Identifying Metabolomic Profiles of Insulinemic Dietary Patterns
Abstract
:1. Introduction
2. Results
2.1. EDIH Validation Study
2.2. Metabolomic Profiles of Insulinemic Diets
2.2.1. Characteristics of the EDIH Metabolomics Study Population
2.2.2. Two-stage Discovery and Replication of Metabolites Associated with Insulinemic Diets
2.2.3. Among Underweight and Normal Weight Women (BMI: 15 to <25 kg/m2, n = 630)
2.2.4. Among Overweight and Obese Women (BMI: 25 to 50 kg/m2, n = 1289)
3. Discussion
4. Methods
4.1. Study Population
4.2. Dietary Assessment and Calculation of the Empirical Dietary Index for Hyperinsulinemia (EDIH) Score
4.3. C-peptide Measurement
4.4. Assessment of Metabolites
4.5. Covariates
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tabung, F.K.; Wang, W.; Fung, T.T.; Hu, F.B.; Smith-Warner, S.A.; Chavarro, J.E.; Charles, S.F.; Willett, W.C.; Giovannucci, E.L. Development and validation of empirical indices to assess the insulinaemic potential of diet and lifestyle. Br. J. Nutr. 2016, 116, 1787–1798. [Google Scholar] [CrossRef] [Green Version]
- Tabung, F.K.; Nimptsch, K.; Giovannucci, E.L. Postprandial duration influences the association of insulin-related dietary indices and plasma C-peptide concentrations in adult men and women. J. Nutr. 2018, 149, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Tabung, F.K.; Wang, W.; Fung, T.T.; Smith-Warner, S.A.; Keum, N.N.; Wu, K.; Fuchs, C.S.; Hu, F.B.; Giovannucci, E.L. Association of dietary insulinemic potential and colorectal cancer risk in men and women. Am. J. Clin. Nutr. 2018, 108, 363–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Fung, T.T.; Wang, M.; Smith-Warner, S.A.; Giovannucci, E.L.; Tabung, F.K. Association of the insulinemic potential of diet and lifestyle with risk of digestive system cancers in men and women. JNCI Cancer Spectr. 2018, 2, pky080. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.H.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Crosslin, D.R.; Haynes, C.; Dungan, J.; Newby, L.K.; Hauser, E.R.; Ginsburg, G.S.; et al. Association of a Peripheral Blood Metabolic Profile with Coronary Artery Disease and Risk of Subsequent Cardiovascular Events. Circ. Cardiovasc. Genet. 2010, 3, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Paynter, N.P.; Balasubramanian, R.; Giulianini, F.; Wang, D.D.; Tinker, L.F.; Gopal, S.; Deik, A.A.; Bullock, K.; Pierce, K.A.; Scott, J.; et al. Metabolic Predictors of Incident Coronary Heart Disease in Women. Circulation 2018, 137, 841–853. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferré, M.; Hu, F.B.; Ruiz-Canela, M.; Bulló, M.; Toledo, E.; Wang, D.D.; Corella, D.; Gómez-Gracia, E.; Fiol, M.; Estruch, R.; et al. Plasma Metabolites from Choline Pathway and Risk of Cardiovascular Disease in the PREDIMED (Prevention with Mediterranean Diet) Study. J. Am. Heart Assoc. Cardiovasc. Cerebrovasc. Dis. 2017, 6, e006524. [Google Scholar] [CrossRef] [PubMed]
- Mayers, J.R.; Wu, C.; Clish, C.B.; Kraft, P.; Torrence, M.E.; Fiske, B.P.; Yuan, C.; Bao, Y.; Townsend, M.K.; Tworoger, S.S.; et al. Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat. Med. 2014, 20, 1193–1198. [Google Scholar] [CrossRef] [PubMed]
- Kelly, R.S.; Vander Heiden, M.G.; Giovannucci, E.L.; Mucci, L.A. Metabolomic Biomarkers of Prostate Cancer: Prediction, Diagnosis, Progression, Prognosis, and Recurrence. Cancer Epidemiol. Biomark. Prev. 2016, 25, 887–906. [Google Scholar] [CrossRef]
- Playdon, M.C.; Ziegler, R.G.; Sampson, J.N.; Stolzenberg-Solomon, R.; Thompson, H.J.; Irwin, M.L.; Mayne, S.T.; Hoover, R.N.; Moore, S.C. Nutritional metabolomics and breast cancer risk in a prospective study. Am. J. Clin. Nutr. 2017, 106, 637–649. [Google Scholar] [CrossRef]
- Wang, T.J.; Larson, M.G.; Vasan, R.S.; Cheng, S.; Rhee, E.P.; McCabe, E.; Lewis, G.D.; Fox, C.S.; Jacques, P.F.; Fernandez, C.; et al. Metabolite Profiles and the Risk of Developing Diabetes. Nat. Med. 2011, 17, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Urpi-Sarda, M.; Almanza-Aguilera, E.; Llorach, R.; Vázquez-Fresno, R.; Estruch, R.; Corella, D.; Sorli, J.V.; Carmona, F.; Sanchez-Pla, A.; Salas-Salvado, J.; et al. Non-targeted metabolomic biomarkers and metabotypes of type 2 diabetes: A cross-sectional study of PREDIMED trial participants. Diabetes Metab. 2019, 45, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.; Kettunen, J.; Würtz, P.; Haller, T.; Havulinna, A.S.; Kangas, A.J.; Soininen, P.; Esko, T.; Tammesoo, M.L.; Mägi, R.; et al. Biomarker Profiling by Nuclear Magnetic Resonance Spectroscopy for the Prediction of All-Cause Mortality: An Observational Study of 17,345 Persons. PLoS Med. 2014, 11, e1001606. [Google Scholar] [CrossRef] [PubMed]
