Quantum Field Theory
Funding
Conflicts of Interest
References
- Antonov, D. Yang–Mills Instantons in the Dual-Superconductor Vacuum Can Become Confining. Universe 2023, 9, 257. [Google Scholar] [CrossRef]
- Antonov, D. On the Temperature Dependence of the String-Breaking Distance in QCD. Universe 2023, 9, 97. [Google Scholar] [CrossRef]
- Antonov, D. Dual Superconductor Model of Confinement: Quantum-String Representation of the 4D Yang–Mills Theory on a Torus and the Correlation Length away from the London Limit. Universe 2022, 8, 7. [Google Scholar] [CrossRef]
- Dantas, R.A.; Mota, H.F.S.; de Mello, B.; Eugênio, R. Bosonic Casimir Effect in an Aether-like Lorentz-Violating Scenario with Higher Order Derivatives. Universe 2023, 9, 241. [Google Scholar] [CrossRef]
- Hofmann, R.; Grandou, T. On Emergent Particles and Stable Neutral Plasma Balls in SU(2) Yang-Mills Thermodynamics. Universe 2022, 8, 117. [Google Scholar] [CrossRef]
- Hofmann, R.; Meinert, J. Electroweak parameters from mixed SU(2) Yang-Mills Thermodynamics. 2023. in preparation. [Google Scholar]
- Faber, M. From Soft Dirac Monopoles to the Dirac Equation. Universe 2022, 8, 387. [Google Scholar] [CrossRef]
- de Broglie, L. The Thermodynamics of the Isolated Particle; Gauthier-Villars Editions: Paris, France, 1964; p. 1. [Google Scholar]
- ’t Hooft, G. The Black Hole Firewall Transformation and Realism in Quantum Mechanics. Universe 2021, 7, 298. [Google Scholar] [CrossRef]
- Ho, P.-M.; Yokokura, Y. Firewall from Effective Field Theory. Universe 2021, 7, 241. [Google Scholar] [CrossRef]
- Calmet, X.; Sherrill, N. Implications of Quantum Gravity for Dark Matter Searches with Atom Interferometers. Universe 2022, 8, 103. [Google Scholar] [CrossRef]
- Fried, H.M.; Gabellini, Y.; Grandou, T.; Tsang, P.H. QCD Effective Locality: A Theoretical and Phenomenological Review. Universe 2021, 7, 481. [Google Scholar] [CrossRef]
- Floerchinger, S. Real Clifford Algebras and Their Spinors for Relativistic Fermions. Universe 2021, 7, 168. [Google Scholar] [CrossRef]
- Adler, S.L. Axial vector vertex in spinor electrodynamics. Phys. Rev. 1969, 177, 2426–2438. [Google Scholar] [CrossRef]
- Bell, J.S.; Jackiw, R. A PCAC puzzle: π0→γγ in the σ model. Nuovo Cim. A 1969, 60, 47–61. [Google Scholar] [CrossRef]
- ’t Hooft, G. Symmetry Breaking Through Bell-Jackiw Anomalies. Phys. Rev. Lett. 1976, 37, 8–11. [Google Scholar] [CrossRef]
- Fujikawa, K. Path Integral Measure for Gauge Invariant Fermion Theories. Phys. Rev. Lett. 1979, 42, 1195–1198. [Google Scholar] [CrossRef]
- ’t Hooft, G. Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking. NATO Sci. Ser. B 1980, 59, 135–157. [Google Scholar] [CrossRef]
- Hoang, A.H.; Regner, C. Borel representation of τ hadronic spectral function moments in contour-improved perturbation theory. Phys. Rev. D 2022, 105, 096023. [Google Scholar] [CrossRef]
- ’t Hooft, G. Reflections on the renormalization procedure for gauge theories. Nucl. Phys. B 2016, 912, 4–14. [Google Scholar] [CrossRef]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998, 116, 1009. [Google Scholar] [CrossRef]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 high redshift supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Hofmann, R. The Thermodynamics of Quantum Yang-Mills Theory: Theory and Applications, 2nd ed.; World Scientific Publishing Co. Pte Ltd.: Singapore, 2016; p. 1. [Google Scholar]
