Metabolomic Variability of Different Genotypes of Cashew by LC-Ms and Correlation with Near-Infrared Spectroscopy as a Tool for Fast Phenotyping
Abstract
:1. Introduction
2. Results
2.1. Exploratory Multivariate Analysis of the MicroNIR Dataset
Multivariate Regression Analysis of the MicroNIR Dataset
2.2. UPLC-HRMS
2.2.1. Multivariate Classification Analysis of the UPLC-HRMS Dataset
3. Discussion
4. Materials and Methods
4.1. Sampling and Experimental Planning
4.2. Portable NIR Spectrometer Analysis
4.2.1. Determination of °Brix, Total Acidity, and Concentration of Ascorbic Acid
4.2.2. Chemometric Analysis of the MicroNIR Dataset
4.3. UPLC-HRMS Analysis
4.3.1. Chemometric Analysis of the HPLC-HRMS Dataset
4.3.2. Relative Contribution
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Caramês, E.T.; Alamar, P.D.; Poppi, R.J.; Pallone, J.A.L. Quality control of cashew apple and guava nectar by near infrared spectroscopy. J. Food. Compos. Anal. 2017, 56, 41–46. [Google Scholar] [CrossRef]
- Ribeiro, L.P.D.; da Silva, A.P.M.; de Lima, A.A.; de Oliveira Silva, E.; Rinnan, Å.; Pasquini, C. Non-destructive determination of quality traits of cashew apples (Anacardium occidentale L.) using a portable near infrared spectrophotometer. J. Near. Infrared. Spectrosc. 2016, 24, 77–82. [Google Scholar] [CrossRef]
- De Brito, E.S.; de Araújo, M.C.P.; Lin, L.Z.; Harnly, J. Determination of the flavonoid components of cashew apple (Anacardium occidentale) by LC-DAD-ESI/MS. Food Chem. 2007, 105, 1112–1118. [Google Scholar] [CrossRef]
- Mathlouthi, M. Water content, water activity, water structure and the stability of foodstuffs. Food Control 2001, 12, 409–417. [Google Scholar] [CrossRef]
- Nicolai, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biol. Technol. 2007, 46, 99–118. [Google Scholar] [CrossRef]
- Connolly, C. NIR spectroscopy for foodstuff monitoring. Sens Rev. 2005, 25, 192–194. [Google Scholar] [CrossRef]
- Dos Santos, C.A.T.; Lopo, M.; Páscoa, R.N.; Lopes, J.A. A review on the applications of portable near-infrared spectrometers in the agro-food industry. Appl. Spectrosc. 2013, 67, 1215–1233. [Google Scholar] [CrossRef]
- Cavalcante, A.A.M.; Rübensam, G.; Erdtmann, B.; Brendel, M.; Henriques, J.A. Cashew (Anacardium occidentale) apple juice lowers mutagenicity of aflatoxin B1 in S. typhimurium TA102. Genet. Mol. Biol. 2005, 28, 328–333. [Google Scholar] [CrossRef]
- Kubo, I.; Nihei, K.I.; Tsujimoto, K. Antibacterial action of anacardic acids against methicillin resistant Staphylococcus aureus (MRSA). J. Agric. Food Chem. 2003, 51, 7624–7628. [Google Scholar] [CrossRef]
- Ha, T.J.; Kubo, I. Lipoxygenase inhibitory activity of anacardic acids. J. Agric. Food Chem. 2005, 53, 4350–4354. [Google Scholar] [CrossRef]
- Chaves, N.; Castro, A.; Vidal, R.; Albuquerque, A.; Moura, C.; Barros, L. Characterization of cashew accessions for ornamental purposes. In Proceedings of the X International Symposium on Postharvest Quality of Ornamental Plants 1060, Liege, Belgium, 19–24 May 2019; pp. 315–320. [Google Scholar]
- Scherer, R.; Rybka, A.C.P.; Ballus, C.A.; Meinhart, A.D.; Filho, J.T.; Godoy, H.T. Validation of a HPLC method for simultaneous determination of main organic acids in fruits and juices. Food Chem. 2012, 135, 150–154. [Google Scholar] [CrossRef] [Green Version]