- Playdon, M.C.; Lampe, J.W.; Tinker, L.F.; Prentice, R.; Hayden, K.M.; Van Horn, L.; Sampson, J.; Stolzenberg-Solomon, R.; Moore, S.C. Objective biomarkers of usual diet: A metabolomics analysis of weighed food intake. Am. J. Clin. Nutr. 2016, 104, 776–789. [Google Scholar] [CrossRef]
- Playdon, M.C.; Moore, S.C.; Derkach, A.; Reedy, J.; Subar, A.F.; Sampson, J.N.; Albanes, D.; Gu, F.; Kontto, J.; Lassale, C.; et al. Identifying biomarkers of dietary patterns by using metabolomics. Am. J. Clin. Nutr. 2017, 105, 450–465. [Google Scholar] [CrossRef] [PubMed]
- Tabung, F.K.; Satija, A.; Fung, T.T.; Clinton, S.K.; Giovannucci, E.L. Long-term change in both dietary insulinemic and inflammatory potential is associated with weight gain in adult women and men. J. Nutr. 2019, 149, 804–815. [Google Scholar] [CrossRef]
- Ferrannini, E.; Natali, A.; Bell, P.; Cavallo-Perin, P.; Lalic, N.; Mingrone, G. Insulin resistance and hypersecretion in obesity. European Group for the Study of Insulin Resistance (EGIR). J. Clin. Investig. 1997, 100, 1166–1173. [Google Scholar] [CrossRef] [PubMed]
- Erion, K.A.; Corkey, B.E. Hyperinsulinemia: A Cause of Obesity? Curr. Obes. Rep. 2017, 6, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Langer, R.D.; White, E.; Lewis, C.E.; Kotchen, J.M.; Hendrix, S.L.; Trevisan, M. The women’s health initiative observational study: Baseline characteristics of participants and reliability of baseline measures. Ann. Epidemiol. 2003, 13, S107–S121. [Google Scholar] [CrossRef]
- Ritenbaugh, C.; Patterson, R.E.; Chlebowski, R.T.; Caan, B.; Fels-Tinker, L.; Howard, B.; Ockene, J. The women’s health initiative dietary modification trial: Overview and baseline characteristics of participants. Ann. Epidemiol. 2003, 13, S87–S97. [Google Scholar] [CrossRef]
- Zhao, G.; Etherton, T.D.; Martin, K.R.; Gillies, P.J.; West, S.G.; Kris-Etherton, P.M. Dietary α-linolenic acid inhibits proinflammatory cytokine production by peripheral blood mononuclear cells in hypercholesterolemic subjects. Am. J. Clin. Nutr. 2007, 85, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Vinagre, J.C.; Vinagre, C.G.; Pozzi, F.S.; Slywitch, E.; Maranhão, R.C. Metabolism of triglyceride-rich lipoproteins and transfer of lipids to high-density lipoproteins (HDL) in vegan and omnivore subjects. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.D.; Hueb, W.; Oliveira, A.A.; Ramires, J.A.F.; Maranhão, R.C. Plasma kinetics of a cholesterol-rich emulsion in subjects with or without coronary artery disease. J. Lipid Res. 2003, 44, 464–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, M.R.M.; César, T.B.; Mesquita, C.H.; Maranhão, R.C. High Cholesterol Intake Modifies Chylomicron Metabolism in Normolipidemic Young Men. J. Nutr. 2006, 136, 971–976. [Google Scholar] [Green Version]
- Li, J.; Ren, S.; Piao, H.-L.; Wang, F.; Yin, P.; Xu, C.; Lu, X.; Ye, G.; Shao, Y.; Yan, M.; et al. Integration of lipidomics and transcriptomics unravels aberrant lipid metabolism and defines cholesteryl oleate as potential biomarker of prostate cancer. Sci. Rep. 2016, 6, 20984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein-Platat, C.; Schlienger, J.-L.; Drai, J.; Oujaa, M.; Simon, C. Plasma fatty acid composition is associated with the metabolic syndrome and low-grade inflammation in overweight adolescents. Am. J. Clin. Nutr. 2005, 82, 1178–1184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paillard, F.; Catheline, D.; Duff, F.L.; Bouriel, M.; Deugnier, Y.; Pouchard, M.; Daubert, J.-C.; Legrand, P. Plasma palmitoleic acid, a product of stearoyl-coA desaturase activity, is an independent marker of triglyceridemia and abdominal adiposity. Nutr. Metab. Cardiovasc. Dis. 2008, 18, 436–440. [Google Scholar] [CrossRef]
- Jansen, E.; Khaw, K.-T.; Wareham, N.J.; Patel, P.S.; Luben, R.N.; Sharp, S.J.; Forouhi, M.G. Fatty acids measured in plasma and erythrocyte-membrane phospholipids and derived by food-frequency questionnaire and the risk of new-onset type 2 diabetes: A pilot study in the European Prospective Investigation into Cancer and Nutrition (EPIC)–Norfolk cohort. Am. J. Clin. Nutr. 2010, 92, 1214–1222. [Google Scholar]
