Thermodynamics and Phase Transitions of Dyonic AdS Black Holes in Gauss-Bonnet-Scalar Gravity
Abstract
:1. Introduction
2. Review of the Dyonic BHs
3. Thermodynamics of the Dyonic BHs
4. Phase Transitions and Phase Diagrams of the Dyonic BHs
4.1. Phase Transitions by Fixing H and While Varying
4.1.1.
4.1.2.
4.1.3.
4.2. Phase Transitions by Fixing H and While Varying
4.2.1.
4.2.2.
4.2.3.
4.3. Phase Transitions by Fixing and While Varying H
4.3.1.
4.3.2.
5. Critical Exponents
- (1)
- Exponent determines the behavior of the specific heat at constant volume,
- (2)
- Exponent describes the behavior of the order parameter (the difference between the volumes of the coexisting large and small BHs) on a given isotherm
- (3)
- Exponent governs the behavior of the isothermal compressibility
- (4)
- Exponent reflected the following behavior on the critical isotherm
6. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
1 | As we would like to study the thermodynamics and phase transitions of BHs in the extended phase space, we will focus only on the spherical case () in this paper. |
2 | Based on a detailed study, we find that the rich phase transitions, such as the triple point, only appear in six dimensions while absent in other dimensions. |
References
- Bardeen, J.M.; Carter, B.; Hawking, S.W. The Four laws of black hole mechanics. Commun. Math. Phys. 1973, 31, 161. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Black holes and entropy. Phys. Rev. D 1973, 7, 2333. [Google Scholar] [CrossRef]
- Hawking, S.W. Particle Creation by Black Holes. Commun. Math. Phys. 1975, 43, 199, Erratum in Commun. Math. Phys. 1976, 46, 206. [Google Scholar] [CrossRef]
- Hawking, S.W.; Page, D.N. Thermodynamics of Black Holes in anti-De Sitter Space. Commun. Math. Phys. 1983, 87, 577. [Google Scholar] [CrossRef]
- Maldacena, J.M. The Large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 1998, 2, 231. [Google Scholar] [CrossRef]
- Gubser, S.S.; Klebanov, I.R.; Polyakov, A.M. Gauge theory correlators from noncritical string theory. Phys. Lett. B 1998, 428, 105. [Google Scholar] [CrossRef]
- Witten, E. Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 1998, 2, 253. [Google Scholar] [CrossRef]
- Witten, E. Anti-de Sitter space, thermal phase transition, and confinement in gauge theories. Adv. Theor. Math. Phys. 1998, 2, 505. [Google Scholar] [CrossRef]
- Chamblin, A.; Emparan, R.; Johnson, C.V.; Myers, R.C. Charged AdS black holes and catastrophic holography. Phys. Rev. D 1999, 60, 064018. [Google Scholar] [CrossRef]
- Chamblin, A.; Emparan, R.; Johnson, C.V.; Myers, R.C. Holography, thermodynamics and fluctuations of charged AdS black holes. Phys. Rev. D 1999, 60, 104026. [Google Scholar] [CrossRef]
- Surya, S.; Schleich, K.; Witt, D.M. Phase transitions for flat AdS black holes. Phys. Rev. Lett. 2001, 86, 5231. [Google Scholar] [CrossRef]
- Cho, Y.M.; Neupane, I.P. Anti-de Sitter black holes, thermal phase transition and holography in higher curvature gravity. Phys. Rev. D 2002, 66, 024044. [Google Scholar] [CrossRef]
