Recent Findings from Heavy-Flavor Angular Correlation Measurements in Hadronic Collisions
Abstract
:1. Introduction
2. Study of Heavy Quark Production Mechanisms
3. Characterizing the Fragmentation of Heavy Quarks into Jets
4. Heavy Quark Energy Loss and Redistribution
5. Small-System Collective-like Effects for Heavy Quarks
6. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cacciari, M.; Greco, M.; Nason, P. The pT spectrum in heavy-flavour hadroproduction. J. High Energy Phys. 1998, 1998, 007. [Google Scholar] [CrossRef]
- Cacciari, M.; Frixione, S.; Nason, P. The pT spectrum in heavy flavor photoproduction. J. High Energy Phys. 2001, 2001, 006. [Google Scholar] [CrossRef]
- Kniehl, B.A.; Kramer, G.; Schienbein, I.; Spiesberger, H. Reconciling open charm production at the Fermilab Tevatron with QCD. Phys. Rev. Lett. 2006, 96, 012001. [Google Scholar] [CrossRef] [PubMed]
- Kniehl, B.A.; Kramer, G.; Schienbein, I.; Spiesberger, H. Finite-mass effects on inclusive B meson hadroproduction. Phys. Rev. D 2008, 77, 014011. [Google Scholar] [CrossRef]
- Aggarwal, M.M. et al. [STAR Collaboration] Measurement of the Bottom contribution to non-photonic electron production in p + p collisions at = 200 GeV. Phys. Rev. Lett. 2010, 105, 202301. [Google Scholar] [CrossRef]
- Adare, A. et al. [PHENIX Collaboration] Measurement of Bottom versus Charm as a Function of Transverse Momentum with Electron-Hadron Correlations in p + p Collisions at = 200 GeV. Phys. Rev. Lett. 2009, 103, 082002. [Google Scholar] [CrossRef] [PubMed]
- Adare, A. et al. [PHENIX Collaboration] Measurement of high-pT single electrons from heavy-flavor decays in p + p collisions at = 200 GeV. Phys. Rev. Lett. 2006, 97, 252002. [Google Scholar] [CrossRef]
- Acosta, D. et al. [CDF II Collaboration] Measurement of prompt charm meson production cross sections in collisions at = 1.96 TeV. Phys. Rev. Lett. 2003, 91, 241804. [Google Scholar] [CrossRef]
- Cacciari, M.; Nason, P. Charm cross-sections for the Tevatron Run II. J. High Energy Phys. 2003, 2003, 006. [Google Scholar] [CrossRef]
- Acosta, D. et al. [CDF Collaboration] Measurement of the J/ψ meson and b-hadron production cross sections in collisions at = 1960 GeV. Phys. Rev. D 2005, 71, 032001. [Google Scholar] [CrossRef]
- Acharya, S. et al. [ALICE Collaboration] Measurement of electrons from semileptonic heavy-flavour hadron decays at midrapidity in pp and Pb–Pb collisions at = 5.02 TeV. Phys. Lett. B 2020, 804, 135377. [Google Scholar] [CrossRef]
- Sirunyan, A.M. et al. [CMS Collaboration] Nuclear modification factor of D0 mesons in PbPb collisions at = 5.02 TeV. Phys. Lett. B 2018, 782, 474–496. [Google Scholar] [CrossRef]
- Aaij, R. et al. [LHCb Collaboration] Measurements of prompt charm production cross-sections in pp collisions at = 13 TeV. J. High Energy Phys. 2016, 2016, 159, Erratum in J. High Energy Phys. 2016, 2016, 13; Erratum in J. High Energy Phys. 2017, 2017, 74. [Google Scholar] [CrossRef]
- Acharya, S. et al. [ALICE Collaboration] Measurement of inclusive charged-particle b-jet production in pp and p–Pb collisions at = 5.02 TeV. J. High Energy Phys. 2022, 2022, 178. [Google Scholar] [CrossRef]
- Acharya, S. et al. [ALICE Collaboration] Measurement of the production of charm jets tagged with D0 mesons in pp collisions at = 5.02 and 13 TeV. arXiv 2022, arXiv:2204.10167. [Google Scholar]
- Acharya, S. et al. [ALICE Collaboration] Measurement of D0, D+, D*+ and production in pp collisions at = 5.02 TeV with ALICE. Eur. Phys. J. C 2019, 79, 388. [Google Scholar] [CrossRef]
- Acharya, S. et al. [ALICE Collaboration] Production of muons from heavy-flavour hadron decays in pp collisions at = 5.02 TeV. J. High Energy Phys. 2019, 2019, 008. [Google Scholar] [CrossRef]
- Acharya, S. et al. [ALICE Collaboration] Measurement of beauty and charm production in pp collisions at = 5.02 TeV via non-prompt and prompt D mesons. J. High Energy Phys. 2021, 2021, 220. [Google Scholar] [CrossRef]
- Abelev, B. et al. [ALICE Collaboration] Heavy flavour decay muon production at forward rapidity in pp collisions at = 7 TeV. Phys. Lett. B 2012, 708, 265–275. [Google Scholar] [CrossRef]
- Abelev, B. et al. [ALICE Collaboration] Measurement of charm production at central rapidity in pp collisions at = 2.76 TeV. J. High Energy Phys. 2012, 2012, 191. [Google Scholar] [CrossRef]
- Abelev, B. et al. [ALICE Collaboration] Measurement of electrons from semileptonic heavy-flavour hadron decays in pp collisions at = 7 TeV. Phys. Rev. D 2012, 86, 112007. [Google Scholar] [CrossRef]
- Aaij, R. et al. [LHCb collaboration] Measurements of prompt charm production cross-sections in pp collisions at = 5 TeV. J. High Energy Phys. 2017, 2017, 147. [Google Scholar] [CrossRef]
- Abelev, B. et al. [ALICE Collaboration] Measurement of electrons from beauty hadron decays in pp collisions at = 7 TeV. Phys. Lett. B 2013, 721, 13–23, Erratum in Phys. Lett. B 2016, 763, 507–509. [Google Scholar] [CrossRef]
