Search for Wormhole Candidates: Accreting Wormholes with Monopole Magnetic Fields
Abstract
:1. Introduction
1.1. Wormholes
1.2. Accretion
1.3. Magnetic Fields
1.4. Wormholes with Monopole Magnetic Fields
1.5. Polarization
1.6. Our Specific Approach
2. Our Model and Some Calculations
2.1. Toy Model and Basic Equations
2.2. Interaction of Accreting Matter with a Monopole Magnetic Field
2.3. Numerical Simulation
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Visser, M. Lorentzian Wormholes. From Einstein to Hawking; American Institute of Physics: Woodbury, NY, USA, 1995. [Google Scholar]
- Kardashev, N.S.; Novikov, I.D.; Shatskiy, A.A. Astrophysics of Wormholes. Int. J. Mod. Phys. D 2007, 16, 909–926. [Google Scholar] [CrossRef]
- Bambi, C. Can the supermassive objects at the centers of galaxies be traversable wormholes? The first test of strong gravity for mm/sub-mm very long baseline interferometry facilities. Phys. Rev. D 2013, 87, 107501. [Google Scholar] [CrossRef]
- Li, Z.; Bambi, C. Distinguishing black holes and wormholes with orbiting hot spots. Phys. Rev. D 2014, 90, 024071. [Google Scholar] [CrossRef]
- Zhou, M.; Cardenas-Avendano, A.; Bambi, C.; Kleihaus, B.; Kunz, J. Search for astrophysical rotating Ellis wormholes with x-ray reflection spectroscopy. Phys. Rev. D 2016, 94, 024036. [Google Scholar] [CrossRef]
- Einstein, A.; Rosen, N. The Particle Problem in the General Theory of Relativity. Phys. Rev. 1935, 48, 73–77. [Google Scholar] [CrossRef]
- Einstein, A. Albert Einstein: Philosopher-Scientist; Cambridge University Press: Cambridge, UK, 1949. [Google Scholar]
- Krasnikov, S. Time travel paradox. Phys. Rev. D 2002, 65, 064013. [Google Scholar] [CrossRef]
- Hawking, S.W. Chronology protection conjecture. Phys. Rev. D 1992, 46, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Harko, T.; Kovács, Z.; Lobo, F.S.N. Electromagnetic signatures of thin accretion disks in wormhole geometries. Phys. Rev. D 2008, 78, 084005. [Google Scholar] [CrossRef]
- Harko, T.; Kovács, Z.; Lobo, F.S.N. Thin accretion disks in stationary axisymmetric wormhole spacetimes. Phys. Rev. D 2009, 79, 064001. [Google Scholar] [CrossRef]
- Tsukamoto, N.; Harada, T.; Yajima, K. Can we distinguish between black holes and wormholes by their Einstein-ring systems? Phys. Rev. D 2012, 86, 104062. [Google Scholar] [CrossRef]
- Yoo, C.M.; Harada, T.; Tsukamoto, N. Wave effect in gravitational lensing by the Ellis wormhole. Phys. Rev. D 2013, 87, 084045. [Google Scholar] [CrossRef]
- Bambi, C. Broad Kα iron line from accretion disks around traversable wormholes. Phys. Rev. D 2013, 87, 084039. [Google Scholar] [CrossRef]
- Dokuchaev, V.I.; Eroshenko, Y.N. Nonorientable wormholes as portals to the mirror world. Phys. Rev. D 2014, 90, 024056. [Google Scholar] [CrossRef]
- Dai, D.C.; Stojkovic, D. Observing a wormhole. Phys. Rev. D 2019, 100, 083513. [Google Scholar] [CrossRef]
- Paul, S.; Shaikh, R.; Banerjee, P.; Sarkar, T. Observational signatures of wormholes with thin accretion disks. J. Cosmol. Astropart. Phys. 2020, 2020, 055. [Google Scholar] [CrossRef]