- Shen, J.; Wang, B.; Lin, C.Y.; Cai, R.G.; Su, R.K. The phase transition and the Quasi-Normal Modes of black Holes. JHEP 2007, 7, 037. [Google Scholar] [CrossRef]
- Cai, R.G.; Kim, S.P.; Wang, B. Ricci flat black holes and Hawking-Page phase transition in Gauss-Bonnet gravity and dilaton gravity. Phys. Rev. D 2007, 76, 024011. [Google Scholar] [CrossRef]
- Kastor, D.; Ray, S.; Traschen, J. Enthalpy and the Mechanics of AdS Black Holes. Class. Quant. Grav. 2009, 26, 195011. [Google Scholar] [CrossRef]
- Dolan, B.P. Pressure and volume in the first law of black hole thermodynamics. Class. Quant. Grav. 2011, 28, 235017. [Google Scholar] [CrossRef]
- Cvetic, M.; Gibbons, G.W.; Kubiznak, D.; Pope, C.N. Black Hole Enthalpy and an Entropy Inequality for the Thermodynamic Volume. Phys. Rev. D 2011, 84, 024037. [Google Scholar] [CrossRef]
- Dolan, B.P.; Kastor, D.; Kubiznak, D.; Mann, R.B.; Traschen, J. Thermodynamic Volumes and Isoperimetric Inequalities for de Sitter Black Holes. Phys. Rev. D 2013, 87, 104017. [Google Scholar] [CrossRef]
- Kastor, D.; Ray, S.; Traschen, J. Smarr Formula and an Extended First Law for Lovelock Gravity. Class. Quant. Grav. 2010, 27, 235014. [Google Scholar] [CrossRef]
- Castro, A.; Dehmami, N.; Giribet, G.; Kastor, D. On the Universality of Inner Black Hole Mechanics and Higher Curvature Gravity. JHEP 2013, 7, 164. [Google Scholar] [CrossRef]
- El-Menoufi, B.M.; Ett, B.; Kastor, D.; Traschen, J. Gravitational Tension and Thermodynamics of Planar AdS Spacetimes. Class. Quant. Grav. 2013, 30, 155003. [Google Scholar] [CrossRef]
- Kubizňák, D.; Mann, R.B. P-V criticality of charged AdS black holes. JHEP 2012, 7, 33. [Google Scholar] [CrossRef]
- Gunasekaran, S.; Mann, R.B.; Kubiznak, D. Extended phase space thermodynamics for charged and rotating black holes and Born-Infeld vacuum polarization. JHEP 2012, 11, 110. [Google Scholar] [CrossRef]
- Chen, S.; Liu, X.; Liu, C.; Jing, J. P-V criticality of AdS black hole in f(R) gravity. Chin. Phys. Lett. 2013, 30, 060401. [Google Scholar] [CrossRef]
- Cai, R.G.; Cao, L.M.; Li, L.; Yang, R.Q. P-V criticality in the extended phase space of Gauss-Bonnet black holes in AdS space. JHEP 2013, 09, 005. [Google Scholar] [CrossRef]
- Mo, J.X.; Liu, W.B. Ehrenfest scheme for P-V criticality of higher dimensional charged black holes, rotating black holes and Gauss-Bonnet AdS black holes. Phys. Rev. D 2014, 89, 084057. [Google Scholar] [CrossRef]
- Zou, D.C.; Liu, Y.; Wang, B. Critical behavior of charged Gauss-Bonnet AdS black holes in the grand canonical ensemble. Phys. Rev. D 2014, 90, 044063. [Google Scholar] [CrossRef]
- Wei, S.W.; Liu, Y.X. Insight into the Microscopic Structure of an AdS Black Hole from a Thermodynamical Phase Transition. Phys. Rev. Lett. 2015, 115, 111302, Erratum in: Phys. Rev. Lett. 2016, 116, 169903. [Google Scholar] [CrossRef]
- Altamirano, N.; Kubiznak, D.; Mann, R.B. Reentrant phase transitions in rotating anti–de Sitter black holes. Phys. Rev. D 2013, 88, 101502. [Google Scholar] [CrossRef]