- Abelev, B. et al. [ALICE Collaboration] Measurement of electrons from semileptonic heavy-flavor hadron decays in pp collisions at = 2.76 TeV. Phys. Rev. D 2015, 91, 012001. [Google Scholar] [CrossRef]
- Aaij, R. et al. [LHCb collaboration] Measurement of the B± production cross-section in pp collisions at = 7 TeV. J. High Energy Phys. 2012, 2012, 093. [Google Scholar] [CrossRef]
- Aad, G. et al. [ATLAS collaboration] Measurement of the b-hadron production cross section using decays to D*μ−X final states in pp collisions at = 7 TeV with the ATLAS detector. Nucl. Phys. B 2012, 864, 341–381. [Google Scholar] [CrossRef]
- Aad, G. et al. [ATLAS collaboration] Measurement of the differential cross-section of B+ meson production in pp collisions at = 7 TeV at ATLAS. J. High Energy Phys. 2013, 2013, 042. [Google Scholar] [CrossRef]
- Chatrchyan, S. et al. [ATLAS collaboration] Measurement of the cross section for production of X, decaying to muons in pp collisions at = 7 TeV. J. High Energy Phys. 2012, 2012, 110. [Google Scholar] [CrossRef]
- Khachatryan, V. et al. [CMS Collaboration] Measurement of the B+ Production Cross Section in pp collisions at = 7 TeV. Phys. Rev. Lett. 2011, 106, 112001. [Google Scholar] [CrossRef]
- Chatrchyan, S. et al. [CMS Collaboration] Measurement of the B0 production cross section in pp collisions at = 7 TeV. Phys. Rev. Lett. 2011, 106, 252001. [Google Scholar] [CrossRef] [PubMed]
- Chatrchyan, S. et al. [CMS Collaboration] Measurement of the Production Cross Section with → J/ψϕ Decays in pp collisions at = 7 TeV. Phys. Rev. D 2011, 84, 052008. [Google Scholar] [CrossRef]
- Khachatryan, V. et al. [CMS Collaboration] Measurement of the total and differential inclusive B+ hadron cross sections in pp collisions at = 13 TeV. Phys. Lett. B 2017, 771, 435–456. [Google Scholar] [CrossRef]
- Cacciari, M.; Frixione, S.; Houdeau, N.; Mangano, M.L.; Nason, P.; Ridolfi, G. Theoretical predictions for charm and bottom production at the LHC. J. High Energy Phys. 2012, 2012, 137. [Google Scholar] [CrossRef]
- Kniehl, B.A. Inclusive production of heavy-flavored hadrons at NLO in the GM-VFNS. In Proceedings of the 16th International Workshop on Deep Inelastic Scattering and Related Subjects (DIS 2008), London, UK, 7–11 April 2008; p. 195. [Google Scholar] [CrossRef]
- Kniehl, B.A.; Kramer, G.; Schienbein, I.; Spiesberger, H. Inclusive B-Meson Production at the LHC in the GM-VFN Scheme. Phys. Rev. D 2011, 84, 094026. [Google Scholar] [CrossRef]
- Bolzoni, P.; Kramer, G. Inclusive lepton production from heavy-hadron decay in pp collisions at the LHC. Nucl. Phys. B 2013, 872, 253–264, Erratum in Nucl. Phys. B 2013, 876, 334–337. [Google Scholar] [CrossRef]
- Bolzoni, P.; Kramer, G. Inclusive charmed-meson production from bottom hadron decays at the LHC. J. Phys. G Nucl. Part. Phys. 2014, 41, 075006. [Google Scholar] [CrossRef]
- Adare, A. et al. [PHENIX Collaboration] Heavy Quark Production in p + p and Energy Loss and Flow of Heavy Quarks in Au + Au Collisions at = 200 GeV. Phys. Rev. C 2011, 84, 044905. [Google Scholar] [CrossRef]
- Abelev, B.I. et al. [STAR Collaboration] Transverse momentum and centrality dependence of high-pT non-photonic electron suppression in Au + Au collisions at = 200 GeV. Phys. Rev. Lett. 2007, 98, 192301, Erratum in Phys. Rev. Lett. 2011, 106, 159902. [Google Scholar] [CrossRef]
- Adamczyk, L. et al. [STAR Collaboration] Elliptic flow of electrons from heavy-flavor hadron decays in Au + Au collisions at = 200, 62.4, and 39 GeV. Phys. Rev. C 2017, 95, 034907. [Google Scholar] [CrossRef]
- Acharya, S. et al. [ALICE Collaboration] Prompt D0, D+, and D*+ production in Pb–Pb collisions at = 5.02 TeV. J. High Energy Phys. 2022, 2022, 174. [Google Scholar] [CrossRef]
- Acharya, S. et al. [ALICE Collaboration] Measurement of prompt -meson production and azimuthal anisotropy in Pb–Pb collisions at = 5.02 TeV. Phys. Lett. B 2022, 827, 136986. [Google Scholar] [CrossRef]
- Acharya, S. et al. [ALICE Collaboration] D-meson azimuthal anisotropy in midcentral Pb-Pb collisions at = 5.02 TeV. Phys. Rev. Lett. 2018, 120, 102301. [Google Scholar] [CrossRef] [PubMed]
- Acharya, S. et al. [ALICE Collaboration] Transverse-momentum and event-shape dependence of D-meson flow harmonics in Pb–Pb collisions at = 5.02 TeV. Phys. Lett. B 2021, 813, 136054. [Google Scholar] [CrossRef]
- Braaten, E.; Thoma, M.H. Energy loss of a heavy fermion in a hot plasma. Phys. Rev. D 1991, 44, 1298–1310. [Google Scholar] [CrossRef]
- Peshier, A. The QCD collisional energy loss revised. Phys. Rev. Lett. 2006, 97, 212301. [Google Scholar] [CrossRef]
- Peigne, S.; Peshier, A. Collisional energy loss of a fast heavy quark in a quark-gluon plasma. Phys. Rev. D 2008, 77, 114017. [Google Scholar] [CrossRef]