- Isidori, G.; Ridolfi, G.; Strumia, A. On the metastability of the Standard Model vacuum. Nucl. Phys. B 2001, 609, 387–409. [Google Scholar] [CrossRef]
- Markkanen, T.; Rajantie, A.; Stopyra, S. Cosmological Aspects of Higgs Vacuum Metastability. Front. Astronom. Space Sci. 2018, 5, 40. [Google Scholar] [CrossRef]
- ’t Hooft, G. Quantum black holes. NATO Sci. Ser. B 1987, 150, 447–450. [Google Scholar]
- Hofmann, R. The isolated, uniformly moving electron: Selfintersecting SU(2) Yang-Mills center vortex loop and Louis de Broglie’s hidden thermodynamics. AIP Conf. Proc. 2018, 1978, 300006. [Google Scholar] [CrossRef]
- Penrose, R. On Gravity’s role in Quantum State Reduction. Gen. Rel. Gravitat. 1996, 28, 581–600. [Google Scholar] [CrossRef]
- Almheiri, A.; Hartman, T.; Maldacena, J.; Shaghoulian, E.; Tajdini, A. The entropy of Hawking radiation. Rev. Modern Phys. 2021, 93, 035002. [Google Scholar] [CrossRef]
- Penington, G. Entanglement Wedge Reconstruction and the Information Paradox. arXiv 2020, arXiv:1905.08255. [Google Scholar] [CrossRef]
- Almheiri, A.; Engelhardt, N.; Marolf, D.; Maxfield, H. The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole. J. High Energy Phys. 2019, 2019, 063. [Google Scholar] [CrossRef]
- Penington, G.; Shenker, S.H.; Stanford, D.; Yang, Z. Replica wormholes and the black hole interior. arXiv 2020, arXiv:1911.11977. [Google Scholar] [CrossRef]
- Page, D.N. Information in black hole radiation. Phys. Rev. Lett. 1993, 71, 3743–3746. [Google Scholar] [CrossRef]
- Hayden, P.; Preskill, J. Black holes as mirrors: Quantum information in random subsystems. J. High Energy Phys. 2007, 2007, 120. [Google Scholar] [CrossRef]
- ’t Hooft, G. Quantum Clones inside Black Holes. Universe 2022, 8, 537. [Google Scholar] [CrossRef]
- Kawai, H.; Lewellen, D.C.; Tye, S.H.H. A Relation Between Tree Amplitudes of Closed and Open Strings. Nucl. Phys. B 1986, 269, 1–23. [Google Scholar] [CrossRef]
- Parke, S.J.; Taylor, T.R. An Amplitude for n Gluon Scattering. Phys. Rev. Lett. 1986, 56, 2459. [Google Scholar] [CrossRef]
- Berends, F.; Giele, W.; Kuijf, H. On relations between multi-gluon and multi-graviton scattering. Phys. Lett. B 1988, 211, 91–94. [Google Scholar] [CrossRef]
- Bern, Z.; Dixon, L.J.; Perelstein, M.; Rozowsky, J.S. Multileg one loop gravity amplitudes from gauge theory. Nucl. Phys. B 1999, 546, 423–479. [Google Scholar] [CrossRef]
- Bern, Z.; Carrasco, J.J.M.; Johansson, H. New Relations for Gauge-Theory Amplitudes. Phys. Rev. D 2008, 78, 085011. [Google Scholar] [CrossRef]
- Witten, E. Perturbative gauge theory as a string theory in twistor space. Commun. Math. Phys. 2004, 252, 189–258. [Google Scholar] [CrossRef]
- Preskill, J.; Wise, M.B.; Wilczek, F. Cosmology of the Invisible Axion. Phys. Lett. B 1983, 120, 127–132. [Google Scholar] [CrossRef]
- Sin, S.J. Late-time phase transition and the galactic halo as a Bose liquid. Physical Review D 1994, 50, 3650–3654. [Google Scholar] [CrossRef]
- Frieman, J.A.; Hill, C.T.; Stebbins, A.; Waga, I. Cosmology with ultralight pseudo Nambu-Goldstone bosons. Phys. Rev. Lett. 1995, 75, 2077–2080. [Google Scholar] [CrossRef]
- Matos, T.; Guzman, F.S.; Urena-Lopez, L.A. Scalar field as dark matter in the universe. Class. Quant. Grav. 2000, 17, 1707–1712. [Google Scholar] [CrossRef]
