Reconstructing Modified and Alternative Theories of Gravity
Abstract
:1. Introduction
2. The Three Pillars of Gravitation
3. Reconstruction from the Radiation Era
3.1. Gravity
3.2. Torsion-Based Metric Teleparallel Gravity
3.2.1. Energy Conditions
- 1.
- Null energy condition: .
- 2.
- Weak energy condition: and .
- 3.
- Dominant energy condition: .
- 4.
- Strong energy condition: and .
- 1.
- 2.
- Again for, , the field Equation (30) is
- 3.
- 1.
- 2.
- Therefore, is ensured provided , and is also ensured if as , and as a result, the weak energy condition is also satisfied.
- 3.
- Finally, for , the field Equation (30) takes the formHence, together with , provided as , and so the weak energy condition is also satisfied.
3.2.2. Slow Roll Inflation
- Form-1:,
- Form-2,
3.3. Symmetric Teleparallel Theory of Gravity
3.4. Palatini Formalism
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
1 | It may be mentioned that the curvature tensor constructed out of Weitzenböck connection vanishes identically, while a theory of gravity constructed in view of tetrad fields admits both the Weitzenböck and the Riemannian geometry and therefore is more general. |
2 | Under the choice of local coordinates and coordinate basis and , respectively, the affine Levi-Civita connection (∇) is called the Christoffel symbol , so that . |
References
- Sabulsky, D.O.; Dutta, I.; Hinds, E.A.; Elder, B.; Burrage, C.; Copel, E.J. Experiment to detect dark energy forces using atom interferometry. Phys. Rev. Lett. 2019, 123, 061102. [Google Scholar] [CrossRef] [PubMed]
- Motohashi, H.; Suyama, T. Third order equations of motion and the Ostrogradsky instability. Phys. Rev. D 2015, 91, 085009. [Google Scholar] [CrossRef]
- Maluf, J.W.; Rocha-Neto, J.F.D. Hamiltonian formulation of general relativity in the teleparallel geometry. Phys. Rev. D 2001, 64, 084014. [Google Scholar] [CrossRef]
- Li, M.; Miao, R.-X.; Miao, Y.-G. Degrees of freedom of f(T) gravity. J. High Energy Phys. 2011, 1107, 108. [Google Scholar] [CrossRef]
- Ferraro, R.; Guzmán, M.J. Hamiltonian formalism for f(T) gravity. Phys. Rev. D 2018, 97, 104028. [Google Scholar] [CrossRef]
- Ferraro, R.; Guzmán, M.J. Quest for the extra degree of freedom in f(T) gravity. Phys. Rev. D 2018, 98, 124037. [Google Scholar] [CrossRef]
- Ferraro, R.; Guzmán, M.J. Pseudoinvariance and the extra degree of freedom in f(T) gravity. Phys. Rev. D 2020, 101, 084017. [Google Scholar] [CrossRef]
- Izumi, K.; Ong, Y.C. Cosmological perturbation in f(T) gravity revisited. J. Cosmol. Astropart. Phys. 2013, 6, 29. [Google Scholar] [CrossRef]
- Golovnev, A.; Koivisto, T. Cosmological perturbations in modified teleparallel gravity models. J. Cosmol. Astropart. Phys. 2018, 2018, 012. [Google Scholar] [CrossRef]
- Jiménez, J.B.; Heisenberg, L.; Koivisto, T.; Pekar, S. Cosmology in f(Q) geometry. Phys. Rev. D 2020, 101, 103507. [Google Scholar] [CrossRef]
- Capozziello, S.; De Laurentis, M. Extended theories of gravity. Phys. Rep. 2011, 509, 167. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity:from F(R) theory to Lorentz non-invariant models. Phys. Rep. 2011, 505, 59. [Google Scholar] [CrossRef]