- Gyulassy, M.; Wang, X.N. Multiple collisions and induced gluon Bremsstrahlung in QCD. Nucl. Phys. B 1994, 420, 583–614. [Google Scholar] [CrossRef]
- Baier, R.; Dokshitzer, Y.L.; Peigne, S.; Schiff, D. Induced gluon radiation in a QCD medium. Phys. Lett. B 1995, 345, 277–286. [Google Scholar] [CrossRef]
- Gyulassy, M.; Levai, P.; Vitev, I. NonAbelian energy loss at finite opacity. Phys. Rev. Lett. 2000, 85, 5535–5538. [Google Scholar] [CrossRef] [PubMed]
- Dokshitzer, Y.L.; Kharzeev, D.E. Heavy quark colorimetry of QCD matter. Phys. Lett. B 2001, 85, 199–206. [Google Scholar] [CrossRef]
- Armesto, N.; Salgado, C.A.; Wiedemann, U.A. Low-pT collective flow induces high-pT jet quenching. Phys. Rev. C 2005, 72, 064910. [Google Scholar] [CrossRef]
- Zhang, B.W.; Wang, E.; Wang, X.N. Heavy quark energy loss in nuclear medium. Phys. Rev. Lett. 2004, 93, 072301. [Google Scholar] [CrossRef]
- Nahrgang, M.; Aichelin, J.; Gossiaux, P.B.; Werner, K. Azimuthal correlations of heavy quarks in Pb + Pb collisions at = 2.76 TeV at the CERN Large Hadron Collider. Phys. Rev. C 2014, 90, 024907. [Google Scholar] [CrossRef]
- Cao, S.; Qin, G.Y.; Bass, S.A. Modeling of heavy-flavor pair correlations in Au-Au collisions at 200A GeV at the BNL Relativistic Heavy Ion Collider. Phys. Rev. C 2015, 92, 054909. [Google Scholar] [CrossRef]
- Eskola, K.J.; Paukkunen, H.; Salgado, C.A. EPS09: A New Generation of NLO and LO Nuclear Parton Distribution Functions. J. High Energy Phys. 2009, 2009, 65. [Google Scholar] [CrossRef]
- de Florian, D.; Sassot, R. Nuclear parton distributions at next-to-leading order. Phys. Rev. D 2004, 69, 074028. [Google Scholar] [CrossRef]
- Hirai, M.; Kumano, S.; Nagai, T.H. Determination of nuclear parton distribution functions and their uncertainties in next-to-leading order. Phys. Rev. C 2007, 76, 065207. [Google Scholar] [CrossRef]
- Fujii, H.; Watanabe, K. Heavy quark pair production in high energy pA collisions: Open heavy flavors. Nucl. Phys. A 2013, 920, 78–93. [Google Scholar] [CrossRef]
- Tribedy, P.; Venugopalan, R. QCD saturation at the LHC: Comparisons of models to p + p and A + A data and predictions for p + Pb collisions. Phys. Lett. B 2012, 710, 125–133, Erratum in Phys. Lett. B 2013, 718, 1154. [Google Scholar] [CrossRef]
- Albacete, J.L.; Dumitru, A.; Fujii, H.; Nara, Y. CGC predictions for p + Pb collisions at the LHC. Nucl. Phys. A 2013, 897, 1–27. [Google Scholar] [CrossRef]
- Rezaeian, A.H. CGC predictions for p+A collisions at the LHC and signature of QCD saturation. Phys. Lett. B 2013, 718, 1058–1069. [Google Scholar] [CrossRef]
- Accardi, A.; Arleo, F.; Brooks, W.K.; D’Enterria, D.; Muccifora, V. Parton Propagation and Fragmentation in QCD Matter. Riv. Nuovo Cim. 2009, 32, 439–554. [Google Scholar] [CrossRef]
- Salgado, C.A.; Alvarez-Muñiz, J.; Arleo, F.; Armesto, N.; Botje, M.; Cacciari, M.; Campbel, J.; Carli, C.; Cole, B.; D’Enterria, D.; et al. Proton-Nucleus Collisions at the LHC: Scientific Opportunities and Requirements. J. Phys. G 2012, 39, 015010. [Google Scholar] [CrossRef]
- Vogt, R. Heavy Flavor Azimuthal Correlations in Cold Nuclear Matter. Phys. Rev. C 2018, 98, 034907. [Google Scholar] [CrossRef]
- Vogt, R. kinematic correlations in cold nuclear matter. Phys. Rev. C 2020, 101, 024910. [Google Scholar] [CrossRef]
- Marquet, C.; Roiesnel, C.; Taels, P. Linearly polarized small-x gluons in forward heavy-quark pair production. Phys. Rev. D 2018, 97, 014004. [Google Scholar] [CrossRef]
- Aidala, C. et al. [PHENIX Collaboration] Measurements of μμ pairs from open heavy flavor and Drell-Yan in p + p collisions at = 200 GeV. Phys. Rev. D 2019, 99, 072003. [Google Scholar] [CrossRef]
- Aaboud, M. et al. [ATLAS Collaboration] Measurement of b-hadron pair production with the ATLAS detector in proton-proton collisions at = 8 TeV. J. High Energy Phys. 2017, 2017, 62. [Google Scholar] [CrossRef]
- Khachatryan, V. et al. [CMS Collaboration] Measurement of Angular Correlations based on Secondary Vertex Reconstruction at = 7 TeV. J. High Energy Phys. 2011, 2011, 136. [Google Scholar] [CrossRef]
- Aaij, R. et al. [LHCb Collaboration] Observation of double charm production involving open charm in pp collisions at = 7 TeV. J. High Energy Phys. 2012, 2012, 141, Addendum in J. High Energy Phys. 2014, 2014, 108. [Google Scholar] [CrossRef]
- Aaij, R. et al. [LHCb Collaboration] Study of correlations in high energy proton-proton collisions. J. High Energy Phys. 2017, 2017, 30. [Google Scholar] [CrossRef]
- Aaij, R. et al. [LHCb Collaboration] Observation of Enhanced Double Parton Scattering in Proton-Lead Collisions at = 8.16 TeV. Phys. Rev. Lett. 2020, 125, 212001. [Google Scholar] [CrossRef] [PubMed]
- Sjostrand, T.; Mrenna, S.; Skands, P.Z. PYTHIA 6.4 Physics and Manual. J. High Energy Phys. 2006, 2006, 26. [Google Scholar] [CrossRef]