- Schive, H.Y.; Chiueh, T.; Broadhurst, T. Cosmic structure as the quantum interference of a coherent dark wave. Nat. Phys. 2014, 10, 496–499. [Google Scholar] [CrossRef]
- Hui, L.; Ostriker, J.P.; Tremaine, S.; Witten, E. Ultralight scalars as cosmological dark matter. Phys. Rev. D 2017, 95, 043541. [Google Scholar] [CrossRef]
- Niemeyer, J.C. Small-scale structure of fuzzy and axion-like dark matter. Prog. Part. Nucl. Phys. 2020, 113, 103787. [Google Scholar] [CrossRef]
- Meinert, J.; Hofmann, R. Axial Anomaly in Galaxies and the Dark Universe. Universe 2021, 7, 198. [Google Scholar] [CrossRef]
- Witten, E. Instantons, the Quark Model, and the 1/n Expansion. Nucl. Phys. B 1979, 149, 285–320. [Google Scholar] [CrossRef]
- Veneziano, G. U(1) Without Instantons. Nucl. Phys. B 1979, 159, 213–224. [Google Scholar] [CrossRef]
- Candelas, P.; Raine, D.J. General Relativistic Quantum Field Theory-An Exactly Soluble Model. Phys. Rev. D 1975, 12, 965–974. [Google Scholar] [CrossRef]
- Ashtekar, A. New Variables for Classical and Quantum Gravity. Phys. Rev. Lett. 1986, 57, 2244–2247. [Google Scholar] [CrossRef]
- Perez, A.; Rovelli, C. Physical effects of the Immirzi parameter. Phys. Rev. D 2006, 73, 044013. [Google Scholar] [CrossRef]
- Giacosa, F.; Hofmann, R.; Neubert, M. A model for the very early universe. J. High Energy Phys. 2008, 2008, 077. [Google Scholar] [CrossRef]
- Genzel, R.; Schodel, R.; Ott, T.; Eckart, A.; Alexander, T.; Lacombe, F.; Rouan, D.; Aschenbach, B. Near-infrared flares from accreting gas around the supermassive black hole at the galactic centre. Nature 2003, 425, 934–937. [Google Scholar] [CrossRef]
- Ghez, A.M.; Duchene, G.; Matthews, K.; Hornstein, S.D.; Tanner, A.; Larkin, J.; Morris, M.; Becklin, E.E.; Salim, S.; Kremenek, T.; et al. The first measurement of spectral lines in a short-period star bound to the galaxy’s central black hole: A paradox of youth. Astrophys. J. Lett. 2003, 586, L127–L131. [Google Scholar] [CrossRef]
- Fields, B.D.; Olive, K.A.; Yeh, T.H.; Young, C. Big-Bang Nucleosynthesis after Planck. JCAP 2020, 03, 010. [Google Scholar] [CrossRef]
- Hofmann, R.; Meinert, J. Frequency-Redshift Relation of the Cosmic Microwave Background. Astronomy 2023, 2, 19. [Google Scholar] [CrossRef]
- Giacosa, F.; Hofmann, R. A Planck-scale axion and SU(2) Yang-Mills dynamics: Present acceleration and the fate of the photon. Eur. Phys. J. C 2007, 50, 635–646. [Google Scholar] [CrossRef]
- Hofmann, R. The fate of statistical isotropy. Nature Phys. 2013, 9, 686–689. [Google Scholar] [CrossRef]
- Riess, A.G.; Yuan, W.; Macri, L.M.; Scolnic, D.; Brout, D.; Casertano, S.; Jones, D.O.; Murakami, Y.; Breuval, L.; Brink, T.G.; et al. A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km s-1 Mpc-1 Uncertainty from the Hubble Space Telescope and the SH0ES Team. Astrophys. J. Lett. 2022, 934, L7. [Google Scholar] [CrossRef]
- Birrer, S.; Millon, M.; Sluse, D.; Shajib, A.J.; Courbin, F.; Koopmans, L.V.E.; Suyu, S.H.; Treu, T.; Gagandeep, S.A. Time-Delay Cosmography: Measuring the Hubble Constant and other cosmological parameters with strong gravitational lensing. arXiv 2023, arXiv:2210.10833. [Google Scholar]
- Kamionkowski, M.; Riess, A.G. The Hubble Tension and Early Dark Energy. Ann. Rev. Nucl. Part. Sci. 2023, 73, 153–180. [Google Scholar] [CrossRef]
