The Nature of Dark Energy and Constraints on Its Hypothetical Constituents from Force Measurements
Abstract
:1. Introduction
2. Approaches to Theoretical Description of Dark Energy Based on Classical Physics
3. Particle Candidates for the Role of Constituents of Dark Energy
4. Constraints on the Particle Constituents of Dark Energy from Force Measurements
4.1. Constraints on Chameleons from Measuring the Casimir Force
4.2. Constraints on a Symmetron Field from Measuring the Casimir Force
4.3. Constraints on the Environment-Dependent Dilaton from Measuring the Casimir Force
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Friedmann, A.A. Über die Krümmung des Raumes. Z. Phys. 1922, 10, 377–386. [Google Scholar] [CrossRef]
- Friedmann, A.A. Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes. Z. Phys. 1924, 21, 326–332. [Google Scholar] [CrossRef]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Peebles, P.J.E.; Ratra, B. The cosmological constant and dark energy. Rev. Mod. Phys. 2003, 75, 559–606. [Google Scholar] [CrossRef]
- Frieman, J.A.; Turner, M.S.; Huterer, D. Dark energy and the accelerating universe. Annu. Rev. Astron. Astrophys. 2008, 46, 385–432. [Google Scholar] [CrossRef]
- Einstein, A. Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. Sitzungsber. K. Preuss. Akad. Wiss. 1917, 6, 142–152. [Google Scholar]
- Ratra, B.; Peebles, P.J.E. Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D 1988, 37, 3406–3427. [Google Scholar] [CrossRef]
- Wetterich, C. Cosmology and the fate of dilatation symmetry. Nucl. Phys. B 1988, 302, 668–696. [Google Scholar] [CrossRef]
- Caldwell, R.R.; Dave, R.; Steinhardt, P.J. Cosmological Imprint of an Energy Component with General Equation of State. Phys. Rev. Lett. 1998, 80, 1582–1585. [Google Scholar] [CrossRef]
- Joyce, A.; Lombriser, L.; Schmidt, F. Dark energy vs. modified gravity. Ann. Rev. Nucl. Part. Sci. 2016, 66, 95–122. [Google Scholar] [CrossRef]
- Exirifard, Q. Phenomenological covariant approach to gravity. Gen. Relat. Grav. 2011, 43, 93–106. [Google Scholar] [CrossRef]
- Arbey, A. Dark fluid: A complex scalar field to unify dark energy and dark matter. Phys. Rev. D 2006, 74, 043516. [Google Scholar] [CrossRef]
- Khoury, J.; Weltman, A. Chameleon Fields: Awaiting Surprises for Tests of Gravity in Space. Phys. Rev. Lett. 2004, 93, 171104. [Google Scholar] [CrossRef] [PubMed]
- Khoury, J.; Weltman, A. Chameleon cosmology. Phys. Rev. D 2004, 69, 044026. [Google Scholar] [CrossRef]
- Olive, K.A.; Pospelov, M. Environmental dependence of masses and coupling constants. Phys. Rev. D 2008, 77, 043524. [Google Scholar] [CrossRef]
- Hinterbichler, K.; Khoury, J. Screening Long-Range Forces through Local Symmetry Restoration. Phys. Rev. Lett. 2010, 104, 231301. [Google Scholar] [CrossRef]
- Hinterbichler, K.; Khoury, J.; Levy, A.; Matas, A. Symmetron cosmology. Phys. Rev. D 2011, 84, 103521. [Google Scholar] [CrossRef]
- Brax, P.; Fischer, H.; Käding, C.; Pitschmann, M. The environment dependent dilaton in the laboratory and the solar system. Eur. Phys. J. C 2022, 82, 934. [Google Scholar] [CrossRef]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified gravity and cosmology. Phys. Rep. 2012, 513, 1–189. [Google Scholar] [CrossRef]
- Asimakis, P.; Basilakos, S.; Lymperis, A.; Petronikolou, M.; Saridakis, E.N. Modified gravity and cosmology with nonminimal direct or derivative coupling between matter and the Einstein tensor. Phys. Rev. D 2023, 107, 104006. [Google Scholar] [CrossRef]
- Freese, K.; Lewis, M. Cardassian expansion: A model in which the universe is flat, matter dominated, and accelerating. Phys. Lett. B 2002, 540, 1–8. [Google Scholar] [CrossRef]