- Zepka, L.Q.; Mercadante, A.Z. Degradation compounds of carotenoids formed during heating of a simulated cashew apple juice. Food Chem. 2009, 117, 28–34. [Google Scholar] [CrossRef]
- Pereira, A.L.F.; Almeida, F.D.L.; de Jesus, A.L.T.; da Costa, J.M.C.; Rodrigues, S. Storage stability and acceptance of probiotic beverage from cashew apple juice. Food Bioprocess Tech. 2013, 6, 3155–3165. [Google Scholar] [CrossRef]
- Assunção, R.B.; Mercadante, A.Z. Carotenoids and ascorbic acid composition from commercial products of cashew apple (Anacardium occidentale L.). J. Food Compos. Anal. 2003, 16, 647–657. [Google Scholar] [CrossRef]
- Beebe, K.R.; Pell, R.J.; Seasholtz, M.B. Chemometrics, a Practical Guide; Wiley: New York, NY, USA, 1998; Volume 4. [Google Scholar]
- Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933, 24, 417–441. [Google Scholar] [CrossRef]
- Andersen, C.M.; Bro, R. Variable selection in regression—A tutorial. J. Chemom. 2010, 24, 728–737. [Google Scholar] [CrossRef]
- Ballabio, D. A MATLAB toolbox for Principal Component Analysis and unsupervised exploration of data structure. Chemom. Intell. Lab. Syst. 2015, 149, 1–9. [Google Scholar] [CrossRef]
- Wise, B.M.; Gallagher, N.; Bro, R.; Shaver, J.; Windig, W.; Koch, R.S. PLS Toolbox 4.0; Eigenvector Research Incorporated: Wenatchee, WA, USA, 2007. [Google Scholar]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression, a basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Freitas, J.V.B.; Alves Filho, E.G.; Silva, L.M.A.; Zocolo, G.J.; de Brito, E.S.; Gramosa, N.V. Chemometric analysis of NMR and GC datasets for chemotype characterization of essential oils from different species of Ocimum. Talanta 2018, 180, 329–336. [Google Scholar] [CrossRef]
- Varmuza, K.; Filzmoser, P. Introduction to Multivariate Statistical Analysis in Chemometrics; CRC Press: Boka Raton, FL, USA, 2016. [Google Scholar]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical recipes. The Art of Scientific Computing, 3rd ed.; Cambridge University Press: Cambridge, UK, 2007; Volume 3. [Google Scholar]
- Gorry, P.A. General least—Squares smoothing and differentiation by the convolution (Savitzky–Golay) method. Anal. Chem. 1990, 62, 570–573. [Google Scholar] [CrossRef]
- Bureau, S.; Ruiz, D.; Reich, M.; Gouble, B.; Bertrand, D.; Audergon, J.M.; Renard, C.M.G.C. Rapid and non-destructive analysis of apricot fruit quality using FT-near-infrared spectroscopy. Food Chem. 2009, 113, 1323–1328. [Google Scholar] [CrossRef]
- Shenk, J.S.; Workman, J.J.; Westerhaus, M.O. Application of NIR spectroscopy to agricultural products. Pract. Spectroscopy Ser. 2001, 27, 419–474. [Google Scholar]
- Malegori, C.; Nascimento Marques, E.J.; de Freitas, S.T.; Pimentel, M.F.; Pasquini, C.; Casiraghi, E. Comparing the analytical performances of Micro-NIR and FT-NIR spectrometers in the evaluation of acerola fruit quality, using PLS and SVM regression algorithms. Talanta 2017, 165, 112–116. [Google Scholar] [CrossRef]
- Magwaza, L.S.; Opara, U.L.; Nieuwoudt, H.; Cronje, P.J.; Saeys, W.; Nicolaï, B. NIR spectroscopy applications for internal and external quality analysis of citrus fruit—A review. Food Bioprocess Tech. 2012, 5, 425–444. [Google Scholar] [CrossRef]
