives of green nano technological combinations. Asian J. Pharm. Sci. 2019, in press. [Google Scholar] [CrossRef]
- Reker, D.; Rodrigues, T.; Perna, A.M.; Schenider, P. Revealing the macromolecular targets of complex natural products. Nat. Chem. 2014, 6, 1072–1078. [Google Scholar] [CrossRef] [PubMed]
- Almabruk, K.H.; Dinh, L.K.; Philmus, B. Self-resistance of natural product producers: Past, present and future focusing on self-resistant protein variants. ACS Chem. Biol. 2018, 13, 1426–1437. [Google Scholar] [CrossRef]
- Tu, Y. Artemisinin—A gift from traditional Chinese medicine to the world (Nobel lecture). Angew. Chem. Int. Ed. 2016, 55, 10210–10226. [Google Scholar] [CrossRef]
- Alamgir, A.N.M. Biotechnology, In Vitro Production of Natural Bioactive Compounds, Herbal Preparation, and Disease Management (Treatment and Prevention). In Therapeutic Use of Medicinal Plants and Their Extracts; Springer: Cham, Switzerland, 2018; Volume 2, pp. 585–664. [Google Scholar]
- Gandhi, S.G.; Vidushi, M.; Yashbir, S.B. Changing trends in biotechnology of secondary metabolism in medicinal and aromatic plants. Planta 2015, 241, 303–317. [Google Scholar] [CrossRef]
- Uhlenbrock, L.; Tegtmeier, M.; Sixt, M.; Schulz, H. Natural Products Extraction of the Future—Sustainable Manufacturing Solutions for Societal Needs. Processes 2018, 6, 177. [Google Scholar] [CrossRef]
- Chakraborty, P. Herbal genomics as tools for dissecting new metabolic pathways of unexplored medicinal plants and drug discovery. Biochimie 2018, 6, 9–16. [Google Scholar] [CrossRef]
Database Name | Hyperlink | Purpose of the Database |
---|---|---|
Indian Medicinal Plants, Phytochemistry and Therapeutics (IMPPAT) | http://cb.imsc.res.in/imppat/home | The database contains the largest phytochemicals list of the Indian medicinal plants |
METLIN Metabolomics | https://metlin.scripps.edu/landing_page.php?pgcontent=mainPage | MS/MS metabolite database |
Cardiovascular Disease Herbal Database (CVDHD) | http://pkuxxj.pku.edu.cn/CVDHD | Database specialized in herbs used for cardiovascular diseases for drug discovery |
KNApSAcK | http://www.knapsackfamily.com/KNApSAcK/ | Database to find species-metabolite relationship |
Dr. Duke’s Phytochemical & Ethnobotanical Database | https://phytochem.nal.usda.gov/phytochem/search/list | Database for searching chemical, bioactivity, and ethnobotany information |
Traditional Chinese Medicine Integrated Database (TCMID) | http://119.3.41.228:8000/ | A complete database of the TCM, including formulae, herbs, and herbal ingredients |
TCM@Taiwan | http://tcm.cmu.edu.tw/ | The world’s largest database of TCM for drug screening in silico |
TCM-Mesh | http://mesh.tcm.microbioinformatics.org | Database for network pharmacology analysis of TCM preparations |
DrugBank | https://www.drugbank.ca/ | Bioinformatics and cheminformatics database for drug data and drug target information |
Search Tool for Interacting Chemicals (STITCH) | http://stitch.embl.de/ | Database specialized in the known and predicted interactions between chemicals and proteins |
Medicinal Plant Genomics Resource (MPGR) | http://medicinalplantgenomics.msu.edu | Website specialized in the genome and metabolome of medicinal plants |
PubChem | https://pubchem.ncbi.nlm.nih.gov/ | Chemistry database |
Therapeutic Targets Database (TTD) | https://db.idrblab.org/ttd/ | Database of therapeutic proteins and nucleic acid targets, targeted disease, pathway information and drugs used for the targets |