- Frixione, S.; Nason, P.; Ridolfi, G. A Positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction. J. High Energy Phys. 2007, 2007, 126. [Google Scholar] [CrossRef]
- Kom, C.H.; Kulesza, A.; Stirling, W.J. Pair Production of J/psi as a Probe of Double Parton Scattering at LHCb. Phys. Rev. Lett. 2011, 107, 082002. [Google Scholar] [CrossRef] [PubMed]
- Baranov, S.P.; Snigirev, A.M.; Zotov, N.P. Double heavy meson production through double parton scattering in hadronic collisions. Phys. Lett. B 2011, 705, 116–119. [Google Scholar] [CrossRef]
- Novoselov, A. Double parton scattering as a source of quarkonia pairs in LHCb. arXiv 2011, arXiv:1106.2184. [Google Scholar]
- Luszczak, M.; Maciula, R.; Szczurek, A. Production of two pairs in double-parton scattering. Phys. Rev. D 2012, 85, 094034. [Google Scholar] [CrossRef]
- Brodsky, S.J.; Lansberg, J.P. Heavy-Quarkonium Production in High Energy Proton-Proton Collisions at RHIC. Phys. Rev. D 2010, 81, 051502. [Google Scholar] [CrossRef]
- Brodsky, S.J.; Hoyer, P.; Peterson, C.; Sakai, N. The Intrinsic Charm of the Proton. Phys. Lett. B 1980, 93, 451–455. [Google Scholar] [CrossRef]
- Norrbin, E.; Sjostrand, T. Production and hadronization of heavy quarks. Eur. Phys. J. C 2000, 17, 137–161. [Google Scholar] [CrossRef]
- Shao, H.S. Probing impact-parameter dependent nuclear parton densities from double parton scatterings in heavy-ion collisions. Phys. Rev. D 2020, 101, 054036. [Google Scholar] [CrossRef]
- Miller, M.L.; Reygers, K.; Sanders, S.J.; Steinberg, P. Glauber modeling in high energy nuclear collisions. Ann. Rev. Nucl. Part. Sci. 2007, 57, 205–243. [Google Scholar] [CrossRef]
- Cazaroto, E.R.; Goncalves, V.P.; Navarra, F.S. Heavy quark production in pA collisions: The double parton scattering contribution. Mod. Phys. Lett. A 2018, 33, 1850141. [Google Scholar] [CrossRef]
- Helenius, I.; Paukkunen, H. Double D-meson production in proton-proton and proton-lead collisions at the LHC. Phys. Lett. B 2020, 800, 135084. [Google Scholar] [CrossRef]
- Sjostrand, T.; Mrenna, S.; Skands, P.Z. A Brief Introduction to PYTHIA 8.1. Comput. Phys. Commun. 2008, 178, 852–867. [Google Scholar] [CrossRef]
- Bahr, M.; Gieseke, S.; Gigg, M.A.; Grellscheid, D.; Hamilton, K.; Latunde-Dada, O.; Plätzer, S.; Richardson, P.; Seymour, M.H.; Sherstnev, A.; et al. Herwig++ Physics and Manual. Eur. Phys. J. C 2008, 58, 639–707. [Google Scholar] [CrossRef]
- Alwall, J.; Frederix, R.; Frixione, S.; Hirschi, V.; Maltoni, F.; Mattelaer, O.; Shao, H.S.; Stelzer, T.; Torrielli, P.; Zaro, M. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. J. High Energy Phys. 2014, 2014, 79. [Google Scholar] [CrossRef]
- Gleisberg, T.; Hoeche, S.; Krauss, F.; Schonherr, M.; Schumann, S.; Siegert, F.; Winter, J. Event generation with SHERPA 1.1. J. High Energy Phys. 2009, 2009, 7. [Google Scholar] [CrossRef]
- Schumann, S.; Krauss, F. A Parton shower algorithm based on Catani-Seymour dipole factorisation. J. High Energy Phys. 2008, 3, 38. [Google Scholar] [CrossRef]
- Maltoni, F.; Stelzer, T. MadEvent: Automatic event generation with MadGraph. J. High Energy Phys. 2003, 2003, 27. [Google Scholar] [CrossRef]
- Alwall, J.; Demin, P.; de Visscher, S.; Frederix, R.; Herquet, M.; Maltoni, F.; Plehn, T.; Rainwater, D.L.; Stelzer, T. MadGraph/MadEvent v4: The New Web Generation. J. High Energy Phys. 2007, 2007, 28. [Google Scholar] [CrossRef]
- Frixione, S.; Webber, B.R. Matching NLO QCD computations and parton shower simulations. J. High Energy Phys. 2002, 2002, 29. [Google Scholar] [CrossRef]
- Frixione, S.; Nason, P.; Webber, B.R. Matching NLO QCD and parton showers in heavy flavor production. J. High Energy Phys. 2003, 2003, 7. [Google Scholar] [CrossRef]
- Frixione, S.; Webber, B.R. The MC and NLO 3.4 Event Generator. arXiv 2008, arXiv:0812.0770. [Google Scholar]
- Jung, H.; Salam, G.P. Hadronic final state predictions from CCFM: The Hadron level Monte Carlo generator CASCADE. Eur. Phys. J. C 2001, 19, 351–360. [Google Scholar] [CrossRef]
- Gauld, R.; Rojo, J.; Rottoli, L.; Talbert, J. Charm production in the forward region: Constraints on the small-x gluon and backgrounds for neutrino astronomy. J. High Energy Phys. 2015, 2015, 9. [Google Scholar] [CrossRef]
- Fries, R.J.; Muller, B.; Nonaka, C.; Bass, S.A. Hadronization in heavy ion collisions: Recombination and fragmentation of partons. Phys. Rev. Lett. 2003, 90, 202303. [Google Scholar] [CrossRef] [PubMed]
- Greco, V.; Ko, C.M.; Levai, P. Parton coalescence at RHIC. Phys. Rev. C 2003, 68, 034904. [Google Scholar] [CrossRef]
- Ravagli, L.; Rapp, R. Quark Coalescence based on a Transport Equation. Phys. Lett. B 2007, 655, 126–131. [Google Scholar] [CrossRef]
- Adam, J. et al. [STAR Collaboration] Observation of /D0 enhancement in Au + Au collisions at = 200 GeV. Phys. Rev. Lett. 2021, 127, 092301. [Google Scholar] [CrossRef]