- Tripathi, A.; Zhou, B.; Abdikamalov, A.B.; Ayzenberg, D.; Bambi, C. Search for traversable wormholes in active galactic nuclei using X-ray data. Phys. Rev. D 2020, 101, 064030. [Google Scholar] [CrossRef]
- Bambi, C.; Stojkovic, D. Astrophysical Wormholes. Universe 2021, 7, 136. [Google Scholar] [CrossRef]
- Bardeen, J.M.; Wagoner, R.V. Relativistic Disks. I. Uniform Rotation. Astrophys. J. 1971, 167, 359. [Google Scholar] [CrossRef]
- Blandford, R.D.; Znajek, R.L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 1977, 179, 433–456. [Google Scholar] [CrossRef]
- Blandford, R.D.; Payne, D.G. Hydromagnetic flows from accretion discs and the production of radio jets. Mon. Not. R. Astron. Soc. 1982, 199, 883–903. [Google Scholar] [CrossRef]
- Blaes, O.M. Course 3: Physics Fundamentals of Luminous Accretion Disks around Black Holes. In Accretion Discs, Jets and High Energy Phenomena in Astrophysics; Beskin, V., Henri, G., Pelletier, G., Dalibard, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 78, pp. 137–185. [Google Scholar]
- Moran, J.M. The Black-Hole Accretion Disk in NGC 4258: One of Nature’s Most Beautiful Dynamical Systems. In Proceedings of the Frontiers of Astrophysics: A Celebration of NRAO’s 50th Anniversary, Charlottesville, VA, USA, 18–21 June 2007; Bridle, A.H., Condon, J.J., Hunt, G.C., Eds.; Astronomical Society of the Pacific Conference Series. Volume 395, p. 87. [Google Scholar]
- Shakura, N.I.; Sunyaev, R.A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 1973, 24, 337–355. [Google Scholar]
- Fausnaugh, M.M.; Denney, K.D.; Barth, A.J.; Bentz, M.C.; Bottorff, M.C.; Carini, M.T.; Croxall, K.V.; De Rosa, G.; Goad, M.R.; Horne, K.; et al. Space Telescope and Optical Reverberation Mapping Project. III. Optical Continuum Emission and Broadband Time Delays in NGC 5548. Astrophys. J. 2016, 821, 56. [Google Scholar] [CrossRef]
- Balbus, S.A.; Hawley, J.F. Instability, turbulence, and enhanced transport in accretion disks. Rev. Mod. Phys. 1998, 70, 1–53. [Google Scholar] [CrossRef]
- Miller, K.A.; Stone, J.M. The Formation and Structure of a Strongly Magnetized Corona above a Weakly Magnetized Accretion Disk. Astrophys. J. 2000, 534, 398–419. [Google Scholar] [CrossRef]
- Eardley, D.M.; Lightman, A.P. Magnetic viscosity in relativistic accretion disks. Astrophys. J. 1975, 200, 187–203. [Google Scholar] [CrossRef]
- Field, G.B.; Rogers, R.D. Radiation from Magnetized Accretion Disks in Active Galactic Nuclei. Astrophys. J. 1993, 403, 94. [Google Scholar] [CrossRef]
- Shalybkov, D.; Rüdiger, G. Magnetic field dragging and the vertical structure of thin accretion discs. Mon. Not. R. Astron. Soc. 2000, 315, 762–766. [Google Scholar] [CrossRef]
- Campbell, C.G. An accretion disc model with a magnetic wind and turbulent viscosity. Mon. Not. R. Astron. Soc. 2000, 317, 501–527. [Google Scholar] [CrossRef]
