Simultaneous Synthesis of Vitamins D2, D4, D5, D6, and D7 from Commercially Available Phytosterol, β-Sitosterol, and Identification of Each Vitamin D by HSQC NMR
Abstract
:1. Introduction
2. Results and Discussion
2.1. Simultanous Synthesis of Vitamin D Analogs
2.2. Comparison of Each Vitamin D Analog by HSQC NMR
3. Materials and Methods
3.1. Reagents and Conditions
3.2. Simultaneous Synthesis of Vitamin D Analogs, Vitamins D2 (9), D4 (10), D5 (6), D6 (8), and D7 (7).
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nomenclature of vitamin D. Pure Appl. Chem. 1982, 54, 1511–1516. Available online: https://febs.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1432-1033.1982.tb06581.x (accessed on 6 June 2019). [CrossRef]
- Tachibana, Y.; Tsuji, M. Structure-activity relationships of naturally occurring active forms of vitamin D analogues. In Natural Products Chemistry; Atta ur, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; Volume 30, pp. 483–513. [Google Scholar] [CrossRef]
- Ruigh, W.L. 7-Dehydrocampesterol, a new provitamin D. J. Am. Chem. Soc. 1942, 64, 1900–1902. [Google Scholar] [CrossRef]
- Tachibana, Y.; Yokoyama, S.; Tejima, T.; Okamoto, Y.; Hongyo, T. 1 Alpha-Hydroxy Vitamins D7 and D4’ Processes for the Preparation Thereof and Pharmaceutical Compositions. European Patent EP0562497(A1), 29 September 1993. [Google Scholar]
- Fuse, S.; Mifune, Y.; Tanabe, N.; Takahashi, T. Continuous-flow synthesis of activated vitamin D3 and its analogues. Org. Biomol. Chem. 2012, 10, 5205–5211. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lu, J.; Wang, F.; Tan, T. Optimization of photoreaction for the production of vitamin D2. Chem. Eng. Technol. 2007, 30, 1495–1498. [Google Scholar] [CrossRef]
- Okabe, M. Vitamin D2 from ergosterol [9,10-secoergosta-5,7,10(19),22-tetraen-3-ol,(3β)- from ergosta-5,7,22-trien-3-ol,(3β)-]. Org. Synth. 1999, 76, 275–286. [Google Scholar] [CrossRef]
- Schultz, F.S.; Anderson, M.A. Effects of surface adsorption and confinement on the photochemical selectivity of previtamin D3 adsorbed within porous sol-gel derived alumina. J. Am. Chem. Soc. 1999, 121, 4933–4940. [Google Scholar] [CrossRef]
- Dauben, W.G.; Kowalczyk, B.A.; Funhoff, D.J.H. Organic reactions at high pressure. Interconversion of previtamin D3 and vitamin D3. Tetrahedron Lett. 1988, 29, 3021–3024. [Google Scholar] [CrossRef]
- Moriarty, R.M.; Albinescu, D. Synthesis of 1α-hydroxyvitamin D5 using a modified two wavelength photolysis for vitamin D formation. J. Org. Chem. 2005, 70, 7624–7628. [Google Scholar] [CrossRef] [PubMed]