- Acharya, S. et al. [ALICE Collaboration] Constraining hadronization mechanisms with Λc+/D0 production ratios in Pb–Pb collisions at sNN = 5.02 TeV. Phys. Lett. B 2023, 839, 137796. [Google Scholar] [CrossRef]
- Acharya, S. et al. [ALICE Collaboration] Investigating charm production and fragmentation via azimuthal correlations of prompt D mesons with charged particles in pp collisions at = 13 TeV. Eur. Phys. J. C 2022, 82, 335. [Google Scholar] [CrossRef]
- Acharya, S. et al. [ALICE Collaboration] Azimuthal correlations of prompt D mesons with charged particles in pp and p–Pb collisions at = 5.02 TeV. Eur. Phys. J. C 2020, 80, 979. [Google Scholar] [CrossRef]
- Adam, J. et al. [ALICE Collaboration] Measurement of azimuthal correlations of D mesons and charged particles in pp collisions at = 7 TeV and p-Pb collisions at = 5.02 TeV. Eur. Phys. J. C 2017, 77, 245. [Google Scholar] [CrossRef] [PubMed]
- Nason, P. A New method for combining NLO QCD with shower Monte Carlo algorithms. J. High Energy Phys. 2004, 11, 40. [Google Scholar] [CrossRef]
- Frixione, S.; Nason, P.; Oleari, C. Matching NLO QCD computations with Parton Shower simulations: The POWHEG method. J. High Energy Phys. 2007, 11, 70. [Google Scholar] [CrossRef]
- Bellm, J.; Gieseke, S.; Grellscheid, D.; Plätzer, S.; Rauch, M.; Reuschle, C.; Richardson, P.; Schichtel, P.; Seymour, M.H.; Siódmok, A.; et al. Herwig 7.0/Herwig++ 3.0 release note. Eur. Phys. J. C 2016, 76, 196. [Google Scholar] [CrossRef]
- Drescher, H.J.; Hladik, M.; Ostapchenko, S.; Pierog, T.; Werner, K. Parton based Gribov-Regge theory. Phys. Rept. 2001, 350, 93–289. [Google Scholar] [CrossRef]
- Werner, K.; Karpenko, I.; Pierog, T.; Bleicher, M.; Mikhailov, K. Event-by-Event Simulation of the Three-Dimensional Hydrodynamic Evolution from Flux Tube Initial Conditions in Ultrarelativistic Heavy Ion Collisions. Phys. Rev. C 2010, 82, 044904. [Google Scholar] [CrossRef]
- Acharya, S. et al. [ALICE Collaboration] Azimuthal Anisotropy of Heavy-Flavor Decay Electrons in p-Pb Collisions at = 5.02 TeV. Phys. Rev. Lett. 2019, 122, 072301. [Google Scholar] [CrossRef]
- Aad, G. et al. [ATLAS Collaboration] Measurement of azimuthal anisotropy of muons from charm and bottom hadrons in pp collisions at = 13 TeV with the ATLAS detector. Phys. Rev. Lett. 2020, 124, 082301. [Google Scholar] [CrossRef]
- Sirunyan, A.M. et al. [CMS Collaboration] Elliptic flow of charm and strange hadrons in high-multiplicity pPb collisions at = 8.16 TeV. Phys. Rev. Lett. 2018, 121, 082301. [Google Scholar] [CrossRef]
- Sirunyan, A.M. et al. [CMS Collaboration] Studies of charm and beauty hadron long-range correlations in pp and pPb collisions at LHC energies. Phys. Lett. B 2021, 813, 136036. [Google Scholar] [CrossRef]
- Acharya, S. et al. [ALICE Collaboration] Azimuthal correlations of heavy-flavor hadron decay electrons with charged particles in pp and p–Pb collisions at = 5.02 TeV. Eur. Phys. J. C 2023, 83, 741. [Google Scholar] [CrossRef]
- Gyulassy, M.; Plumer, M. Jet Quenching in Dense Matter. Phys. Lett. B 1990, 243, 432–438. [Google Scholar] [CrossRef]
- Baier, R.; Dokshitzer, Y.L.; Mueller, A.H.; Peigne, S.; Schiff, D. Radiative energy loss and pT broadening of high-energy partons in nuclei. Nucl. Phys. B 1997, 484, 265–282. [Google Scholar] [CrossRef]
- Thoma, M.H.; Gyulassy, M. Quark Damping and Energy Loss in the High Temperature QCD. Nucl. Phys. B 1991, 351, 491–506. [Google Scholar] [CrossRef]
- Braaten, E.; Thoma, M.H. Energy loss of a heavy quark in the quark-gluon plasma. Phys. Rev. D 1991, 44, R2625. [Google Scholar] [CrossRef]
- Casalderrey-Solana, J.; Milhano, J.G.; Pablos, D.; Rajagopal, K.; Yao, X. Jet Wake from Linearized Hydrodynamics. J. High Energy Phys. 2021, 2021, 230. [Google Scholar] [CrossRef]
- Wang, S.; Dai, W.; Zhang, B.W.; Wang, E. Diffusion of charm quarks in jets in high-energy heavy-ion collisions. Eur. Phys. J. C 2019, 79, 789. [Google Scholar] [CrossRef]
- Hambrock, R.; Horowitz, W.A. AdS/CFT predictions for azimuthal and momentum correlations of pairs in heavy ion collisions. Nucl. Part. Phys. Proc. 2017, 289–290, 233–236. [Google Scholar] [CrossRef]
- Dong, X.; Lee, Y.J.; Rapp, R. Open Heavy-Flavor Production in Heavy-Ion Collisions. Ann. Rev. Nucl. Part. Sci. 2019, 69, 417–445. [Google Scholar] [CrossRef]
- Adam, J. et al. [ALICE Collaboration] Transverse momentum dependence of D-meson production in Pb-Pb collisions at = 2.76 TeV. J. High Energy Phys. 2016, 2016, 81. [Google Scholar] [CrossRef]
- Adam, J. et al. [ALICE Collaboration] Centrality dependence of high-pT D meson suppression in Pb-Pb collisions at = 2.76 TeV. J. High Energy Phys. 2015, 2015, 205, Addendum in J. High Energy Phys. 2017, 2017, 32. [Google Scholar] [CrossRef]