- Chavarro, J.E.; Kenfield, S.A.; Stampfer, M.J.; Loda, M.; Campos, H.; Sesso, H.D.; Ma, J. Blood levels of saturated and monounsaturated fatty acids as markers of de novo lipogenesis and risk of prostate cancer. Am. J. Epidemiol. 2013, 178, 1246–1255. [Google Scholar] [CrossRef]
- Silva Figueiredo, P.; Carla Inada, A.; Marcelino, G.; Maiara Lopes Cardozo, C.; de Cássia Freitas, K.; de Cássia Avellaneda Guimarães, R.; de Castro, A.P.; Aragão do Nascimento, V.; Aiko Hiane, P. Fatty Acids Consumption: The Role Metabolic Aspects Involved in Obesity and Its Associated Disorders. Nutrients 2017, 9, 1158. [Google Scholar] [CrossRef]
- Oscarsson, J.; Hurt-Camejo, E. Omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid and their mechanisms of action on apolipoprotein B-containing lipoproteins in humans: A review. Lipids Health Dis. 2017, 16, 149. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Kong, D.; Wang, Q.; Wu, W.; Tang, Y.; Bai, T.; Guo, L.; Wei, L.; Zhang, Q.; Yu, Y.; et al. Niacin ameliorates ulcerative colitis via prostaglandin D (2)-mediated D prostanoid receptor 1 activation. EMBO Mol. Med. 2017, 9, 571–588. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Gurav, A.; Sivaprakasam, S.; Brady, E.; Padia, R.; Shi, H.; Thangaraju, M.; Prasad, P.D.; Manicassamy, S.; Munn, D.H.; et al. Activation of the receptor (Gpr109a) for niacin and the commensal metabolite butyrate suppresses colonic inflammation and carcinogenesis. Immunity 2014, 40, 128–139. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, A.E.; Olthof, M.R.; Meeuse, J.C.; Seebus, E.; Heine, R.J.; van Dam, R.M. Acute Effects of Decaffeinated Coffee and the Major Coffee Components Chlorogenic Acid and Trigonelline on Glucose Tolerance. Diabetes Care 2009, 32, 1023–1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flock, M.R.; Kris-Etherton, P.M. Diverse physiological effects of long-chain saturated fatty acids: Implications for cardiovascular disease. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Goñi, F.M.; Alonso, A. Structure and functional properties of diacylglycerols in membranes. This work is dedicated to Professor Vittorio Luzzati on occasion of his 75th birthday. Prog. Lipid Res. 1999, 38, 1–48. [Google Scholar] [CrossRef]
- Yuan, C.; AlEssa, H.B.; Malik, V.S.; Hu, F.B.; Willett, W.C.; Tobias, D.K.; Huang, T. Dietary patterns and cardiometabolic and endocrine plasma biomarkers in US women. Am. J. Clin. Nutr. 2016, 105, 432–441. [Google Scholar] [Green Version]
- Blumenthal, J.A.; Babyak, M.A.; Sherwood, A.; Craighead, L.; Lin, P.-H.; Johnson, J.; Lana, L.W.; Jenny, T.W.; Cynthia, K.; Mark, F.; et al. Effects of the Dietary Approaches to Stop Hypertension Diet Alone and in Combination with Exercise and Caloric Restriction on Insulin Sensitivity and Lipids. Hypertension 2010, 55, 1199–1205. [Google Scholar] [CrossRef]
- Hannon, B.A. Dietary Fiber Is Independently Related to Blood Triglycerides among Adults with Overweight and Obesity. Curr. Dev. Nutr. 2018, 3, nzy094. [Google Scholar] [CrossRef]
- Slattery, M.J.; Bredella, M.A.; Thakur, H.; Torriani, M.; Misra, M. Insulin resistance and impaired mitochondrial function in obese adolescent girls. Metab. Syndr. Relat. Disord. 2014, 12, 56–61. [Google Scholar] [CrossRef]
- Fleischman, A.; Kron, M.; Systrom, D.M.; Hrovat, M.; Grinspoon, S.K. Mitochondrial function and insulin resistance in overweight and normal-weight children. J. Clin. Endocrinol. Metab. 2009, 94, 4923–4930. [Google Scholar] [CrossRef] [PubMed]
- Sim, K.G.; Carpenter, K.; Hammond, J.; Christodoulou, J.; Wilcken, B. Quantitative fibroblast acylcarnitine profiles in mitochondrial fatty acid β-oxidation defects: Phenotype/metabolite correlations. Mol. Genet. Metab. 2002, 76, 327–334. [Google Scholar]
- Osorio, J.H.; Pourfarzam, M. Determination of normal acylcarnitine levels in a healthy pediatric population as a diagnostic tool in inherited errors of mitochondrial fatty acid β-oxidation. An. Pediatría 2007, 67, 548–552. [Google Scholar]
- Schmidt, J.A.; Rinaldi, S.; Ferrari, P.; Carayol, M.; Achaintre, D.; Scalbert, A.; Cross, A.J.; Gunter, M.J.; Fensom, G.K.; Appleby, P.N.; et al. Metabolic profiles of male meat eaters, fish eaters, vegetarians, and vegans from the EPIC-Oxford cohort. Am. J. Clin. Nutr. 2015, 102, 1518–1526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Filippis, F.; Pellegrini, N.; Vannini, L.; Jeffery, I.B.; La Storia, A.; Laghi, L.; Serrazanetti, D.I.; Di Cagno, R.; Ferrocino, I.; Lazzi, C.; et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 2016, 65, 1812–1821. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B.; Guasch-Ferré, M.; Bhupathiraju, S.N.; Kanaya, A.M.; Gadgil, M.D.; Newgard, C.B.; Bain, J.R.; Muehlbauer, M.J.; Ilkayeva, O.R.; Scholtens, D.M.; et al. Dietary Patterns among Asian Indians Living in the United States Have Distinct Metabolomic Profiles That Are Associated with Cardiometabolic Risk. J. Nutr. 2018, 148, 1150–1159. [Google Scholar]