- Nielsen, N.-P.V.; Carstensen, J.M.; Smedsgaard, J. Aligning of single and multiple wavelength chromatographic profiles for chemometric data analysis using correlation optimised warping. J. Chromatogr. A 1998, 805, 17–35. [Google Scholar] [CrossRef]
- Alves Filho, E.G.; Almeida, F.D.; Cavalcante, R.S.; de Brito, E.S.; Cullen, P.J.; Frias, J.M.; Bourke, P.; Fernandes, F.A.; Rodrigues, S. 1H NMR spectroscopy and chemometrics evaluation of non-thermal processing of orange juice. Food Chem. 2016, 204, 102–107. [Google Scholar] [CrossRef]
- Cunha, A.G.; Brito, E.S.; Moura, C.F.; Ribeiro, P.R.; Miranda, M.R.A. UPLC–qTOF-MS/MS-based phenolic profile and their biosynthetic enzyme activity used to discriminate between cashew apple (Anacardium occidentale L.) maturation stages. J. Chromatogr. B 2017, 1051, 24–32. [Google Scholar] [CrossRef]
- Bernillon, S.; Biais, B.; Deborde, C.; Maucourt, M.; Cabasson, C.; Gibon, Y.; Hansen, T.H.; Husted, S.; de Vos, R.C.; Mumm, R. Metabolomic and elemental profiling of melon fruit quality as affected by genotype and environment. Metabolomics 2013, 9, 57–77. [Google Scholar] [CrossRef]
- Okpanachi, U.; Attah, S.; Shaahu, D. A Comparative study between vitamins and amino acid profile of sun-dried red and yellow cashew pulp. Int. J. An. Biol 2015, 1, 23. [Google Scholar]
- Arumugam, B.; Palanisamy, U.D.; Chua, K.H.; Kuppusamy, U.R. Potential antihyperglycaemic effect of myricetin derivatives from Syzygium malaccense. J. Funct. Foods 2016, 22, 325–336. [Google Scholar] [CrossRef]
- Lutz, I.A. Normas Analíticas, Métodos Químicos e Físicos para Análise de Alimentos; Instituto Adolfo Lutz: Sao Paulo, Brazil, 1985; Volume 1. [Google Scholar]
- Strohecker, R.; Henning, H.M. Análisis de Vitaminas Métodos Comprobados; Madrid Paz Montalvo: Madrid, Spain, 1967. [Google Scholar]
- Silva, L.M.A.; Alves Filho, E.G.; Choze, R.; Lião, L.M.; Alcantara, G.B. 1H HRMAS NMR spectroscopy and chemometrics for evaluation of metabolic changes in citrus sinensis Caused by Xanthomonas axonopodis pv. citri. J. Braz. Chem. Soc. 2012, 23, 1054–1061. [Google Scholar] [CrossRef]
- Costa, D.P.; Alves Filho, E.G.; Silva, L.M.A.; Santos, S.C.; Passos, X.S.; Silva, M.d.R.R.; Seraphin, J.C.; Ferri, P.H. Influence of fruit biotypes on the chemical composition and antifungal activity of the essential oils of Eugenia uniflora leaves. J. Braz. Chem. Soc. 2010, 21, 851–858. [Google Scholar] [CrossRef]
Model | 3 LV1 (%) | r2 cal2 | RMSEC3 | r2 CV4 | RMSECV5 | RMSEC / RMSECV6 | Bias7 | CV Bias8 |
---|---|---|---|---|---|---|---|---|
°Brix | 96.5 | 0.74 | 0.11 | 0.46 | 0.16 | 0.69 | 3.3 × 10−15 | −0.004 |
Acidity | 97.1 | 0.66 | 1.19 | 0.46 | 1.53 | 0.78 | 1.8 × 10−15 | 0.064 |
Model | LV1+LV2+LV31 | r2 cal2 | RMSEC3 | r2 val4 | RMSECV5 | RMSEC / RMSECV6 |
---|---|---|---|---|---|---|
PLS-DA | 88.05% | 0.88 | 0.298 | 0.85 | 0.341 | 0.874 |
Accession Number | Plant Size | Tree Appearance | Fruit Color | Fruit Shape | Sampling Origin | Illustration |
---|---|---|---|---|---|---|
CP 76 | tall | Open erect | orange | pyriform | crop* / Maranguape-CE | |
Clone 98/101 | semi tall | compact erect | orange | pyriform | breeding program* / Pacajus-CE | |
Progeny 2005/127 | semi tall | compact erect | dark red | pyriform | breeding program/ Beberibe-CE | |
Progeny 2005/133 | semi tall | open erect | orange | spherical | breeding program/ Cruz-CE | |