NuBBE Database | http://nubbe.iq.unesp.br/portal/nubbe-search.html | Database is helpful for studies on naturally occurring bioactive compounds, molecular and physicochemical properties |
SistematX | https://sistematx.ufpb.br/ | An online Cheminformatics tool for secondary metabolites data management |
Super Natural II | http://bioinformatics.charite.de/supernatural | Natural products database which contains ∼325,508 natural compounds (NCs)/ molecules |
InterBioScreen Natural Products Database | https://www.ibscreen.com/natural-compounds | The database contains over 68 000 highly diverse natural compounds |
Plant Derived Drugs/Molecules | Plant Species |
---|---|
Aspirin | Filipendula ulmaria (L.) Maxim |
Codeine | Papaver somniferum L. |
Papaverine | Papaver somniferum L. |
Colchicine | Colchicum autumnale L. |
Digoxin and digitoxin | Digitalis purpurea L. |
Cannabidiol | Cannabis sativa L. |
Tetrahydrocannabinol | Cannabis sativa L. |
Vinblastine and vincristine | Catharanthus roseus (L.) G. Don |
Artemisinin | Artemisia annua L. |
Galantamine (Reminyl®) | Galanthus woronowii Losinsk. |
Apomorphine hydrochloride (Apokyn®) | Papaver somniferum L. |
Tiotropium bromide (Spiriva®) | Atropa belladonna L. |
Paclitaxel (Taxol®) | Taxus brevifolia Nutt. |
Vinblastine and vincristine | Catharanthus roseus (L.) G. Don |
Paclitaxel | Taxus brevifolia Nutt. & Taxus chinensis (Pilg.) Rehder |
Camptothecin | Camptotheca acuminate Decne. |
Allicin (diallylthiosulfnate) | garlic (Allium sativum L.) |
Functional Properties | Plant Molecules | References |
---|---|---|
Food and Nutrition | Vitamins, flavonols carotenoids, anthocyanins catechins, lycopene, genistein, daidzein, resveratrol, plant-based/non-dairy milk | Rahal et al., 2014 [76] |
Health | Taxol, quinine, artemisinin, morphine, minerals, polysaccharides, amino acids, enzymes, vitamins, | Fridlender et al., 2015 [77] Habeeb et al., 2007 [78] |
Sweeteners | Stevioside, rebaudioside A (C44H70O230) | Soejarto et al., 2019 [79] |
Aroma/flavours | Menthol, benzyl acetate, vanillin, 2-phenylethel alcohol, eugenol, limonene, linalool, ionones, anethole, cinnamaldehyde | Schwab et al., 2008 [80] Altemimi et al.,2017 [81] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anand, U.; Jacobo-Herrera, N.; Altemimi, A.; Lakhssassi, N. A Comprehensive Review on Medicinal Plants as Antimicrobial Therapeutics: Potential Avenues of Biocompatible Drug Discovery. Metabolites 2019, 9, 258. https://doi.org/10.3390/metabo9110258
Anand U, Jacobo-Herrera N, Altemimi A, Lakhssassi N. A Comprehensive Review on Medicinal Plants as Antimicrobial Therapeutics: Potential Avenues of Biocompatible Drug Discovery. Metabolites. 2019; 9(11):258. https://doi.org/10.3390/metabo9110258
Chicago/Turabian StyleAnand, Uttpal, Nadia Jacobo-Herrera, Ammar Altemimi, and Naoufal Lakhssassi. 2019. "A Comprehensive Review on Medicinal Plants as Antimicrobial Therapeutics: Potential Avenues of Biocompatible Drug Discovery" Metabolites 9, no. 11: 258. https://doi.org/10.3390/metabo9110258
APA StyleAnand, U., Jacobo-Herrera, N., Altemimi, A., & Lakhssassi, N. (2019). A Comprehensive Review on Medicinal Plants as Antimicrobial Therapeutics: Potential Avenues of Biocompatible Drug Discovery. Metabolites, 9(11), 258. https://doi.org/10.3390/metabo9110258