- Xu, L. Revisiting Cardassian model and cosmic constraint. Eur. Phys. J. C 2012, 72, 2134. [Google Scholar] [CrossRef]
- Magaña, J.; Amante, M.H.; Garcia-Aspeitia, M.A.; Motta, V. The Cardassian expansion revisited: Constraints from updated Hubble parameter measurements and type Ia supernova data. Month. Not. Roy. Astr. Soc. 2018, 476, 1036–1049. [Google Scholar] [CrossRef]
- Lima, J.A.S.; Portugal, R.; Waga, I. Bulk-viscosity-driven asymmetric inflationary universe. Phys. Rev. D 1988, 37, 2755–2760. [Google Scholar] [CrossRef] [PubMed]
- Brevik, I.; Elizalde, E.; Nojiri, S.; Odintsov, S.D. Viscous little rip cosmology. Phys. Rev. D 2011, 84, 103508. [Google Scholar] [CrossRef]
- Herrera-Zamorano, L.; Hernández-Almada, A.; García-Aspeitia, M.A. Constraints and cosmography of CDM in presence of viscosity. Eur. Phys. J. C 2020, 80, 637. [Google Scholar] [CrossRef]
- Célérier, M.-N. Do we really see a cosmological constant in the supernovae data? Astron. Astrophys. 2000, 353, 63–71. [Google Scholar]
- Deledicque, V. Dark Energy Explained by a Bias in the Measurements. Found. Phys. 2022, 52, 57. [Google Scholar] [CrossRef]
- Buchert, T.; Ehlers, J. Averaging inhomogeneous Newtonian cosmologies. Astron. Astrophys. 1997, 320, 1–7. [Google Scholar]
- Wiltshire, D.L. Exact Solution to the Averaging Problem in Cosmology. Phys. Rev. Lett. 2007, 99, 251101. [Google Scholar] [CrossRef] [PubMed]
- Kolb, E.W. Backreaction of inhomogeneities can mimic dark energy. Class. Quant. Grav. 2011, 28, 164009. [Google Scholar] [CrossRef]
- Rácz, G.; Dobos, L.; Beck, R.; Szapudi, I.; Csabai, I. Concordance cosmology without dark energy. Month. Not. Roy. Astr. Soc. Lett. 2017, 469, L1–L5. [Google Scholar] [CrossRef]
- Lapi, A.; Boco, L.; Cueli, M.M.; Haridasu, B.S.; Ronconi, T. Little ado about everything: ηCDM, a cosmological model with fluctuation-driven acceleration at late times. Astrophys. J. 2023, 959, 83. [Google Scholar] [CrossRef]
- Landau, E.M.; Lifshitz, E.M. The Classical Theory of Fields; Pergamon: Oxford, UK, 1971. [Google Scholar]
- Zel’dovich, Y.B. The cosmological constant and the theory of elementary particles. Uspekhi Fiz. Nauk 1968, 95, 209–230, Translated: Sov. Phys. Usp. 1968, 11, 381–393. [Google Scholar] [CrossRef]
- Birrell, N.D.; Davies, P.C.D. Quantum Fields in Curved Space; Cambridge University Press: Cambridge, UK, 1982. [Google Scholar]
- Grib, A.A.; Mamayev, S.G.; Mostepanenko, V.M. Vacuum Quantum Effects in Strong Fields; Friedmann Laboratory Publishing: St. Petersburg, Russia, 1994. [Google Scholar]
- Mostepanenko, V.M.; Klimchitskaya, G.L. Whether an enormously large energy density of the quantum vacuum is catastrophic. Symmetry 2019, 11, 314. [Google Scholar] [CrossRef]
- Adler, R.J.; Casey, B.; Jacob, O.C. Vacuum catastrophe: An elementary exposition of the cosmological constant problem. Am. J. Phys. 1995, 63, 620–626. [Google Scholar] [CrossRef]
- Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61, 1–23. [Google Scholar] [CrossRef]
- Ferreira, P.G.; Joyce, M. Cosmology with a primordial scaling field. Phys. Rev. D 1998, 58, 023503. [Google Scholar] [CrossRef]
- Copeland, E.J.; Liddle, A.R.; Wands, D. Exponential potentials and cosmological scaling solutions. Phys. Rev. D 1998, 57, 4686–4690. [Google Scholar] [CrossRef]
- Zlatev, I.; Wang, L.; Steinhardt, P.J. Quintessence, Cosmic Coincidence, and the Cosmological Constant. Phys. Rev. Lett. 1998, 82, 896–899. [Google Scholar] [CrossRef]
- Choi, K. String or M theory axion as a quintessence. Phys. Rev. D 2000, 62, 043509. [Google Scholar] [CrossRef]