- Grzelczyk, A.; Gendaszewska-Darmach, E. Novel bioactive glycerol-based lysophospholipids: New data—New insight into their function. Biochimie 2013, 95, 667–679. [Google Scholar] [CrossRef]
- Xu, Y. Sphingosylphosphorylcholine and lysophosphatidylcholine: G protein-coupled receptors and receptor-mediated signal transduction. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2002, 1582, 81–88. [Google Scholar] [CrossRef]
- del Bas, J.M.; Caimari, A.; Rodriguez-Naranjo, M.I.; Childs, C.E.; Paras Chavez, C.; West, A.L.; Miles, E.A.; Arola, L.; Calder, P.C. Impairment of lysophospholipid metabolism in obesity: Altered plasma profile and desensitization to the modulatory properties of n–3 polyunsaturated fatty acids in a randomized controlled trial. Am. J. Clin. Nutr. 2016, 104, 266–279. [Google Scholar] [CrossRef]
- Neuhouser, M.L.; Tinker, L.; Shaw, P.A.; Schoeller, D.; Bingham, S.A.; Horn, L.V.; Beresford, S.A.; Caan, B.; Thomson, C.; Satterfield, S.; et al. Use of recovery biomarkers to calibrate nutrient consumption self-reports in the Women’s Health Initiative. Am. J. Epidemiol. 2008, 167, 1247–1259. [Google Scholar] [CrossRef]
- Prentice, R.L.; Mossavar-Rahmani, Y.; Huang, Y.; Van Horn, L.; Beresford, S.A.; Caan, B.; Tinker, L.; Schoeller, D.; Bingham, S.; Eaton, C.B.; et al. Evaluation and comparison of food records, recalls, and frequencies for energy and protein assessment by using recovery biomarkers. Am. J. Epidemiol. 2011, 174, 591–603. [Google Scholar] [CrossRef] [PubMed]
- Women’s Health Initiative Study Group. Design of the Women’s Health Initiative Clinical Trial and Observational Study. Control. Clin. Trials 1998, 19, 61–109. [Google Scholar] [CrossRef]
- Patterson, R.E.; Neuhouser, M.L.; Hedderson, M.M.; Schwartz, S.M.; Standish, L.J.; Bowen, D.J. Changes in diet, physical activity, and supplement use among adults diagnosed with cancer. J. Am. Diet. Assoc. 2003, 103, 323–328. [Google Scholar] [PubMed]
- Patterson, R.E.; Kristal, A.R.; Tinker, L.F.; Carter, R.A.; Bolton, M.P.; Agurs-Collins, T. Measurement characteristics of the Women’s Health Initiative food frequency questionnaire. Ann. Epidemiol. 1999, 9, 178–187. [Google Scholar] [CrossRef]
- Hu, F.B.; Rimm, E.; Smith-Warner, S.A.; Feskanich, D.; Stampfer, M.J.; Ascherio, A.; Sampson, L.; Willett, W.C. Reproducibility and validity of dietary patterns assessed with a food frequency questionnaire. Am. J. Clin. Nutr. 1999, 69, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.L.; Manson, J.; Wallace, R.; Lund, B.; Hall, D.; Davis, S.; Shumaker, S.; Wang, C.-Y.; Stein, E.; Prentice, R.L. Implementation of the women’s health initiative study design. Ann. Epidemiol. 2003, 13, S5–S17. [Google Scholar] [CrossRef]
- Kabat, G.C.; Kim, M.Y.; Strickler, H.D.; Shikany, J.M.; Lane, D.; Luo, J.; Ning, Y.; Gunter, M.J.; Rohan, T.E. A longitudinal study of serum insulin and glucose levels in relation to colorectal cancer risk among postmenopausal women. Br. J. Cancer 2012, 106, 227–232. [Google Scholar] [CrossRef]
- Bajad, S.U.; Lu, W.; Kimball, E.H.; Yuan, J.; Peterson, C.; Rabinowitz, J.D. Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. J. Chromatogr. A 2006, 1125, 76–88. [Google Scholar] [CrossRef]
- Rhee, E.P.; Cheng, S.; Larson, M.G.; Walford, G.A.; Lewis, G.D.; McCabe, E.; Yang, E.; Farrell, L.; Fox, C.S.; O’Donnell, C.J.; et al. Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. J. Clin. Investig. 2011, 121, 1402–1411. [Google Scholar] [CrossRef] [Green Version]
- Townsend, M.; Clish, C.B.; Kraft, P.; Wu, C.; Souza, A.L.; Deik, A.A.; Tworoger, S.S.; Wolpin, B.M. Reproducibility of Metabolomic Profiles among Men and Women in 2 Large Cohort Studies. Clin. Chem. 2013, 59, 1657–1667. [Google Scholar] [CrossRef] [Green Version]
- Irwin, M.L.; McTiernan, A.; Manson, J.E.; Thomson, C.A.; Sternfeld, B.; Stefanick, M.L.; Wactawski-Wende, J.; Craft, L.; Lane, D.; Martin, L.W.; et al. Physical Activity and Survival in Postmenopausal Women with Breast Cancer: Results from the Women’s Health Initiative. Cancer Prev. Res. 2011, 4, 522–529. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Quintile 1 (−4.44 to <−0.81), n = 183 | Quintile 2 (–0.81 to <–0.31), n = 184 | Quintile 3 (–0.31 to <0.07), n = 184 | Quintile 4 (0.07 to <0.66), n = 184 | Quintile 5 (0.66 to 4.93), n = 184 |