- Ogilvie, G.I.; Livio, M. Launching of Jets and the Vertical Structure of Accretion Disks. Astrophys. J. 2001, 553, 158–173. [Google Scholar] [CrossRef]
- Misner, C.W.; Wheeler, J.A. Classical physics as geometry. Ann. Phys. 1957, 2, 525–603. [Google Scholar] [CrossRef]
- Bronnikov, K.A. Scalar-tensor theory and scalar charge. Acta Phys. Pol. B 1973, 4, 251–266. [Google Scholar]
- Ellis, H.G. Ether flow through a drainhole: A particle model in general relativity. J. Math. Phys. 1973, 14, 104–118. [Google Scholar] [CrossRef]
- Agnese, A.G.; Camera, M.L. Kaluza-Klein Magnetic Monopoles and Wormholes. Mod. Phys. Lett. A 1996, 11, 181–185. [Google Scholar] [CrossRef]
- Prat-Camps, J.; Navau, C.; Sanchez, A. A Magnetic Wormhole. Sci. Rep. 2015, 5, 12488. [Google Scholar] [CrossRef]
- Romero, J.M.; Bellini, M. WIMT in Gullstränd-Painlevé and Reissner-Nordström metrics: Induced stable gravito-magnetic monopoles. Eur. Phys. J. C 2015, 75, 201. [Google Scholar] [CrossRef]
- Romero, J.M.; Bellini, M. Gravito-magnetic monopoles in traversable wormholes from WIMT. Phys. Dark Universe 2017, 15, 47–52. [Google Scholar] [CrossRef]
- Romero, J.M.; Bellini, M. Traversable wormhole magnetic monopoles from Dymnikova metric. Eur. Phys. J. Plus 2019, 134, 579. [Google Scholar] [CrossRef]
- Cañate, P. Simple method to generate magnetically charged ultrastatic traversable wormholes without exotic matter in Einstein-scalar-Gauss-Bonnet gravity. Phys. Rev. D 2023, 108, 104048. [Google Scholar] [CrossRef]
- Martin, P.G.; Thompson, I.B.; Maza, J.; Angel, J.R.P. The polarization of Seyfert galaxies. Astrophys. J. 1983, 266, 470–478. [Google Scholar] [CrossRef]
- Impey, C.D.; Malkan, M.A.; Webb, W.; Petry, C.E. Ultraviolet Spectropolarimetry of High-Redshift Quasars with the Hubble Space Telescope. Astrophys. J. 1995, 440, 80. [Google Scholar] [CrossRef]
- Wilkes, B.J.; Schmidt, G.D.; Smith, P.S.; Mathur, S.; McLeod, K.K. Optical Detection of the Hidden Nuclear Engine in NGC 4258. Astrophys. J. 1995, 455, L13. [Google Scholar] [CrossRef]
- Barth, A.J.; Tran, H.D.; Brotherton, M.S.; Filippenko, A.V.; Ho, L.C.; van Breugel, W.; Antonucci, R.; Goodrich, R.W. Polarized Narrow-Line Emission from the Nucleus of NGC 4258. Astron. J. 1999, 118, 1609–1617. [Google Scholar] [CrossRef]
- Smith, J.E.; Young, S.; Robinson, A.; Corbett, E.A.; Giannuzzo, M.E.; Axon, D.J.; Hough, J.H. A spectropolarimetric atlas of Seyfert 1 galaxies. Mon. Not. R. Astron. Soc. 2002, 335, 773–798. [Google Scholar] [CrossRef]
- Modjaz, M.; Moran, J.M.; Kondratko, P.T.; Greenhill, L.J. Probing the Magnetic Field at Subparsec Radii in the Accretion Disk of NGC 4258. Astrophys. J. 2005, 626, 104–119. [Google Scholar] [CrossRef]
- Lovelace, R.V.E.; Wang, J.C.L.; Sulkanen, M.E. Self-collimated Electromagnetic Jets from Magnetized Accretion Disks. Astrophys. J. 1987, 315, 504. [Google Scholar] [CrossRef]
- Benford, G. Current-carrying beams in astrophysics: Models for double radio sources and jets. Mon. Not. R. Astron. Soc. 1978, 183, 29–48. [Google Scholar] [CrossRef]