- Altamirano, N.; Kubizňák, D.; Mann, R.B.; Sherkatghanad, Z. Kerr-AdS analogue of triple point and solid/liquid/gas phase transition. Class. Quant. Grav. 2014, 31, 042001. [Google Scholar] [CrossRef]
- Wei, S.W.; Liu, Y.X. Triple points and phase diagrams in the extended phase space of charged Gauss-Bonnet black holes in AdS space. Phys. Rev. D 2014, 90, 044057. [Google Scholar] [CrossRef]
- Frassino, A.M.; Kubiznak, D.; Mann, R.B.; Simovic, F. Multiple Reentrant Phase Transitions and Triple Points in Lovelock Thermodynamics. JHEP 2014, 9, 80. [Google Scholar] [CrossRef]
- Zhang, M.; Zou, D.C.; Yue, R.H. Reentrant phase transitions and triple points of topological AdS black holes in Born-Infeld-massive gravity. Adv. High Energy Phys. 2017, 2017, 3819246. [Google Scholar] [CrossRef]
- Dehyadegari, A.; Sheykhi, A. Reentrant phase transition of Born-Infeld-AdS black holes. Phys. Rev. D 2018, 98, 024011. [Google Scholar] [CrossRef]
- Dehghani, A.; Hendi, S.H.; Mann, R.B. Range of novel black hole phase transitions via massive gravity: Triple points and N-fold reentrant phase transitions. Phys. Rev. D 2020, 101, 084026. [Google Scholar] [CrossRef]
- Zhang, C.M.; Zou, D.C.; Zhang, M. Triple points and phase diagrams of Born-Infeld AdS black holes in 4D Einstein-Gauss-Bonnet gravity. Phys. Lett. B 2020, 811, 135955. [Google Scholar] [CrossRef]
- Cui, Y.Z.; Xu, W.; Zhu, B. Hawking-Page transition with reentrance and triple point in Gauss-Bonnet gravity. Phys. Rev. D 2023, 107, 044048. [Google Scholar] [CrossRef]
- Wei, S.W.; Liu, Y.X. The microstructure and Ruppeiner geometry of charged anti-de Sitter black holes in Gauss–Bonnet gravity: From the critical point to the triple point. Commun. Theor. Phys. 2022, 74, 095402. [Google Scholar] [CrossRef]
- Liu, Y.P.; Cao, H.M.; Xu, W. Reentrant phase transition with a single critical point of the Hayward-AdS black hole. Gen. Rel. Grav. 2022, 54, 5. [Google Scholar] [CrossRef]
- Qu, Y.; Tao, J.; Yang, H. Thermodynamics and phase transition in central charge criticality of charged Gauss-Bonnet AdS black holes. Nucl. Phys. B 2023, 992, 116234. [Google Scholar] [CrossRef]
- Bai, N.C.; Song, L.; Tao, J. Reentrant phase transition in holographic thermodynamicsof Born-Infeld AdS black hole. Eur. Phys. J. C 2024, 84, 43. [Google Scholar] [CrossRef]
- Tavakoli, M.; Wu, J.; Mann, R.B. Multi-critical points in black hole phase transitions. JHEP 2022, 12, 117. [Google Scholar] [CrossRef]
- Wu, J.; Mann, R.B. Multicritical phase transitions in multiply rotating black holes. Class. Quant. Grav. 2023, 40, 06LT01. [Google Scholar] [CrossRef]
- Wu, J.; Mann, R.B. Multicritical phase transitions in Lovelock AdS black holes. Phys. Rev. D 2023, 107, 084035. [Google Scholar] [CrossRef]
- Lovelock, D. The Einstein tensor and its generalizations. J. Math. Phys. 1971, 12, 498–501. [Google Scholar] [CrossRef]
- Boulware, D.G.; Deser, S. String Generated Gravity Models. Phys. Rev. Lett. 1985, 55, 2656. [Google Scholar] [CrossRef]
- Cai, R.G. Gauss-Bonnet black holes in AdS spaces. Phys. Rev. D 2002, 65, 084014. [Google Scholar] [CrossRef]