- Cai, Y.-F.; Capozziello, S.; De Laurentis, M.; Saridakis, E.N. f(T) teleparallel gravity and cosmology. Rep. Prog. Phys. 2016, 76, 106901. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D. Covariant formulation of f(Q) theory. Eur. Phys. J. C 2022, 82, 303. [Google Scholar] [CrossRef]
- Sarkar, K.; Sk, N.; Ruz, S.; Debnath, S.; Sanyal, A.K. Why Noether Symmetry of F(R) Theory Yields Three-Half Power Law? Int. J. Theor. Phys. 2013, 52, 1515. [Google Scholar] [CrossRef]
- Chakrabortty, M.S.K.N.; Sanyal, A.K. A viable form of teleparallel F(T) theory of gravity. Eur. Phys. J. C 2023, 83, 557. [Google Scholar] [CrossRef]
- Sanyal, A.K. Study of symmetry in F(R) theory of gravity. Mod. Phys. Lett. A 2010, 25, 2667–2668. [Google Scholar] [CrossRef]
- Modak, B.; Sarkar, K.; Sanyal, A.K. Modified theory of gravity and the history of cosmic evolution. Astrophys. Space Sci. 2014, 353, 707. [Google Scholar] [CrossRef]
- Capozziello, S.; Francaviglia, M. Extended theories of gravity and their cosmological and astrophysical applications. Gen. Relativ. Gravit. 2008, 40, 357. [Google Scholar] [CrossRef]
- Vakili, B. Noether symmetric f(R) quantum cosmology and its classical correlations. Phys. Lett. B 2008, 669, 206. [Google Scholar] [CrossRef]
- Sarkar, K.; Sk, N.; Debnath, S.; Sanyal, A.K. Viability of Noether Symmetry of F(R) theory of Gravity. Int. J. Theor. Phys. 2013, 52, 1194. [Google Scholar] [CrossRef]
- Sk, N.; Sanyal, A.K. Revisiting Noether gauge symmetry for F(R) theory of gravity. Astrophys. Space Sci. 2012, 342, 549. [Google Scholar] [CrossRef]
- Sk, N.; Sanyal, A.K. Field Independent Cosmic Evolution. J. Astrophys. 2013, 2013, 590171. [Google Scholar] [CrossRef]
- Starobinsky, A.A. A new type of isotropic cosmological models without singularity. Phys. Lett. B 1980, 91, 99. [Google Scholar] [CrossRef]
- Maeda, K. Inflation as a transient attractor in R2 cosmology. Phys. Rev. D 1988, 37, 858. [Google Scholar] [CrossRef]
- Bengochea, G.R.; Ferraro, R. Dark torsion as the cosmic speed-up. Phys. Rev. D 2009, 79, 124019. [Google Scholar] [CrossRef]
- Linder, E.V. Einstein’s other gravity and the acceleration of the universe. Phys. Rev. D 2010, 81, 127301. [Google Scholar] [CrossRef]
- Krs˘s˘ák, M.; Saridakis, E.N. The covariant formulation of f(T) gravity. Class. Quant. Grav. 2016, 33, 115009. [Google Scholar]
- Ferraro, R.; Fiorini, F. Non-trivial frames for f(T) theories of gravity and beyond. Phys. Lett. B 2011, 702, 75. [Google Scholar] [CrossRef]
- Chakrabortty, M.; Sk, N.; Sanyal, S.; Sanyal, A.K. Inflation with F(T) teleparallel gravity. Eur. Phys. J. Plus 2021, 136, 1213. [Google Scholar] [CrossRef]
- Bamba, K.; Odintsov, S.D.; Saridakis, E.N. Inflationary cosmology in unimodular F(T) gravity. Mod. Phys. Lett. A 2017, 32, 1750114. [Google Scholar] [CrossRef]
- Akrami, Y. et al. [Planck Collaboration]. Planck 2018 results. X. Constraints on inflation. Astron. Astrophys. 2020, 641, A10.
- Aghanim, N. et al. [Planck Collaboration]. Planck 2018 Results. VI. Cosmological Parameters. Astron. Astrophys. 2020, 641, A6.