---|---|---|---|---|---|
C-peptide, ng/mL | 1.14 ± 0.80 | 1.20 ± 0.77 | 1.32 ± 0.76 | 1.36 ± 0.72 | 1.54 ± 0.78 |
Age at screening, years | 66.7 ± 6.9 | 66.9 ± 6.7 | 67.1 ± 6.5 | 67.1 ± 6.6 | 65.3 ± 6.6 |
Body mass index, kg/m2 | 26.1 ± 4.5 | 26.6 ± 4.9 | 27.2 ± 5.5 | 28.0 ± 5.4 | 29.0 ± 5.7 |
Body mass index categories, % | |||||
15–<18.5 (thin) | 1.1 | 1.1 | 1.1 | 1.1 | 0 |
18.5–<25 (normal weight) | 46.4 | 39.7 | 40.2 | 29.3 | 25.0 |
25–<30 (overweight) | 36.6 | 39.7 | 34.2 | 44.6 | 38.0 |
30–50 (obese) | 15.9 | 19.5 | 24.5 | 25.0 | 37.0 |
Physical activity, MET-hour/week | 10.0 ± 11.7 | 9.4 ± 12.3 | 9.1 ± 11.0 | 7.3 ± 10.1 | 5.3 ± 7.7 |
Aspirin/NSAID user, % | 53 | 56 | 57.1 | 53.3 | 52.3 |
Educational level, % | |||||
Some high school or lower educational level | 2.7 | 3.8 | 3.3 | 5.4 | 6.5 |
High school graduate/some college or associate degree | 45.9 | 57.1 | 48.4 | 65.2 | 69.6 |
≥4y of college | 51.4 | 39.1 | 48.4 | 29.4 | 23.9 |
Race/ethnicity, % | |||||
African American | 6.0 | 6.5 | 8.7 | 9.2 | 13.0 |
European American | 89.6 | 86.4 | 84.2 | 89.1 | 79.4 |
Other | 4.4 | 7.1 | 7.1 | 1.7 | 7.6 |
Smoking status, % | |||||
Never | 42.6 | 50.5 | 51.1 | 56.0 | 48.4 |
Former | 51.9 | 43.5 | 44.0 | 37.5 | 42.4 |
Current | 5.5 | 6.0 | 4.9 | 6.5 | 9.2 |
Menopausal hormone use, % | |||||
Unopposed estrogen use, ever | 32.8 | 39.7 | 37.0 | 42.9 | 34.8 |
Estrogen plus progestin use, ever | 29.0 | 26.6 | 18.5 | 19.0 | 21.7 |
Statistical Models | EDIH Quintiles | P-Trend 4 | ||||
---|---|---|---|---|---|---|
Quintile 1 | Quintile 2 | Quintile 3 | Quintile 4 | Quintile 5 | ||
Absolute concentrations (ng/mL) | ||||||
Model 1 | 1.14 (1.07, 1.22) | 1.20 (1.12, 1.28) | 1.33 (1.24, 1.42) | 1.37 (1.28, 1.46) | 1.54 (1.44, 1.64) | <0.0001 |
Model 2 | 1.21 (0.94, 1.56) | 1.26 (0.99, 1.61) | 1.40 (1.10, 1.80) | 1.37 (1.08, 1.76) | 1.53 (1.19, 1.96) | <0.0001 |
Model 3 | 1.19 (0.95, 1.50) | 1.22 (0.98, 1.53) | 1.30 (1.04, 1.63) | 1.41 (1.04, 1.63) | 1.41 (1.13, 1.77) | <0.0001 |
Relative concentrations (percent change) | ||||||
Model 1 | 0 (ref) | 5 (−7, 18) | 16 (3, 31) | 20 (6, 35) | 34 (19, 51) | <0.0001 |
Model 2 | 0 (ref) | 4 (−7, 17) | 16 (3, 30) | 13 (1, 28) | 26 (12, 42) | <0.0001 |
Model 3 | 0 (ref) | 3 (−8, 14) | 12 (1, 25) | 9 (−2, 22) | 18 (6, 32) | <0.0001 |
Normal weight (BMI: 15 to <25 kg/m2, n = 340): absolute concentrations (ng/mL) | ||||||
Model 1 + BMI | 0.98 (0.89, 1.05) | 0.94 (0.87, 1.03) | 1.14 (1.04, 1.24) | 1.07 (0.97, 1.18) | 1.09 (0.97, 1.22) | 0.02 |
Model 3 | 0.90 (0.67, 1.21) | 0.87 (0.65, 1.17) | 1.09 (0.73, 1.32) | 0.98 (0.73, 1.32) | 0.97 (0.71, 1.32) | 0.09 |
Normal weight (BMI: 15 to <25 kg/m2, n = 340): relative concentrations (percent change) | ||||||
Model 1 + BMI | 0 (ref) | −2 (−16, 13) | 18 (1, 37) | 10 (−6, 30) | 12 (−5, 34) | 0.02 |
Model 3 | 0 (ref) | −3 (−17, 14) | 21 (3, 42) | 9 (−8, 30) | 8 (−11, 30) | 0.09 |
Overweight/obese (BMI: 25 to 50 kg/m2, n = 579): absolute concentrations (ng/mL) | ||||||
Model 1 + BMI | 1.37 (1.26, 1.50) | 1.44 (1.33, 1.57) | 1.47 (1.36, 1.60) | 1.51 (1.40, 1.63) | 1.68 (1.56, 1.80) | 0.008 |
Model 3 | 1.48 (1.10, 1.99) | 1.55 (1.16, 2.08) | 1.59 (1.19, 2.13) | 1.60 (1.20, 2.13) | 1.82 (1.36, 2.42) | 0.0005 |
Overweight/obese (BMI: 25 to 50 kg/m2, n = 579): relative concentrations (percent change) | ||||||
Model 1 + BMI | 0 (ref) | 5 (−9, 22) | 7 (−7, 25) | 10 (−6, 27) | 22 (6, 41) | 0.008 |
Model 3 | 0 (ref) | 5 (−10, 22) | 8 (−7, 25) | 8 (−7, 25) | 23 (6, 42) | 0.0005 |
- | Quintile 1 (–5.36 to <–0.72) n = 383 | Quintile 2 (–0.72 to <–0.21) n = 384 | Quintile 3 (–0.21 to <0.20) n = 384 | Quintile 4 (0.20 to <0.74) n = 384 | Quintile 5 (0.74 to 6.64) n = 384 |
---|---|---|---|---|---|
Food/food groups, servings/week | |||||
Red meat | 3.3 ± 3.2 | 3.0 ± 2.8 | 3.2 ± 3.1 | 3.4 ± 2.7 | 4.8 ± 4.2 |
Sugar-sweetened beverages | 0.4 ± 1.0 | 0.5 ± 1.4 | 0.5 ± 1.3 | 1.3 ± 2.8 | 4.3 ± 9.0 |
Cream soup | 0.2 ± 0.4 | 0.2 ± 0.3 | 0.3 ± 0.4 | 0.3 ± 0.4 | 0.5 ± 0.8 |
Processed meat | 1.2 ± 1.5 | 1.3 ± 1.5 | 1.7 ± 1.7 | 1.9 ± 2.1 | 3.7 ± 3.5 |
Butter and margarine | 3.0 ± 3.6 | 3.3 ± 3.8 | 4.5 ± 4.3 | 6.0 ± 4.8 | 10.5 ± 9.0 |
Poultry | 2.3 ± 1.7 | 2.3 ± 1.7 | 2.4 ± 1.8 | 2.5 ± 1.8 | 3.2 ± 2.4 |