- Singh, D.V.; Singh, B.K.; Upadhyay, S. 4D AdS Einstein–Gauss–Bonnet black hole with Yang–Mills field and its thermodynamics. Ann. Phys. 2021, 434, 168642. [Google Scholar] [CrossRef]
- Bai, N.C.; Li, L.; Tao, J. Topology of black hole thermodynamics in Lovelock gravity. Phys. Rev. D 2023, 107, 064015. [Google Scholar] [CrossRef]
- Singh, D.V.; Bhardwaj, V.K.; Upadhyay, S. Thermodynamic properties, thermal image and phase transition of Einstein-Gauss-Bonnet black hole coupled with nonlinear electrodynamics. Eur. Phys. J. Plus 2022, 137, 969. [Google Scholar] [CrossRef]
- Liu, H.S.; Mai, Z.F.; Li, Y.Z.; Lü, H. Quasi-topological Electromagnetism: Dark Energy, Dyonic Black Holes, Stable Photon Spheres and Hidden Electromagnetic Duality. Sci. China Phys. Mech. Astron. 2020, 63, 240411. [Google Scholar] [CrossRef]
- Cisterna, A.; Giribet, G.; Oliva, J.; Pallikaris, K. Quasitopological electromagnetism and black holes. Phys. Rev. D 2020, 101, 124041. [Google Scholar] [CrossRef]
- Lei, Y.Q.; Ge, X.H.; Ran, C. Chaos of particle motion near a black hole with quasitopological electromagnetism. Phys. Rev. D 2021, 104, 046020. [Google Scholar] [CrossRef]
- Cisterna, A.; Henríquez-Báez, C.; Mora, N.; Sanhueza, L. Quasitopological electromagnetism: Reissner-Nordström black strings in Einstein and Lovelock gravities. Phys. Rev. D 2021, 104, 064055. [Google Scholar] [CrossRef]
- Barrientos, J.; Mena, J. Joule-Thomson expansion of AdS black holes in quasitopological electromagnetism. Phys. Rev. D 2022, 106, 044064. [Google Scholar] [CrossRef]
- Sekhmani, Y.; Lekbich, H.; Boukili, A.E.; Sedra, M.B. D-dimensional dyonic AdS black holes with quasi-topological electromagnetism in Einstein Gauss–Bonnet gravity. Eur. Phys. J. C 2022, 82, 1087. [Google Scholar] [CrossRef]
- Li, M.D.; Wang, H.M.; Wei, S.W. Triple points and novel phase transitions of dyonic AdS black holes with quasitopological electromagnetism. Phys. Rev. D 2022, 105, 104048. [Google Scholar] [CrossRef]
- Mou, P.H.; Jiang, Q.Q.; He, K.J.; Li, G.P. Triple points and phase transitions of D-dimensional dyonic AdS black holes with quasitopological electromagnetism in Einstein-Gauss-Bonnet gravity. arXiv 2023, arXiv:2310.08010. [Google Scholar]
- Ali, A. Quasitopological electromagnetism, conformal scalar field and Lovelock black holes. Eur. Phys. J. C 2023, 83, 564. [Google Scholar] [CrossRef]
- Oliva, J.; Ray, S. Conformal couplings of a scalar field to higher curvature terms. Class. Quant. Grav. 2012, 29, 205008. [Google Scholar] [CrossRef]
- Giribet, G.; Leoni, M.; Oliva, J.; Ray, S. Hairy black holes sourced by a conformally coupled scalar field in D dimensions. Phys. Rev. D 2014, 89, 085040. [Google Scholar] [CrossRef]
- Giribet, G.; Goya, A.; Oliva, J. Different phases of hairy black holes in AdS5 space. Phys. Rev. D 2015, 91, 045031. [Google Scholar] [CrossRef]
- Galante, M.; Giribet, G.; Goya, A.; Oliva, J. Chemical potential driven phase transition of black holes in anti–de Sitter space. Phys. Rev. D 2015, 92, 104039. [Google Scholar] [CrossRef]