- Bu, M.; Cao, T.T.; Li, H.X.; Guo, M.Z.; Yang, B.B.; Zhou, Y.; Zhang, N.; Zeng, C.C.; Hu, L.M. Synthesis and biological evaluation of novel steroidal 5α, 8α-endoperoxide derivatives with aliphatic side-chain as potential anticancer agents. Steroids 2017, 124, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Dauben, W.G.; Phillips, R.B. Wavelength-controlled production of previtamin D3. J. Am. Chem. Soc. 1982, 104, 355–356. [Google Scholar] [CrossRef]
- Koszewski, N.J.; Reinhardt, T.A.; Beitz, D.C.; Napoli, J.L.; Baggiolini, E.G.; Uskokovic, M.R.; Horst, R.L. Use of fourier transform 1H NMR in the identification of vitamin D2 metabolites. Anal. Biochem. 1987, 162, 446–452. [Google Scholar] [CrossRef]
- Tsukida, K.; Akutsu, K.; Saiki, K. Carbon-13 nuclear magnetic resonance spectra of vitamins D and related compounds. J. Nutr. Sci. Vitaminol. 1975, 21, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Napoli, J.L.; Fivizzani, M.A.; Schnoes, H.K.; Deluca, H.F. Synthesis of vitamin D5: Its biological activity relative to vitamins D3 and D2. Arch. Biochem. Biophys. 1979, 197, 119–125. [Google Scholar] [CrossRef]
- Chaturvedula, V.S.P.; Prakash, I. Isolation of stigmasterol and β-sitosterol from the dichloromethane extract of Rubus suavissimus. Int. Curr. Pharm. J. 2012, 1, 239–242. [Google Scholar] [CrossRef]
- Akihisa, T.; Matsumoto, T. 13C-NMR spectra of sterols and triterpene alcohols. J. Jpn. Oil Chem. Soc. 1987, 36, 301–319. [Google Scholar] [CrossRef]
- Suttiarporn, P.; Chumpolsri, W.; Mahatheeranont, S.; Luangkamin, S.; Teepsawang, S.; Leardkamolkarn, V. Structures of phytosterols and triterpenoids with potential anti-cancer activity in bran of black non-glutinous rice. Nutrients 2015, 7, 1672–1687. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Cambrai, A.; Miesch, M.; Roussi, S.; Raul, F.; Aoude-Werner, D.; Marchioni, E. Separation of Δ5- and Δ7-phytosterols by adsorption chromatography and semipreparative reversed phase high-performance liquid chromatography for quantitative analysis of phytosterols in foods. J. Agric. Food Chem. 2006, 54, 1196–1202. [Google Scholar] [CrossRef] [PubMed]
- Rohmer, M.; Kokke, W.C.M.C.; Fenical, W.; Djerassi, C. Isolation of two new C30 sterols, (24E)-24-N-propylidenecholesterol and 24ε-N-propylcholesterol, from a cultured marine chrysophyte. Steroids 1980, 35, 219–231. [Google Scholar] [CrossRef]
- Kruk, C.; Jans, A.W.H.; Lugtenburg, J. Two-dimensional INADEQUATE 13C NMR-study on vitamin D3. Magn. Reson. Chem. 1985, 23, 267–270. [Google Scholar] [CrossRef]
- Farias, J.J. Vitamin D3—A Structural Elucidation Example Using the Agilent 400-MR; Agilent Technologies Inc.: Santa Clara, CA, USA, 2011; Available online: https://www.agilent.com/cs/library/whitepaper/public/5990-9600EN.pdf (accessed on 26 April 2019).