White/non-oily fish | 1.6 ± 1.5 | 1.4 ± 1.3 | 1.4 ± 1.2 | 1.5 ± 1.6 | 1.7 ± 1.8 |
French fries | 0.2 ± 0.3 | 0.2 ± 0.3 | 0.2 ± 0.4 | 0.3 ± 0.5 | 0.7 ± 1.1 |
Tomatoes | 3.6 ± 3.2 | 3.7 ± 3.6 | 3.2 ± 3.0 | 3.7 ± 3.6 | 4.4 ± 4.8 |
Low-fat dairy | 14.8 ± 12.5 | 13.4 ± 11.8 | 14.2 ± 13.2 | 12.3 ± 11.9 | 13.5 ± 13.8 |
Eggs | 0.7 ± 1.0 | 0.8 ± 1.4 | 0.9 ± 1.1 | 1.0 ± 1.1 | 1.6 ± 2.3 |
Refined grains | 25.2 ± 14.5 | 21.4 ± 12.2 | 20.2 ± 12.7 | 19.8 ± 11.8 | 24.4 ± 14.4 |
Whole grains | 9.9 ± 6.5 | 8.3 ± 5.3 | 7.6 ± 5.1 | 6.7 ± 4.6 | 7.3 ± 5.6 |
Wine | 3.9 ± 6.0 | 1.1 ± 2.1 | 0.6 ± 1.3 | 0.5 ± 1.4 | 0.3 ± 1.0 |
Tea/coffee | 21.1 ± 15.2 | 16.4 ± 12.0 | 14.0 ± 12.4 | 12.9 ± 11.7 | 13.0 ± 12.5 |
Whole fruit | 18.3 ± 10.4 | 16 ± 8.8 | 13.0 ± 7.6 | 10.0 ± 7.0 | 9.4 ± 7.3 |
High-fat dairy | 3.2 ± 4.1 | 2.3 ± 3.4 | 2.3 ± 3.1 | 2.1 ± 2.4 | 2.8 ± 3.3 |
Green-leafy vegetables | 7.8 ± 6.1 | 6.3 ±4.5 | 5.7 ± 4. | 5.0 ± 4.5 | 4.7 ± 4.0 |
Nutrient intakes | |||||
Fiber, g/d | 19.8 ± 7.6 | 16.8 ± 6.2 | 14.7 ± 5.6 | 12.8 ± 5.5 | 13.6 ± 6.3 |
Carbohydrate, g/d | 235 ± 83 | 202 ± 66 | 185 ± 70 | 170 ± 65 | 204 ± 93 |
Protein, g/d | 72.9 ± 29.0 | 64.1 ± 26.3 | 62.5 ± 28.5 | 59.7 ± 24.7 | 72.0 ± 32.9 |
Total fat, g/d | 58.5 ± 29.0 | 50.8 ± 28.4 | 53.7 ± 30.2 | 56.1 ± 28.0 | 75.6 ± 41.7 |
Saturated fat, g/d | 19.8 ± 10.7 | 17.0 ± 9.9 | 18.0 ± 10.9 | 18.6 ± 10.0 | 25.3 ± 15.0 |
Cholesterol, g/d | 201 ± 119 | 191 ± 130 | 198 ± 119 | 207 ± 109 | 286 ± 191 |
Calcium, mg/d | 978 ± 496 | 817 ± 413 | 780 ± 469 | 671 ± 380 | 737 ± 425 |
Lycopene, mcg/d | 5539 ± 3657 | 5125 ± 3246 | 4164 ± 2557 | 4389 ± 3466 | 4651 ± 3465 |
- | - | - | Associations in WHI-HT (Discovery, n = 1109) | Associations in WHI-OS (Replication, n = 810) | ||
---|---|---|---|---|---|---|
Metabolite | HMDB ID | Category | Beta Estimate (95% CI) | FDR-Adjusted P-value | Beta Estimate (95% CI) | FDR-Adjusted P-value |
C14:0 CE | HMDB0006725 | Cholesterol esters | −0.57 (−0.87, −0.27) | 0.015 | −0.63 (−0.96, −0.30) | 1.83 × 104 |
C16:1 CE | HMDB0000658 | Cholesterol esters | −0.63 (−0.91, −0.33) | 0.008 | −0.88 (−1.24, −0.52) | 6.26 × 106 |
C18:1 CE | HMDB0000918 | Cholesterol esters | −0.50 (−0.78, −0.21) | 0.018 | −0.46 (−0.79, −0.12) | 0.009 |
C18:3 CE | HMDB0010370 | Cholesterol esters | −0.49 (−0.78, −0.20) | 0.018 | −0.41 (−0.76, −0.05) | 0.026 |
C20:3 CE | HMDB0006736 | Cholesterol esters | −0.49 (−0.78, −0.21) | 0.018 | −0.43 (−0.77, −0.08) | 0.016 |
C20:5 CE | HMDB0006731 | Cholesterol esters | −0.48 (−0.76, −0.19) | 0.024 | −0.46 (−0.83, −0.08) | 0.016 |
Trigonelline | HMDB0000875 | Alkaloid and derivatives | −0.54 (−0.82, −0.25) | 0.015 | −0.61 (−0.97, −0.27) | 5.14 × 104 |
C36:1 PS plasmalogen | Unknown | Other | −0.49 (−0.80, −0.18) | 0.030 | −0.69 (−1.03, −0.35) | 8.93 × 105 |
Eicosapentaenoate | HMDB0001999 | Fatty acids | −0.47 (−0.74, −0.19) | 0.018 | −0.37 (−0.72, −0.02) | 0.038 |
Myristoleic acid | HMDB0002000 | Fatty acids | 0.43 (0.14, 0.73) | 0.047 | 0.16 (−0.16, 0.49) | 0.325 |
C4−OH carnitine | HMDB0013127 | Acylcarnitines | 0.40 (0.12, 0.68) | 0.048 | 0.25 (−0.12, 0.61) | 0.179 |
C10:2 carnitine | HMDB0013325 | Acylcarnitines | 0.47 (0.17, 0.77) | 0.030 | 0.58 (0.24, 0.92) | 9.09 × 104 |
C18:2 SM | HMDB0012101 | Sphingomyelins | 0.42 (0.13, 0.71) | 0.048 | 0.78 (0.43, 1.14) | 3.40 × 105 |
C36:3 DAG | HMDB0007219 | Diacylglycerols | 0.46 (0.16, 0.75) | 0.030 | 0.51 (0.15, 0.86) | 0.005 |
C36:4 DAG−A | HMDB0007248 | Diacylglycerols | 0.53 (0.23, 0.83) | 0.018 | 0.68 (0.33, 1.03) | 1.62 × 104 |
C51:3 TAG | Unknown | Triacylglycerols | 0.48 (0.18, 0.77) | 0.030 | 0.62 (0.27, 0.97) | 4.78 × 104 |
C52:3 TAG | HMDB0005384 | Triacylglycerols | 0.47 (0.16, 0.77) | 0.033 | 0.38 (0.05, 0.72) | 0.026 |
C52:4 TAG | HMDB0005363 | Triacylglycerols | 0.58 (0.28, 0.88) | 0.015 | 0.56 (0.20, 0.91) | 0.002 |
C54:2 TAG | HMDB0005403 | Triacylglycerols | 0.44 (0.15, 0.73) | 0.035 | 0.20 (−0.15, 0.55) | 0.269 |
C54:3 TAG | HMDB0005405 | Triacylglycerols | 0.47 (0.17, 0.77) | 0.030 | 0.35 (−0.01, 0.71) | 0.054 |
C54:4 TAG | HMDB0005370 | Triacylglycerols | 0.53 (0.23, 0.84) | 0.018 | 0.54 (0.17, 0.92) | 0.004 |
C54:6 TAG | HMDB0005391 | Triacylglycerols | 0.55 (0.25, 0.86) | 0.018 | 0.46 (0.10, 0.82) | 0.013 |
cAMP | HMDB0000058 | Purines and Pyrimidines | 0.37 (0.12, 0.62) | 0.047 | 0.20 (−0.68, 0.27) | 0.401 |
N4-acetylcytidine | HMDB0005923 | Purines and Pyrimidines | 0.43 (0.16, 0.71) | 0.030 | 0.10 (−0.24, 0.44) | 0.563 |