- Scherrer, R.J.; Sen, A.A. Thawing quintessence with a nearly flat potential. Phys. Rev. D 2008, 77, 083515. [Google Scholar] [CrossRef]
- Chiba, T. Slow-roll thawing quintessence. Phys. Rev. D 2009, 79, 083517. [Google Scholar] [CrossRef]
- Panda, S.; Sumitomo, Y.; Trivedi, S.P. Axions as quintessence in string theory. Phys. Rev. D 2011, 83, 083506. [Google Scholar] [CrossRef]
- Chiba, T.; De Felice, A.; Tsujikawa, S. Observational constraints on quintessence: Thawing, tracker, and scaling models. Phys. Rev. D 2013, 87, 083505. [Google Scholar] [CrossRef]
- Tsujikawa, S. Quintessence: A review. Class. Quant. Grav. 2013, 30, 214003. [Google Scholar] [CrossRef]
- Armendariz-Picon, C.; Mukhanov, V.; Steinhardt, P.J. Essentials of K-Essence. Phys. Rev. D 2001, 63, 103510. [Google Scholar] [CrossRef]
- Kamenshchik, A.; Moschella, U.; Pasquier, V. An alternative to quintessence. Phys. Lett. B 2001, 511, 265–268. [Google Scholar] [CrossRef]
- Corasaniti, P.S.; Copeland, E.J. Model independent approach to the dark energy equation of state. Phys. Rev. D 2003, 67, 063521. [Google Scholar] [CrossRef]
- Dutta, S.; Scherrer, R.J. Hilltop quintessence. Phys. Rev. D 2008, 78, 123525. [Google Scholar] [CrossRef]
- Chiba, T. Equation of state of tracker fields. Phys. Rev. D 2010, 81, 023515. [Google Scholar] [CrossRef]
- Roy, N.; Bamba, K. Arbitrariness of potentials in interacting quintessence models. Phys. Rev. D 2019, 99, 123520. [Google Scholar] [CrossRef]
- Caldwell, R.R.; Kamionkowski, M.; Weinberg, N.N. Phantom Energy: Dark Energy with w < −1 Causes a Cosmic Doomsday. Phys. Rev. Lett. 2003, 91, 071301. [Google Scholar]
- Chiba, T.; Okabe, T.; Yamaguchi, M. Kinetically driven quintessence. Phys. Rev. D 2000, 62, 023511. [Google Scholar] [CrossRef]
- Brans, C.; Dicke, R.H. Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 1961, 124, 925–935. [Google Scholar] [CrossRef]
- Singh, T.; Singh, T. General class of scalar- tensor theories: A review. Int. J. Mod. Phys. A 1987, 2, 645–666. [Google Scholar] [CrossRef]
- Quiros, I. Selected topics in scalar-tensor theories and beyond. Int. J. Mod. Phys. D 2019, 28, 1930012. [Google Scholar] [CrossRef]
- Fujii, Y.; Maeda, K.-I. The Scalar-Tensor Theory of Gravitation; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Khoury, J. Chameleon field theories. Class. Quant. Grav. 2013, 30, 214004. [Google Scholar] [CrossRef]
- Burrage, C.; Copeland, E.J.; Käding, C.; Millington, P. Symmetron scalar fields: Modified gravity, dark matter, or both? Phys. Rev. D 2019, 99, 043539. [Google Scholar] [CrossRef]
- Carroll, S.M.; Duvvuri, V.; Trodden, M.; Turner, M.S. Is cosmic speed-up due to new gravitational physics? Phys. Rev. D 2004, 70, 043528. [Google Scholar] [CrossRef]
- Chiba, T. 1/R gravity and scalar-tensor gravity. Phys. Lett. B 2003, 575, 1–3. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Faraoni, V. f(R) theories of gravity. Rev. Mod. Phys. 2010, 82, 451–498. [Google Scholar] [CrossRef]
- Upadhye, A.; Hu, W.; Khoury, J. Quantum Stability of Chameleon Field Theories. Phys. Rev. Lett. 2012, 109, 041301. [Google Scholar] [CrossRef] [PubMed]
- Erickcek, A.L.; Barnaby, N.; Burrage, C.; Huang, Z. Catastrophic Consequences of Kicking the Chameleon. Phys. Rev. Lett. 2013, 110, 171101. [Google Scholar] [CrossRef] [PubMed]
- Chou, A.S.; Wester, W.; Baumbaugh, A.; Gustafson, H.R.; Irizarry-Valle, Y.; Mazur, P.O.; Steffen, J.H.; Tomlin, R.; Upadhye, A.; Weltman, A.; et al. Search for Chameleon Particles Using a Photon-Regeneration Technique. Phys. Rev. Lett. 2009, 102, 030402. [Google Scholar] [CrossRef] [PubMed]
- Brax, P.; Burrage, C.; Davis, A.-C.; Seery, D.; Weltman, A. Anomalous coupling of scalars to gauge fields. Phys. Lett. B 2011, 699, 5–9. [Google Scholar] [CrossRef]