- Riess, A.G.; Breuval, L. The Local Value of H0. arXiv 2023, 8, 10954. [Google Scholar]
- Anchordoqui, L.A.; Di Valentino, E.; Pan, S.; Yang, W. Dissecting the H0 and S8 tensions with Planck + BAO + supernova type Ia in multi-parameter cosmologies. JHEAp 2021, 32, 28–64. [Google Scholar] [CrossRef]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar] [CrossRef]
- Abbott, T.M.C.; Aguena, M.; Alarcon, A.; Allam, S.; Alves, O.; Amon, A.; Andrade-Oliveira, F.; Annis, J.; Avila, S.; Bacon, D.; et al. Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and weak lensing. Phys. Rev. D 2022, 105, 023520. [Google Scholar] [CrossRef]
- Brida, G.; Gavioso, R.; Gaiser, C.; Meinert, J.; Hofmann, R. Low-Frequency Spectroscopy of Blackbody Radiation at 5-20 Kelvin. in preparation. 2024. [Google Scholar]
- Hahn, S.; Hofmann, R.; Kramer, D. SU(2)CMB and the cosmological model: Angular power spectra. Mon. Not. Roy. Astron. Soc. 2019, 482, 4290–4302. [Google Scholar] [CrossRef]
- Copi, C.J.; Huterer, D.; Schwarz, D.J.; Starkman, G.D. Lack of large-angle TT correlations persists in WMAP and Planck. Mon. Not. Roy. Astron. Soc. 2015, 451, 2978–2985. [Google Scholar] [CrossRef]
- Schwarz, D.J.; Copi, C.J.; Huterer, D.; Starkman, G.D. CMB Anomalies after Planck. Class. Quant. Grav. 2016, 33, 184001. [Google Scholar] [CrossRef]
- Jones, J.; Copi, C.J.; Starkman, G.D.; Akrami, Y. The Universe is not statistically isotropic. arXiv 2023, arXiv:astro-ph.CO/2310.12859. [Google Scholar]
- Hofmann, R.; Meinert, J.; Balaji, S.S. Cosmological Parameters from Planck Data in SU(2)CMB, Their Local LCDM Values, and the Modified Photon Boltzmann Equation. Annal. Phys. 2022, 535, 2200517. [Google Scholar] [CrossRef]
- Falquez, C.; Hofmann, R.; Baumbach, T. Charge-density waves in deconfining SU(2) Yang-Mills thermodynamics. Quant. Matt. 2012, 1, 153–158. [Google Scholar] [CrossRef]
- Wang, J.; You, Y.Z. Symmetric Mass Generation. Symmetry 2022, 14, 475. [Google Scholar] [CrossRef]
- You, Y.Z.; He, Y.C.; Vishwanath, A.; Xu, C. From bosonic topological transition to symmetric fermion mass generation. Phys. Rev. B 2018, 97, 1475. [Google Scholar] [CrossRef]
- Lu, D.C.; Zeng, M.; You, Y.Z. Green’s Function Zeros in Fermi Surface Symmetric Mass Generation. arXiv 2023, arXiv:2307.12223. [Google Scholar] [CrossRef]
- Hou, W.; You, Y.Z. Variational Monte Carlo Study of Symmetric Mass Generation in a Bilayer Honeycomb Lattice Model. arXiv 2023, arXiv:2212.13364. [Google Scholar] [CrossRef]
- He, Y.Y.; Wu, H.Q.; You, Y.Z.; Xu, C.; Meng, Z.Y.; Lu, Z.Y. Quantum critical point of Dirac fermion mass generation without spontaneous symmetry breaking. Phys. Rev. B 2016, 94, 241111. [Google Scholar] [CrossRef]
- Hasenfratz, A.; Neil, E.T.; Shamir, Y.; Svetitsky, B.; Witzel, O. Infrared fixed point of the SU(3) gauge theory with Nf=10 flavors. arXiv 2023, arXiv:2306.07236. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hofmann, R. Quantum Field Theory. Universe 2024, 10, 14. https://doi.org/10.3390/universe10010014
Hofmann R. Quantum Field Theory. Universe. 2024; 10(1):14. https://doi.org/10.3390/universe10010014
Chicago/Turabian StyleHofmann, Ralf. 2024. "Quantum Field Theory" Universe 10, no. 1: 14. https://doi.org/10.3390/universe10010014
APA StyleHofmann, R. (2024). Quantum Field Theory. Universe, 10(1), 14. https://doi.org/10.3390/universe10010014