Isoleucine | HMDB0000172 | Amino acids | 0.47 (0.20, 0.74) | 0.018 | 0.13 (−0.23, 0.49) | 0.472 |
Cystathionine | HMDB0000099 | Amino Acids | 0.51 (0.23, 0.79) | 0.018 | 0.07 (−0.28, 0.42) | 0.689 |
Metabolite | HMDB ID | Category | Beta Estimate (95% CI) | FDR-Adjusted P-value |
---|---|---|---|---|
C14:0 CE | HMDB0006725 | Cholesteryl esters | −0.75 (−1.15, −0.35) | 0.016 |
C16:1 CE | HMDB0000658 | Cholesteryl esters | −1.05 (−1.49, −0.61) | 0.001 |
C20:5 CE | HMDB0006731 | Cholesteryl esters | −0.65 (−1.09, −0.22) | 0.057 |
N-acetylornithine | HMDB0003357 | Other | −0.82 (−1.23, −0.42) | 0.006 |
C22:6 LPE | HMDB0011526 | Lysophosphatidylethanolamine | −0.56 (−0.98, −0.14) | 0.097 |
C34:0 PS | HMDB0012356 | Other | −0.68 (−1.12, −0.24) | 0.053 |
C30:0 PC | HMDB0007869 | Phosphatidylcholines | −0.60 (−1.02, −0.18) | 0.079 |
C30:1 PC | HMDB0007870 | Phosphatidylcholines | −0.53 (−0.93, −0.14) | 0.097 |
C32:1 PC | HMDB0007873 | Phosphatidylcholines | −0.85 (−1.27, −0.42) | 0.008 |
C32:1 PC plasmalogen-A | HMDB0013404 | Phosphatidylcholine plasmalogens | −0.53 (−0.92, −0.15) | 0.095 |
C34:1 PC | HMDB0007972 | Phosphatidylcholines | −0.77 (−1.19, −0.35) | 0.019 |
C36:1 PS plasmalogen | Unavailable | Phosphatidylethanolamine plasmalogens | −0.68 (−1.10, −0.25) | 0.045 |
C36:4 PE | HMDB0008937 | Phosphatidylethanolamine | −0.58 (−1.01, −0.15) | 0.097 |
C36:5 PC | HMDB0007890 | Phosphatidylcholines | −0.76 (−1.20, −0.32) | 0.031 |
1-methylguanosine | HMDB0001563 | Purines and Pyrimidines | −0.61 (−1.02, −0.21) | 0.057 |
Urate | HMDB0000289 | Purines and Pyrimidines | −0.54 (−0.93, −0.15) | 0.095 |
Palmitoleic acid | HMDB0003229 | Fatty acids | −0.61 (−1.03, −0.19) | 0.079 |
Myristoleic acid | HMDB0002000 | Fatty acids | 0.69 (0.27, 1.12) | 0.043 |
C18:0 LPC plasmalogen | HMDB0011149 | Lysophosphatidylcholine plasmalogens | 0.55 (0.14, 0.97) | 0.097 |
C18:1 LPC plasmalogen | HMDB0011149 | Lysophosphatidylcholine plasmalogens | 0.56 (0.14, 0.98) | 0.097 |
C18:2 SM | HMDB0012101 | Sphingomyelins | 0.90 (0.50, 1.31) | 0.002 |
C22:1 MAG | HMDB0011582 | Monoacylglycerols | −0.60 (−1.01, −0.19) | 0.076 |
C36:4 DAG-A | HMDB0007248 | Diacylglycerols | 0.68 (0.26, 1.11) | 0.043 |
C51:3 TAG | Unavailable | Triacylglycerols | 0.58 (0.17, 0.99) | 0.085 |
C54:3 TAG | HMDB0005405 | Triacylglycerols | 0.55 (0.13, 0.98) | 0.106 |
C54:4 TAG | HMDB0005370 | Triacylglycerols | 0.76 (0.31, 1.20) | 0.037 |
C54:6 TAG | HMDB0005391 | Triacylglycerols | 0.70 (0.26, 1.15) | 0.050 |
Trimethylamine-N-oxide | HMDB0000925 | Other | 0.56 (0.15, 0.98) | 0.096 |
Glycoursodeoxycholate | HMDB0000708 | Bile acids | 0.58 (0.15, 1.02) | 0.097 |
Metabolite | HMDB ID | Category | Beta Estimate (95% CI) | FDR-Adjusted P-value |
---|---|---|---|---|
Eicosapentaenoate | HMDB0001999 | Fatty acids | −0.65 (−0.91, −0.40) | 7.63 × 105 |
Palmitoleic acid | HMDB0003229 | Fatty acids | −0.39 (−0.67, −0.12) | 0.032 |
Myristoleic acid | HMDB0002000 | Fatty acids | 0.38 (−0.11, 0.64) | 0.035 |
2−hydroxyhexadecanoate | HMDB0031057 | Fatty acids | 0.39 (0.12, 0.66) | 0.032 |
C14:0 CE | HMDB0006725 | Cholesterol esters | −0.54 (−0.81, −0.27) | 0.003 |
C16:1 CE | HMDB0000658 | Cholesterol esters | −0.61 (−0.87, −0.34) | 5.93 × 104 |
C18:1 CE | HMDB0000918 | Cholesterol esters | −0.49 (−0.76, −0.22) | 0.006 |
C18:3 CE | HMDB0010370 | Cholesterol esters | −0.45 (−0.72, −0.18) | 0.012 |
C20:3 CE | HMDB0006736 | Cholesterol esters | −0.49 (−0.76, −0.22) | 0.006 |
C20:5 CE | HMDB0006731 | Cholesterol esters | −0.37 (−0.64, −0.10) | 0.035 |
Trigonelline | HMDB0000875 | Alkaloid and derivatives | −0.67 (−0.93, −0.41) | 7.63 × 105 |
C16:1 LPC | HMDB0010383 | Phosphatidylcholines | −0.54 (−0.81, −0.26) | 0.003 |
C20:1 LPC | HMDB0010391 | Phosphatidylcholines | −0.54 (−0.82, −0.27) | 0.003 |
C24:0 LPC | HMDB0008038 | Phosphatidylcholines | −0.49 (−0.76, −0.23) | 0.005 |
C28:0 PC | HMDB0007866 | Phosphatidylcholines | −0.37 (−0.65, −0.10) | 0.040 |
C30:0 PC | HMDB0007869 | Phosphatidylcholines | −0.40 (−0.67, −0.13) | 0.026 |
C30:1 PC | HMDB0007870 | Phosphatidylcholines | −0.43 (−0.70, −0.17) | 0.014 |
C32:1 PC | HMDB0007873 | Phosphatidylcholines | −0.40 (−0.66, −0.13) | 0.026 |
C34:1 PC | HMDB0007972 | Phosphatidylcholines | −0.35 (−0.62, −0.08) | 0.046 |
C40:10 PC | HMDB0008511 | Phosphatidylcholines | −0.34 (−0.61, −0.08) | 0.050 |
C32:1 PC plasmalogen-A | HMDB0013404 | Phosphatidylcholine plasmalogens | −0.40 (−0.67, −0.13) | 0.024 |
C34:2 PC plasmalogen-B | HMDB0011210 | Phosphatidylcholine plasmalogens | −0.44 (−0.70, −0.18) | 0.012 |