- Chan, K.L.; Henriksen, R.N. On the supersonic dynamics of magnetized jets of thermal gas in radio galaxies. Astrophys. J. 1980, 241, 534–551. [Google Scholar] [CrossRef]
- Gabuzda, D.C.; Pushkarev, A.B.; Cawthorne, T.V. Analysis of λ=6cm VLBI polarization observations of a complete sample of northern BL Lacertae objects. Mon. Not. R. Astron. Soc. 2000, 319, 1109–1124. [Google Scholar] [CrossRef]
- Lister, M.L.; Homan, D.C. MOJAVE: Monitoring of Jets in Active Galactic Nuclei with VLBA Experiments. I. First-Epoch 15 GHz Linear Polarization Images. Astron. J. 2005, 130, 1389–1417. [Google Scholar] [CrossRef]
- O’Sullivan, S.P.; Gabuzda, D.C. Magnetic field strength and spectral distribution of six parsec-scale active galactic nuclei jets. Mon. Not. R. Astron. Soc. 2009, 400, 26–42. [Google Scholar] [CrossRef]
- Piotrovich, M.Y.; Krasnikov, S.V.; Buliga, S.D.; Natsvlishvili, T.M. Search for wormhole candidates in active galactic nuclei: Radiation from colliding accreting flows. Mon. Not. R. Astron. Soc. 2020, 498, 3684–3686. [Google Scholar] [CrossRef]
- Piotrovich, M.; Krasnikov, S.; Buliga, S.; Natsvlishvili, T. Possible Wormhole Candidates in Active Galactic Nuclei. Universe 2020, 6, 120. [Google Scholar] [CrossRef]
- Morris, M.S.; Thorne, K.S.; Yurtsever, U. Wormholes, time machines, and the weak energy condition. Phys. Rev. Lett. 1988, 61, 1446–1449. [Google Scholar] [CrossRef] [PubMed]
- Lobo, F.S.N. Wormholes, Warp Drives and Energy Conditions; Fundamental Theories of Physics; Springer: Cham, Switzerland, 2017; Volume 189. [Google Scholar] [CrossRef]
- Bridle, A.H.; Perley, R.A. Extragalactic Radio Jets. Annu. Rev. Astron. Astrophys. 1984, 22, 319–358. [Google Scholar] [CrossRef]
- Parma, P.; Fanti, C.; Fanti, R.; Morganti, R.; de Ruiter, H.R. VLA observations of low-luminosity radio galaxies. VI. Discussion of radio jets. Astron. Astrophys. 1987, 181, 244–264. [Google Scholar]
- Cawthorne, T.V. Interpretation of parsec scale jets. In Beams and Jets in Astrophysics; Cambridge University Press: Cambridge, UK, 1991; Volume 19, p. 187. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piotrovich, M.; Krasnikov, S.; Buliga, S.; Natsvlishvili, T. Search for Wormhole Candidates: Accreting Wormholes with Monopole Magnetic Fields. Universe 2024, 10, 108. https://doi.org/10.3390/universe10030108
Piotrovich M, Krasnikov S, Buliga S, Natsvlishvili T. Search for Wormhole Candidates: Accreting Wormholes with Monopole Magnetic Fields. Universe. 2024; 10(3):108. https://doi.org/10.3390/universe10030108
Chicago/Turabian StylePiotrovich, Mikhail, Serguei Krasnikov, Stanislava Buliga, and Tinatin Natsvlishvili. 2024. "Search for Wormhole Candidates: Accreting Wormholes with Monopole Magnetic Fields" Universe 10, no. 3: 108. https://doi.org/10.3390/universe10030108
APA StylePiotrovich, M., Krasnikov, S., Buliga, S., & Natsvlishvili, T. (2024). Search for Wormhole Candidates: Accreting Wormholes with Monopole Magnetic Fields. Universe, 10(3), 108. https://doi.org/10.3390/universe10030108