BRS 226 | dwarf | compact erect | orange | pyriform | crop / Pio IX-PI | |
Clone 2005/102 | tall | compact erect | orange | pyriform | breeding program/ Beberibe-CE | |
CP 09 | semi tall | compact erect | orange | pyriform | crop / Maranguape-CE | |
B 393 | tall | compact erect | light red | spherical | germplasm* / Aracati- CE | |
BRS 275 | semi tall | open erect | orange | pyriform | crop / Pacajus-CE and Maranguape-CE | |
B 963 | tall | open erect | yellow orange | pyriform | germplasm / Maranguape-CE | |
Hybrid 2001/3 | semi tall | compact erect | orange | pyriform | breeding program/ Maranguape-CE and Pio IX–PI | |
Hybrid 2001/6 | semi tall | compact erect | yellow orange | pyriform | breeding program/ Maranguape-CE and Pio IX-PI | |
B 967 | tall | open erect | orange | cylindrical | germplasm / Pacajus-CE | |
CP 06 | tall | open erect | yellow | conical obovate | crop / Pacajus-CE | |
Progeny 2005/122 | semi tall | open erect | yellow | spherical | breeding program/ Beberibe-CE | |
Hybrid 2001/13 | semi tall | open erect | orange | pyriform | breeding program/ Pacajus-CE | |
Clone 2005/111 | semi tall | open erect | orange | pyriform | breeding program/ Serra do Mel-RN | |
Clone 98/116 | semi tall | open erect | orange | pyriform | breeding program/ São Luiz do Curu-CE | |
B 741 | semi tall | compact erect | orange | pyriform | breeding program (CP 76 x A. microcarpum) / Maranguape-CE | |
Progeny 2005/223 | semi tall | open erect | orange | pyriform | breeding program/ Beberibe-CE | |
Embrapa 51 | semi tall | open erect | orange | pyriform | crop / Pacajus-CE | |
M 886 | tall | open erect | yellow | spherical | breeding program/ Beberibe-CE | |
1001 | tall | open erect | orange | pyriform | crop/ Pacajus-CE | |
Clone 2003/102 | semi tall | compact erect | orange | pyriform | breeding program/ Pio IX -PI |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves Filho, E.; Silva, L.M.; Lima, Y.; Ribeiro, P.; Silva, E.; Zocolo, G.; Canuto, K.; Morais, S.; Castro, A.C.; de Brito, E. Metabolomic Variability of Different Genotypes of Cashew by LC-Ms and Correlation with Near-Infrared Spectroscopy as a Tool for Fast Phenotyping. Metabolites 2019, 9, 121. https://doi.org/10.3390/metabo9060121
Alves Filho E, Silva LM, Lima Y, Ribeiro P, Silva E, Zocolo G, Canuto K, Morais S, Castro AC, de Brito E. Metabolomic Variability of Different Genotypes of Cashew by LC-Ms and Correlation with Near-Infrared Spectroscopy as a Tool for Fast Phenotyping. Metabolites. 2019; 9(6):121. https://doi.org/10.3390/metabo9060121
Chicago/Turabian StyleAlves Filho, Elenilson, Lorena Mara Silva, Ynayara Lima, Paulo Ribeiro, Ebenézer Silva, Guilherme Zocolo, Kirley Canuto, Selene Morais, Ana Cecília Castro, and Edy de Brito. 2019. "Metabolomic Variability of Different Genotypes of Cashew by LC-Ms and Correlation with Near-Infrared Spectroscopy as a Tool for Fast Phenotyping" Metabolites 9, no. 6: 121. https://doi.org/10.3390/metabo9060121
APA StyleAlves Filho, E., Silva, L. M., Lima, Y., Ribeiro, P., Silva, E., Zocolo, G., Canuto, K., Morais, S., Castro, A. C., & de Brito, E. (2019). Metabolomic Variability of Different Genotypes of Cashew by LC-Ms and Correlation with Near-Infrared Spectroscopy as a Tool for Fast Phenotyping. Metabolites, 9(6), 121. https://doi.org/10.3390/metabo9060121