- Tristram, M.; Banday, A.; Górski, K.; Keskitalo, R.; Lawrence, C.; Andersen, K.; Barreiro, R.; Borrill, J.; Colombo, L.; Eriksen, H.; et al. Improved limits on the tensor-to-scalar ratio using BICEP and Planck. Phys. Rev. D 2022, 105, 083524. [Google Scholar] [CrossRef]
- Hazumi, M.; Ade, P.A.R.; Adler, A.; Allys, E.; Arnold, K.; Auguste, D.; Aumont, J.; Aurlien, R.; Austermann, J.; Baccigalupi, C.; et al. LiteBIRD: JAXA’s new strategic L-class mission for all-sky surveys of cosmic microwave background polarization. Proc. SPIE 2020, 11443, 114432F. [Google Scholar]
- Enqvist, K.; Hardwick, R.J.; Tenkanen, T.; Venninb, V.; Wands, D. A novel way to determine the scale of inflation. JCAP 2018, 2, 6. [Google Scholar] [CrossRef]
- Ambrosio, F.D.; Fell, S.D.B.; Heisenberg, L.; Kuhn, S. Black holes in f(Q) gravity. Phys. Rev. D 2022, 105, 024042. [Google Scholar] [CrossRef]
- Chen, S.; Gibbons, G.W.; Li, Y.; Yang, Y. Friedmann’s equations and Chebyshev’s theorem. J. Cosmol. Astropart. Phys. 2014, 12, 35. [Google Scholar] [CrossRef]
- D’ Ambrosio, F.; Heisenberg, L.; Kuhn, S. Revisiting Cosmologies in Teleparallelism. Class. Quantum Grav. 2022, 39, 025013. [Google Scholar] [CrossRef]
- Capozziello, S.; D’Agostino, R. Model-independent reconstruction of f(Q) non-metric gravity. Phys. Lett. 2022, 832, 137229. [Google Scholar] [CrossRef]
- Atayde, L.; Frusciante, N. Can f(Q) gravity challenge ΛCDM? Phys. Rev. D 2021, 104, 064052. [Google Scholar] [CrossRef]
- Esposito, F.; Carloni, S.; Cianci, R.; Vignolo, S. Reconstructing isotropic and anisotropic f(Q) cosmologies. Phys. Rev. D 2022, 105, 084061. [Google Scholar] [CrossRef]
- Nester, J.M.; Yo, H.-J. Symmetric teleparallel general relativity. Chin. J. Phys. 1999, 37, 113. [Google Scholar]
- Jimenez, J.B.; Heisenberg, L.; Koivisto, T. Coincident general relativity. Phys. Rev. D 2018, 98, 044048. [Google Scholar] [CrossRef]
- Bahamonde, S.; Järv, L. Coincident gauge for static spherical field configurations in symmetric teleparallel gravity. Eur. Phys. J. C 2022, 82, 963. [Google Scholar] [CrossRef]
- Jiménez, J.B.; Koivisto, T.S. Accidental gauge symmetries of Minkowski spacetime in Teleparallel theories. Universe 2021, 7, 143. [Google Scholar] [CrossRef]
- Gomes, D.A.; Jiménez, J.B.; Cano, A.J.; Koivisto, T.S. On the pathological character of modifications to Coincident General Relativity: Cosmological strong coupling and ghosts in f(Q) theories. arXiv 2023, arXiv:2311.04201. [Google Scholar]
- Hohmann, M. General covariant symmetric teleparallel cosmology. Phys. Rev. D 2021, 104, 124077. [Google Scholar] [CrossRef]
- Dimakis, N.; Paliathanasis, A.; Roumeliotis, M.; Christodoulakis, T. FLRW solutions in f(Q) theory: The effect of using different connections. Phys. Rev. D 2022, 106, 043509. [Google Scholar] [CrossRef]