- Sirunyan, A.M. et al. [CMS Collaboration] Measurement of the B± Meson Nuclear Modification Factor in Pb-Pb Collisions at = 5.02 TeV. Phys. Rev. Lett. 2017, 119, 152301. [Google Scholar] [CrossRef]
- Khachatryan, V. et al. [CMS Collaboration] Suppression and azimuthal anisotropy of prompt and nonprompt J/ψ production in PbPb collisions at = 2.76 TeV. Eur. Phys. J. C 2017, 77, 252. [Google Scholar] [CrossRef]
- Abelev, B.B. et al. [ALICE Collaboration] Azimuthal anisotropy of D meson production in Pb-Pb collisions at = 2.76 TeV. Phys. Rev. C 2014, 90, 034904. [Google Scholar] [CrossRef]
- Sirunyan, A.M. et al. [CMS Collaboration] Measurement of prompt D0 meson azimuthal anisotropy in Pb-Pb collisions at = 5.02 TeV. Phys. Rev. Lett. 2018, 120, 202301. [Google Scholar] [CrossRef]
- Adare, A. et al. [PHENIX Collaboration] Azimuthal correlations of electrons from heavy-flavor decay with hadrons in p+p and Au + Au collisions at = 200 GeV. Phys. Rev. C 2011, 83, 044912. [Google Scholar] [CrossRef]
- Adam, J. et al. [STAR Collaboration] Measurement of D0-meson + hadron two-dimensional angular correlations in Au + Au collisions at = 200 GeV. Phys. Rev. C 2020, 102, 014905. [Google Scholar] [CrossRef]
- Sjostrand, T.; van Zijl, M. A Multiple Interaction Model for the Event Structure in Hadron Collisions. Phys. Rev. D 1987, 36, 2019. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Dong, X.; Mustafa, M. A study of charm quark correlations in ultra-relativistic p + p collisions with PYTHIA. arXiv 2015, arXiv:1507.00614. [Google Scholar]
- Agakishiev, G. et al. [STAR Collaboration] Anomalous centrality evolution of two-particle angular correlations from Au-Au collisions at = 62 and 200 GeV. Phys. Rev. C 2012, 86, 064902. [Google Scholar] [CrossRef]
- Adare, A. et al. [PHENIX Collaboration] Dihadron azimuthal correlations in Au + Au collisions at = 200 GeV. Phys. Rev. C 2008, 78, 014901. [Google Scholar] [CrossRef]
- Sirunyan, A.M. et al. [CMS Collaboration] Studies of charm quark diffusion inside jets using PbPb and pp collisions at = 5.02 TeV. Phys. Rev. Lett. 2020, 125, 102001. [Google Scholar] [CrossRef] [PubMed]
- Sjöstrand, T.; Ask, S.; Christiansen, J.R.; Corke, R.; Desai, N.; Ilten, P.; Mrenna, S.; Prestel, S.; Rasmussen, C.O.; Skands, P.Z. An introduction to PYTHIA 8.2. Comput. Phys. Commun. 2015, 191, 159–177. [Google Scholar] [CrossRef]
- Tumasyan, A. et al. [CMS Collaboration] Search for medium effects using jets from bottom quarks in PbPb collisions at = 5.02 TeV. Phys. Lett. B 2023, 844, 137849. [Google Scholar] [CrossRef]
- Dokshitzer, Y.L.; Khoze, V.A.; Troian, S.I. On specific QCD properties of heavy quark fragmentation (‘dead cone’). J. Phys. G 1991, 17, 1602–1604. [Google Scholar] [CrossRef]
- Casalderrey-Solana, J.; Teaney, D. Heavy quark diffusion in strongly coupled N = 4 Yang-Mills. Phys. Rev. D 2006, 74, 085012. [Google Scholar] [CrossRef]
- Djordjevic, M.; Gyulassy, M. Heavy quark radiative energy loss in QCD matter. Nucl. Phys. A 2004, 733, 265–298. [Google Scholar] [CrossRef]
- Zakharov, B.G. Radiative p⊥-broadening of fast partons in an expanding quark–gluon plasma. Eur. Phys. J. C 2021, 81, 57. [Google Scholar] [CrossRef]
- Aad, G. et al. [ATLAS Collaboration] Azimuthal angle correlations of muons produced via heavy-flavor decays in 5.02 TeV Pb + Pb and pp collisions with the ATLAS detector. arXiv 2023, arXiv:2308.16652. [Google Scholar]
- Adcox, K. et al. [PHENIX Collaboration] Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration. Nucl. Phys. A 2005, 757, 184–283. [Google Scholar] [CrossRef]
- Adams, J. et al. [STAR Collaboration] Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 2005, 757, 102–183. [Google Scholar] [CrossRef]
- Back, B.B. et al. [PHOBOS Collaboration] The PHOBOS perspective on discoveries at RHIC. Nucl. Phys. A 2005, 757, 28–101. [Google Scholar] [CrossRef]
- Arsene, I. et al. [BRAHMS Collaboration] Quark gluon plasma and color glass condensate at RHIC? The Perspective from the BRAHMS experiment. Nucl. Phys. A 2005, 757, 1–27. [Google Scholar] [CrossRef]
- Aamodt, K. et al. [ALICE Collaboration] Suppression of Charged Particle Production at Large Transverse Momentum in Central Pb-Pb Collisions at = 2.76 TeV. Phys. Lett. B 2011, 696, 30–39. [Google Scholar] [CrossRef]
- ALICE Collaboration. The ALICE experiment—A journey through QCD. arXiv 2022, arXiv:2211.04384. [Google Scholar]
- Voloshin, S.A.; Poskanzer, A.M.; Snellings, R. Collective phenomena in non-central nuclear collisions. Landolt-Bornstein 2010, 23, 293–333. [Google Scholar] [CrossRef]
- Qin, G.Y.; Petersen, H.; Bass, S.A.; Muller, B. Translation of collision geometry fluctuations into momentum anisotropies in relativistic heavy-ion collisions. Phys. Rev. 2010, C82, 064903. [Google Scholar] [CrossRef]
- Voloshin, S.; Zhang, Y. Flow study in relativistic nuclear collisions by Fourier expansion of Azimuthal particle distributions. Z. Phys. C 1996, 70, 665–672. [Google Scholar] [CrossRef]