Carbon | Vitamin D2 (9) | Vitamin D3 (13) | Vitamin D4 (10) | Vitamin D5 (6) | Vitamin D6 (8) | Vitamin D7 (7) |
---|---|---|---|---|---|---|
1 | 31.9 | 31.9 | 31.9 | 31.9 | 31.9 | 31.9 |
2 | 35.2 | 35.2 | 35.2 | 35.2 | 35.2 | 35.2 |
3 | 69.2 | 69.2 | 69.2 | 69.2 | 69.2 | 69.2 |
4 | 45.9 | 45.86 or 45.93 | 45.85 or 45.93 | 45.84 or 45.86 or 45.93 | 45.9 | 45.86 or 45.93 |
5 | 135.0 | 135.0 | 135.0 | 135.0 | 135.1 | 135.0 |
6 | 122.5 | 122.5 | 122.5 | 122.5 | 122.5 | 122.5 |
7 | 117.5 | 117.5 | 117.5 | 117.5 | 117.5 | 117.5 |
8 | 142.2 | 142.4 | 142.4 | 142.3 | 142.2 | 142.4 |
9 | 29.9 | 29.0 | 29.0 | 29.0 or 29.2 | 29.0 | 29.0 |
10 | 145.1 | 145.1 | 145.1 | 145.1 | 145.1 | 145.1 |
11 | 23.6 | 23.6 | 23.6 | 23.6 | 23.6 | 23.6 |
12 | 40.37 or 40.41 | 40.5 | 40.5 | 40.5 | 40.4 | 40.5 |
13 | 45.8 | 45.86 or 45.93 | 45.85 or 45.93 | 45.84 or 45.86 or 45.93 | 45.8 | 45.86 or 45.93 |
14 | 56.4 or 56.5 | 56.4 | 56.3 | 56.4 | 56.5 | 56.4 |
15 | 22.2 | 22.3 | 22.3 | 22.3 | 22.3 | 22.3 |
16 | 27.8 | 27.6 | 27.6 | 27.7 | 28.2 | 27.7 |
17 | 56.4 or 56.5 | 56.6 | 56.5 | 56.5 | 56.4 | 56.6 |
18 | 12.3 | 12.0 | 12.0 | 12.0 | 12.2 | 12.0 |
19 | 112.4 | 112.4 | 112.4 | 112.4 | 112.4 | 112.4 |
20 | 40.37 or 40.41 | 36.1 | 36.5 | 36.5 | 40.7 | 36.2 |
21 | 21.1 | 18.8 | 19.0 | 18.9 | 21.3 | 18.8 |
22 | 135.6 | 36.1 | 33.7 | 33.9 | 138.1 | 33.7 |
23 | 132.0 | 23.9 | 30.6 | 26.1 | 129.5 | 30.3 |
24 | 42.8 | 39.5 | 39.1 | 45.84 or 45.86 or 45.93 | 51.2 | 38.8 |
241 | 17.6 | - | 15.4 | 23.1 | 25.4 | 15.4 |
242 | - | - | - | 12.0 | 12.2 | - |
25 | 33.1 | 28.0 | 31.5 | 29.0 or 29.2 | 31.9 | 32.4 |
26 | 19.6 or 19.9 | 22.5 or 22.8 | 17.6 or 20.5 | 19.0 or 19.8 | 19.0 or 21.1 | 18.2 or 20.2 |
27 | 19.6 or 19.9 | 22.5 or 22.8 | 17.6 or 20.5 | 19.0 or 19.8 | 19.0 or 21.1 | 18.2 or 20.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komba, S.; Kotake-Nara, E.; Tsuzuki, W. Simultaneous Synthesis of Vitamins D2, D4, D5, D6, and D7 from Commercially Available Phytosterol, β-Sitosterol, and Identification of Each Vitamin D by HSQC NMR. Metabolites 2019, 9, 107. https://doi.org/10.3390/metabo9060107
Komba S, Kotake-Nara E, Tsuzuki W. Simultaneous Synthesis of Vitamins D2, D4, D5, D6, and D7 from Commercially Available Phytosterol, β-Sitosterol, and Identification of Each Vitamin D by HSQC NMR. Metabolites. 2019; 9(6):107. https://doi.org/10.3390/metabo9060107
Chicago/Turabian StyleKomba, Shiro, Eiichi Kotake-Nara, and Wakako Tsuzuki. 2019. "Simultaneous Synthesis of Vitamins D2, D4, D5, D6, and D7 from Commercially Available Phytosterol, β-Sitosterol, and Identification of Each Vitamin D by HSQC NMR" Metabolites 9, no. 6: 107. https://doi.org/10.3390/metabo9060107
APA StyleKomba, S., Kotake-Nara, E., & Tsuzuki, W. (2019). Simultaneous Synthesis of Vitamins D2, D4, D5, D6, and D7 from Commercially Available Phytosterol, β-Sitosterol, and Identification of Each Vitamin D by HSQC NMR. Metabolites, 9(6), 107. https://doi.org/10.3390/metabo9060107