- Hennigar, R.A.; Tjoa, E.; Mann, R.B. Thermodynamics of hairy black holes in Lovelock gravity. JHEP 2017, 2, 70. [Google Scholar] [CrossRef]
- Dykaar, H.; Hennigar, R.A.; Mann, R.B. Hairy black holes in cubic quasi-topological gravity. JHEP 2017, 5, 45. [Google Scholar] [CrossRef]
- Chernicoff, M.; Fierro, O.; Giribet, G.; Oliva, J. Black holes in quasi-topological gravity and conformal couplings. JHEP 2017, 2, 10. [Google Scholar] [CrossRef]
- Kuang, X.M.; Miskovic, O. Thermal phase transitions of dimensionally continued AdS black holes. Phys. Rev. D 2017, 95, 046009. [Google Scholar] [CrossRef]
- Ali, A.; Saifullah, K. Magnetized topological black holes of dimensionally continued gravity. Phys. Rev. D 2019, 99, 124052. [Google Scholar] [CrossRef]
- Ali, A. Magnetized hairy black holes of dimensionally continued gravity coupled to double-logarithmic electrodynamics. Eur. Phys. J. Plus 2022, 137, 108. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Cong, W.; Kubizňák, D.; Mann, R.B.; Visser, M.R. Holographic Dual of Extended Black Hole Thermodynamics. Phys. Rev. Lett. 2023, 130, 181401. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Cong, W.; Kubiznak, D.; Mann, R.B.; Visser, M.R. Holographic CFT phase transitions and criticality for rotating AdS black holes. JHEP 2023, 8, 142. [Google Scholar] [CrossRef]
H | ||||||
---|---|---|---|---|---|---|
0.01 | 1 | 0.01 | 1 | −0.0300092 | 4.73944 | −1.55851 |
0.01 | 5 | 0.01 | 1 | −0.0947391 | 22.7021 | −11.2639 |
0.01 | 5 | 0.01 | 1 | −0.0075045 | 5.13489 | −1.79055 |
0.01 | 10 | 0.01 | 1 | −0.1293810 | 14.1455 | −7.97322 |
0.01 | 10 | 0.01 | 1 | −0.0042004 | 6.25360 | −2.33512 |
0.01 | 6 | 0.01 | 1 | −0.1009740 | 22.4269 | −11.6441 |
0.01 | 6 | 0.01 | 1 | −0.0066289 | 5.42808 | −1.93255 |
0.01 | 6 | 0.1 | 1 | −0.0580844 | 27.1060 | −13.9027 |
0.01 | 6 | 0.1 | 1 | −0.0043064 | 5.73413 | −2.07767 |
0.01 | 6 | 5 | 1 | −0.0597647 | 28.6375 | −14.6833 |
0.01 | 6 | 5 | 1 | −0.0028678 | 6.79827 | −2.60357 |
0.1 | 5 | 0.01 | 1 | −0.0902457 | 21.6797 | −10.8256 |
0.1 | 5 | 0.01 | 1 | −0.0074550 | 5.15617 | −1.80103 |
1 | 5 | 0.01 | 1 | −0.1120780 | 14.0584 | −7.47423 |
1 | 5 | 0.01 | 1 | −0.0068363 | 5.41632 | −1.9295 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mou, P.; Yan, Z.; Li, G. Thermodynamics and Phase Transitions of Dyonic AdS Black Holes in Gauss-Bonnet-Scalar Gravity. Universe 2024, 10, 87. https://doi.org/10.3390/universe10020087
Mou P, Yan Z, Li G. Thermodynamics and Phase Transitions of Dyonic AdS Black Holes in Gauss-Bonnet-Scalar Gravity. Universe. 2024; 10(2):87. https://doi.org/10.3390/universe10020087
Chicago/Turabian StyleMou, Pinghui, Zhengzhou Yan, and Guoping Li. 2024. "Thermodynamics and Phase Transitions of Dyonic AdS Black Holes in Gauss-Bonnet-Scalar Gravity" Universe 10, no. 2: 87. https://doi.org/10.3390/universe10020087
APA StyleMou, P., Yan, Z., & Li, G. (2024). Thermodynamics and Phase Transitions of Dyonic AdS Black Holes in Gauss-Bonnet-Scalar Gravity. Universe, 10(2), 87. https://doi.org/10.3390/universe10020087