- Abelev, B.I. et al. [STAR Collaboration] Long range rapidity correlations and jet production in high energy nuclear collisions. Phys. Rev. 2009, C80, 064912. [Google Scholar] [CrossRef]
- Abelev, B. et al. [ALICE Collaboration] Long-range angular correlations on the near and away side in p-Pb collisions at = 5.02 TeV. Phys. Lett. 2013, B719, 29–41. [Google Scholar] [CrossRef]
- Aaboud, M. et al. [ATLAS Collaboration] Measurements of long-range azimuthal anisotropies and associated Fourier coefficients for pp collisions at = 5.02 and 13 TeV and p+Pb collisions at = 5.02 TeV with the ATLAS detector. Phys. Rev. 2017, C96, 024908. [Google Scholar] [CrossRef]
- Chatrchyan, S. et al. [CMS Collaboration] Multiplicity and transverse momentum dependence of two- and four-particle correlations in pPb and PbPb collisions. Phys. Lett. 2013, B724, 213–240. [Google Scholar] [CrossRef]
- Abelev, B.B. et al. [ALICE Collaboration] Long-range angular correlations of π, K and p in p-Pb collisions at = 5.02 TeV. Phys. Lett. 2013, B726, 164–177. [Google Scholar] [CrossRef]
- Khachatryan, V. et al. [CMS Collaboration] Long-range two-particle correlations of strange hadrons with charged particles in pPb and PbPb collisions at LHC energies. Phys. Lett. 2015, B742, 200–224. [Google Scholar] [CrossRef]
- Khachatryan, V. et al. [CMS Collaboration] Observation of Long-Range Near-Side Angular Correlations in Proton-Proton Collisions at the LHC. J. High Energy Phys. 2010, 2010, 91. [Google Scholar] [CrossRef]
- Adare, A. et al. [PHENIX Collaboration] Quadrupole Anisotropy in Dihadron Azimuthal Correlations in Central d+Au Collisions at = 200 GeV. Phys. Rev. Lett. 2013, 111, 212301. [Google Scholar] [CrossRef]
- Adamczyk, L. et al. [STAR Collaboration] Long-range pseudorapidity dihadron correlations in d+Au collisions at = 200 GeV. Phys. Lett. 2015, B747, 265–271. [Google Scholar] [CrossRef]
- Loizides, C. Experimental overview on small collision systems at the LHC. Nucl. Phys. 2016, A956, 200–207. [Google Scholar] [CrossRef]
- Werner, K.; Karpenko, I.; Pierog, T. The ’Ridge’ in Proton-Proton Scattering at 7 TeV. Phys. Rev. Lett. 2011, 106, 122004. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.T.; Xu, Z.; Greiner, C. Elliptic and Triangular Flow and their Correlation in Ultrarelativistic High Multiplicity Proton Proton Collisions at 14 TeV. Phys. Lett. 2012, B711, 301–306. [Google Scholar] [CrossRef]
- Dusling, K.; Venugopalan, R. Comparison of the color glass condensate to dihadron correlations in proton-proton and proton-nucleus collisions. Phys. Rev. 2013, D87, 094034. [Google Scholar] [CrossRef]
- Bzdak, A.; Schenke, B.; Tribedy, P.; Venugopalan, R. Initial state geometry and the role of hydrodynamics in proton-proton, proton-nucleus and deuteron-nucleus collisions. Phys. Rev. 2013, C87, 064906. [Google Scholar] [CrossRef]
- Dumitru, A.; Lappi, T.; McLerran, L. Are the angular correlations in pA collisions due to a Glasmion or Bose condensation? Nucl. Phys. 2014, A922, 140–149. [Google Scholar] [CrossRef]
- Wong, C.Y. Momentum Kick Model Description of the Ridge in (Delta-phi)-(Delta eta) Correlation in pp Collisions at 7 TeV. Phys. Rev. 2011, C84, 024901. [Google Scholar] [CrossRef]
- Bierlich, C.; Gustafson, G.; Lönnblad, L.; Shah, H. The Angantyr model for Heavy-Ion Collisions in PYTHIA8. J. High Energy Phys. 2018, 10, 134. [Google Scholar] [CrossRef]
- Dusling, K.; Li, W.; Schenke, B. Novel collective phenomena in high-energy proton–proton and proton–nucleus collisions. Int. J. Mod. Phys. E 2016, 25, 1630002. [Google Scholar] [CrossRef]
- Zhang, C.; Marquet, C.; Qin, G.Y.; Wei, S.Y.; Xiao, B.W. Elliptic Flow of Heavy Quarkonia in pA Collisions. Phys. Rev. Lett. 2019, 122, 172302. [Google Scholar] [CrossRef]
- Zhang, C.; Marquet, C.; Qin, G.Y.; Shi, Y.; Wang, L.; Wei, S.Y.; Xiao, B.W. Collectivity of heavy mesons in proton-nucleus collisions. Phys. Rev. D 2020, 102, 034010. [Google Scholar] [CrossRef]
- Adam, J. et al. [ALICE Collaboration] Elliptic flow of muons from heavy-flavour hadron decays at forward rapidity in Pb–Pb collisions at = 2.76 TeV. Phys. Lett. 2016, B753, 41–56. [Google Scholar] [CrossRef]
- Adam, J. et al. [ALICE Collaboration] Elliptic flow of electrons from heavy-flavour hadron decays at mid-rapidity in Pb-Pb collisions at = 2.76 TeV. J. High Energy Phys. 2016, 2016, 28. [Google Scholar] [CrossRef]
- Acharya, S. et al. [ALICE Collaboration] D-meson azimuthal anisotropy in mid-central Pb-Pb collisions at = 5.02 TeV. arXiv 2017, arXiv:1707.01005. [Google Scholar]
- Acharya, S. et al. [ALICE Collaboration] J/ψ elliptic flow in Pb-Pb collisions at = 5.02 TeV. Phys. Rev. Lett. 2017, 119, 242301. [Google Scholar] [CrossRef]
- Measurements of azimuthal anisotropy of nonprompt D0 mesons in PbPb collisions at = 5.02 TeV. arXiv 2022, arXiv:2212.01636.