C14:0 LPC | HMDB0010379 | Lysophosphatidylcholines | −0.39 (−0.66, −0.12) | 0.032 |
C14:0 LPC-A | HMDB0010379 | Lysophosphatidylcholines | −0.44 (−0.71, −0.17) | 0.014 |
C18:1 LPC | HMDB0002815 | Lysophosphatidylcholines | −0.36 (−0.63, −0.09) | 0.042 |
C18:3 LPC | HMDB0010387 | Lysophosphatidylcholines | −0.38 (−0.66, −0.10) | 0.040 |
C20:3 LPC | HMDB0010393 | Lysophosphatidylcholines | −0.37 (−0.64, −0.09) | 0.040 |
C16:0 LPE | HMDB0011503 | Lysophosphatidylethanolamines | −0.45 (−0.72, −0.18) | 0.012 |
C18:1 LPE | HMDB0011506 | Lysophosphatidylethanolamines | −0.38 (−0.66, −0.11) | 0.036 |
C22:6 LPE-B | HMDB0011526 | Lysophosphatidylethanolamines | −0.36 (−0.63, −0.09) | 0.040 |
C14:0 SM | HMDB0012097 | Sphingomyelins | −0.45 (−0.71, −0.18) | 0.012 |
C18:2 SM | HMDB0012101 | Sphingomyelins | 0.39 (0.12, 0.66) | 0.032 |
C24:1 SM | HMDB0012107 | Sphingomyelins | −0.43 (−0.70, −0.16) | 0.017 |
C4-OH carnitine | HMDB0013127 | Acylcarnitines | 0.43 (0.17, 0.68) | 0.012 |
C6 carnitine | HMDB0000705 | Acylcarnitines | 0.47 (0.20, 0.74) | 0.011 |
C7 carnitine | HMDB0013238 | Acylcarnitines | 0.47 (0.21, 0.72) | 0.006 |
C9 carnitine | HMDB0013288 | Acylcarnitines | 0.43 (0.17, 0.70) | 0.014 |
C10:2 carnitine | HMDB0013325 | Acylcarnitines | 0.60 (0.34, 0.87) | 7.01 × 104 |
C14:2 carnitine | HMDB0013331 | Acylcarnitines | 0.38 (0.11, 0.65) | 0.032 |
C36:3 DAG | HMDB0007219 | Diacylglycerols | 0.46 (0.19, 0.73) | 0.012 |
C36:4 DAG-A | HMDB0007248 | Diacylglycerols | 0.56 (0.29, 0.83) | 0.002 |
C51:3 TAG | Unknown | Triacylglycerols | 0.53 (0.26, 0.79) | 0.003 |
C52:2 TAG | HMDB0005369 | Triacylglycerols | 0.34 (0.08, 0.60) | 0.047 |
C52:3 TAG | HMDB0005384 | Triacylglycerols | 0.46 (0.19, 0.73) | 0.011 |
C52:4 TAG | HMDB0005363 | Triacylglycerols | 0.59 (0.32, 0.86) | 0.001 |
C54:2 TAG | HMDB0005403 | Triacylglycerols | 0.38 (0.12, 0.65) | 0.032 |
C54:3 TAG | HMDB0005405 | Triacylglycerols | 0.37 (0.10, 0.64) | 0.036 |
C54:4 TAG | HMDB0005370 | Triacylglycerols | 0.45 (0.18, 0.72) | 0.012 |
C54:6 TAG | HMDB0005391 | Triacylglycerols | 0.45 (0.18, 0.72) | 0.012 |
Isoleucine | HMDB0000172 | Amino acids | 0.47 (0.22, 0.72) | 0.005 |
Dimethylglycine | HMDB0000092 | Amino Acids | 0.40 (0.12, 0.66) | 0.032 |
Cystathionine | HMDB0000099 | Amino Acids | 0.33 (0.08, 0.58) | 0.046 |
2-aminooctanoate | HMDB0000991 | Amino Acids | 0.38 (0.10, 0.66) | 0.038 |
Pantothenate | HMDB0000210 | Amino Acids | 0.34 (0.61, 0.08) | 0.047 |
N-methylproline | HMDB0094696 | Amino Acids | 0.44 (0.70, 0.17) | 0.012 |
C36:1 PS plasmalogen | Unknown | Other | 0.55 (0.83, 0.27) | 0.003 |
X4-pyridoxate | Unknown | Other | 0.42 (0.67, 0.16) | 0.014 |
Proline betaine | HMDB0004827 | Other | 0.40 (0.66, 0.14) | 0.024 |
Indole-3-propionate | HMDB0002302 | Other | 0.35 (0.61, 0.09) | 0.040 |
Cortisol | HMDB0000063 | Steroids | 0.37 (0.64, 0.10) | 0.040 |
C23:0 Ceramide (d18:1) | HMDB0000950 | Ceramides | 0.39 (0.12, 0.66) | 0.032 |
N4-acetylcytidine | HMDB0005923 | Purines and Pyrimidines | 0.37 (0.11, 0.62) | 0.032 |
Cytidine | HMDB0000089 | Purines and Pyrimidines | 0.37 (0.10, 0.64) | 0.040 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tabung, F.K.; Balasubramanian, R.; Liang, L.; Clinton, S.K.; Cespedes Feliciano, E.M.; Manson, J.E.; Van Horn, L.; Wactawski-Wende, J.; Clish, C.B.; Giovannucci, E.L.; et al. Identifying Metabolomic Profiles of Insulinemic Dietary Patterns. Metabolites 2019, 9, 120. https://doi.org/10.3390/metabo9060120
Tabung FK, Balasubramanian R, Liang L, Clinton SK, Cespedes Feliciano EM, Manson JE, Van Horn L, Wactawski-Wende J, Clish CB, Giovannucci EL, et al. Identifying Metabolomic Profiles of Insulinemic Dietary Patterns. Metabolites. 2019; 9(6):120. https://doi.org/10.3390/metabo9060120
Chicago/Turabian StyleTabung, Fred K., Raji Balasubramanian, Liming Liang, Steven K. Clinton, Elizabeth M. Cespedes Feliciano, JoAnn E. Manson, Linda Van Horn, Jean Wactawski-Wende, Clary B. Clish, Edward L. Giovannucci, and et al. 2019. "Identifying Metabolomic Profiles of Insulinemic Dietary Patterns" Metabolites 9, no. 6: 120. https://doi.org/10.3390/metabo9060120
APA StyleTabung, F. K., Balasubramanian, R., Liang, L., Clinton, S. K., Cespedes Feliciano, E. M., Manson, J. E., Van Horn, L., Wactawski-Wende, J., Clish, C. B., Giovannucci, E. L., & Rexrode, K. M. (2019). Identifying Metabolomic Profiles of Insulinemic Dietary Patterns. Metabolites, 9(6), 120. https://doi.org/10.3390/metabo9060120