- De, A.; Loo, T.-H. On the viability of f(Q) gravity models. Class. Quan. Grav. 2023, 40, 115007. [Google Scholar] [CrossRef]
- Hu, Y.-M.; Zhao, Y.; Ren, X.; Wang, B.; Sadakis, E.N.; Cai, Y.-F. The effective field theory approach to the strong coupling issue in f(T) gravity. J. Cosmol. Astropart. Phys. 2023, 7, 60. [Google Scholar] [CrossRef]
- Allemandi, G.; Borowiec, A.; Francaviglia, M.; Odintsov, S.D. Dark energy dominance and cosmic acceleration in first order formalism. Phys. Rev. D 2005, 72, 063505. [Google Scholar] [CrossRef]
- Chakrabortty, M.; Sk, N.; Sanyal, A.K. Some aspects of modified theory of gravity in Palatini formalism unveiled. Mod. Phys. Lett. A 2020, 35, 2050162. [Google Scholar] [CrossRef]
- Sotiriou, T.; Faraoni, V. f(R) theories of gravity. Rev. Mod. Phys. 2010, 82, 451. [Google Scholar] [CrossRef]
- Barausse, E.; Sotiriou, T.; Miller, J. A no-go theorem for polytropic spheres in Palatini f(R) gravity. Class. Quantum Grav. 2008, 25, 062001. [Google Scholar] [CrossRef]
- Saha, D.; (1. Department of Physics, Jangipur College, Jangipur, India; 2. Department of Physics, University of Kalyani, Nadia, India); Sanyal, A.K.; (Department of Physics, Jangipur College, Jangipur, India). Cosmological evolution for all the connections in symmetric teleparallel gravity theory. Personal communication, 2023.
r | N | ||||||
---|---|---|---|---|---|---|---|
3.0 | 6.5 | 0.1 | 0.5 | 0.69599 | 0.96425 | 0.03128 | 50 |
in | r | N | |
---|---|---|---|
2.80 | 0.9656 | 0.00566 | 24 |
2.85 | 0.9674 | 0.00520 | 26 |
2.90 | 0.9692 | 0.00490 | 27 |
2.95 | 0.9707 | 0.00456 | 28 |
3.00 | 0.9723 | 0.00426 | 30 |
3.10 | 0.9750 | 0.00372 | 33 |
3.20 | 0.9773 | 0.00327 | 37 |
3.30 | 0.9794 | 0.00288 | 40 |
3.40 | 0.9812 | 0.00255 | 44 |
in | in | r | N | in | |
---|---|---|---|---|---|
0.75450 | 4.5 | 0.96656 | 0.005836 | 40 | 1.33 |
0.74478 | 4.6 | 0.96742 | 0.005593 | 41 | 1.37 |
0.73540 | 4.7 | 0.96823 | 0.005364 | 42 | 1.40 |
0.72637 | 4.8 | 0.96899 | 0.005149 | 43 | 1.43 |
0.71750 | 4.9 | 0.96974 | 0.004947 | 44 | 1.47 |
0.70900 | 5.0 | 0.97044 | 0.004756 | 45 | 1.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saha, D.; Chakrabortty, M.; Sanyal, A.K. Reconstructing Modified and Alternative Theories of Gravity. Universe 2024, 10, 44. https://doi.org/10.3390/universe10010044
Saha D, Chakrabortty M, Sanyal AK. Reconstructing Modified and Alternative Theories of Gravity. Universe. 2024; 10(1):44. https://doi.org/10.3390/universe10010044
Chicago/Turabian StyleSaha, Dalia, Manas Chakrabortty, and Abhik Kumar Sanyal. 2024. "Reconstructing Modified and Alternative Theories of Gravity" Universe 10, no. 1: 44. https://doi.org/10.3390/universe10010044
APA StyleSaha, D., Chakrabortty, M., & Sanyal, A. K. (2024). Reconstructing Modified and Alternative Theories of Gravity. Universe, 10(1), 44. https://doi.org/10.3390/universe10010044