- Acharya, S. et al. [ALICE Collaboration] Measurement of Non-prompt D0-meson Elliptic Flow in Pb-Pb Collisions at = 5.02 TeV. arXiv 2023, arXiv:2307.14084. [Google Scholar]
- Li, H.; Lin, Z.W.; Wang, F. Charm quarks are more hydrodynamic than light quarks in final-state elliptic flow. Phys. Rev. C 2019, 99, 044911. [Google Scholar] [CrossRef]
- Acharya, S. et al. [ALICE Collaboration] Search for collectivity with azimuthal J/ψ-hadron correlations in high multiplicity p-Pb collisions at = 5.02 and 8.16 TeV. Phys. Lett. B 2018, 780, 7–20. [Google Scholar] [CrossRef]
- Sirunyan, A.M. et al. [CMS Collaboration] Observation of prompt J/ψ meson elliptic flow in high-multiplicity pPb collisions at = 8.16 TeV. Phys. Lett. B 2019, 791, 172–194. [Google Scholar] [CrossRef]
- Acharya, S. et al. [ALICE Collaboration] Measurements of azimuthal anisotropies at forward and backward rapidity with muons in high-multiplicity p–Pb collisions at = 8.16 TeV. Phys. Lett. B 2023, 846, 137782. [Google Scholar] [CrossRef]
- Aad, G. et al. [ATLAS Collaboration] Measurement of azimuthal anisotropy of muons from charm and bottom hadrons in Pb + Pb collisions at = 5.02 TeV with the ATLAS detector. Phys. Lett. B 2020, 807, 135595. [Google Scholar] [CrossRef]
- Nahrgang, M.; Aichelin, J.; Gossiaux, P.B.; Werner, K. Influence of hadronic bound states above Tc on heavy-quark observables in Pb + Pb collisions at at the CERN Large Hadron Collider. Phys. Rev. C 2014, 89, 014905. [Google Scholar] [CrossRef]
- Ke, W.; Xu, Y.; Bass, S.A. Modified Boltzmann approach for modeling the splitting vertices induced by the hot QCD medium in the deep Landau-Pomeranchuk-Migdal region. Phys. Rev. C 2019, 100, 064911. [Google Scholar] [CrossRef]
- Katz, R.; Prado, C.A.G.; Noronha-Hostler, J.; Noronha, J.; Suaide, A.A.P. Sensitivity study with a D and B mesons modular simulation code of heavy flavor RAA and azimuthal anisotropies based on beam energy, initial conditions, hadronization, and suppression mechanisms. Phys. Rev. C 2020, 102, 024906. [Google Scholar] [CrossRef]
- Lin, Z.W.; Ko, C.M.; Li, B.A.; Zhang, B.; Pal, S. A Multi-phase transport model for relativistic heavy ion collisions. Phys. Rev. C 2005, 72, 064901. [Google Scholar] [CrossRef]
- Lin, Z.W.; Zheng, L. Further developments of a multi-phase transport model for relativistic nuclear collisions. Nucl. Sci. Tech. 2021, 32, 113. [Google Scholar] [CrossRef]
- Zhang, B. ZPC 1.0.1: A Parton cascade for ultrarelativistic heavy ion collisions. Comput. Phys. Commun. 1998, 109, 193–206. [Google Scholar] [CrossRef]
- He, L.; Edmonds, T.; Lin, Z.W.; Liu, F.; Molnar, D.; Wang, F. Anisotropic parton escape is the dominant source of azimuthal anisotropy in transport models. Phys. Lett. B 2016, 753, 506–510. [Google Scholar] [CrossRef]
- Du, X.; Rapp, R. Sequential Regeneration of Charmonia in Heavy-Ion Collisions. Nucl. Phys. A 2015, 943, 147–158. [Google Scholar] [CrossRef]
- Khachatryan, V. et al. [CMS Collaboration] Evidence for collectivity in pp collisions at the LHC. Phys. Lett. B 2017, 765, 193–220. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomas, D.; Colamaria, F. Recent Findings from Heavy-Flavor Angular Correlation Measurements in Hadronic Collisions. Universe 2024, 10, 109. https://doi.org/10.3390/universe10030109
Thomas D, Colamaria F. Recent Findings from Heavy-Flavor Angular Correlation Measurements in Hadronic Collisions. Universe. 2024; 10(3):109. https://doi.org/10.3390/universe10030109
Chicago/Turabian StyleThomas, Deepa, and Fabio Colamaria. 2024. "Recent Findings from Heavy-Flavor Angular Correlation Measurements in Hadronic Collisions" Universe 10, no. 3: 109. https://doi.org/10.3390/universe10030109
APA StyleThomas, D., & Colamaria, F. (2024). Recent Findings from Heavy-Flavor Angular Correlation Measurements in Hadronic Collisions. Universe, 10(3), 109. https://doi.org/10.3390/universe10030109