- Damour, T.; Polyakov, A.M. The string dilaton and a least coupling principle. Nucl. Phys. B 1994, 423, 5–9. [Google Scholar] [CrossRef]
- Berman, D.S.; Perry, M.J. M-theory and the string genus expansion. Phys. Lett. B 2006, 635, 131–135. [Google Scholar] [CrossRef]
- Scott, T.C.; Zhang, X.; Mann, R.B.; Fee, G.J. Canonical reduction for dilatonic gravity in 3+1 dimensions. Phys. Rev. D 2016, 93, 084017. [Google Scholar] [CrossRef]
- Joyce, A.; Jain, B.; Khoury, J.; Trodden, M. Beyond the cosmological standard model. Phys. Rep. 2015, 568, 1–98. [Google Scholar] [CrossRef]
- Brax, P.; van de Bruck, C.; Davis, A.-C.; Li, B.; Shaw, D.J. Nonlinear structure formation with the environmentally dependent dilaton. Phys. Rev. D 2011, 83, 104026. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Conformal anomaly for dilaton coupled electromagnetic field. Phys. Lett. B 1998, 426, 29–35. [Google Scholar] [CrossRef]
- Burrage, C.; Copeland, E.J.; Hinds, E.A. Probing dark energy with atom interferometry. J. Cosmol. Astropart. Phys. 2015, 3, 042. [Google Scholar] [CrossRef]
- Jenke, T.; Cronenberg, G.; Burgdörfer, J.; Chizhova, L.A.; Geltenbort, P.; Ivanov, A.N.; Lauer, T.; Lins, T.; Rotter, S.; Saul, H.; et al. Gravity Resonance Spectroscopy Constrains Dark Energy and Dark Matter Scenarios. Phys. Rev. Lett. 2014, 112, 151105. [Google Scholar] [CrossRef] [PubMed]
- Brax, P.; Pignol, G. Strongly Coupled Chameleons and the Neutronic Quantum Bouncer. Phys. Rev. Lett. 2011, 107, 111301. [Google Scholar] [CrossRef]
- Burrage, C.; Kuribayashi-Coleman, A.; Stevenson, J.; Thrussell, B. Constraining symmetron fields with atom interferometry. J. Cosmol. Astropart. Phys. 2016, 12, 041. [Google Scholar] [CrossRef]
- Chiow, S.-W.; Yu, N. Constraining symmetron dark energy using atom interferometry. Phys. Rev. D 2020, 101, 083501. [Google Scholar] [CrossRef]
- Cho, Y.M.; Kim, J.H. Dilatonic dark matter and its experimental detection. Phys. Rev. D 2009, 79, 023504. [Google Scholar] [CrossRef]
- Vardanyan, V.; Bartlett, D.J. Modeling and testing screening mechanisms in the laboratory and in space. Universe 2023, 9, 340. [Google Scholar] [CrossRef]
- Terukina, A.; Lombriser, L.; Yamamoto, K.; Bacon, D.; Koyama, K.; Nichol, R.C. Testing chameleon gravity with the Coma cluster. J. Cosm. Astropart. Phys. 2014, 2014, 013. [Google Scholar] [CrossRef]
- Wilcox, H.; Bacon, D.; Nichol, R.C.; Rooney, P.J.; Terukina, A.; Romer, A.K.; Koyama, K.; Zhao, G.B.; Hood, R.; Mann, R.G.; et al. The XMM Cluster Survey: Testing chameleon gravity using the profiles of clusters. Month. Not. Roy. Astr. Soc. 2015, 452, 1171–1183. [Google Scholar] [CrossRef]
- Haridasu, B.S.; Karmakar, P.; De Petris, M.; Cardone, V.F.; Maoli, R. Testing generalized scalar-tensor theories of gravity with clusters of galaxies. Phys. Rev. D 2023, 107, 124059. [Google Scholar] [CrossRef]
- Boumechta, Y.; Haridasu, B.S.; Pizzuti, L.; Butt, M.A.; Baccigalupi, C.; Lapi, A. Constraining chameleon screening using galaxy cluster dynamics. Phys. Rev. D 2023, 108, 044007. [Google Scholar] [CrossRef]
- Bordag, M.; Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M. Advances in the Casimir Effect; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Klimchitskaya, G.L.; Mostepanenko, V.M. Improved constraints on the coupling constants of axion-like particles to nucleons from recent Casimir-less experiment. Eur. Phys. J. C 2015, 75, 164. [Google Scholar] [CrossRef]
- Klimchitskaya, G.L.; Mostepanenko, V.M. Constraints on axionlike particles and non-Newtonian gravity from measuring the difference of Casimir forces. Phys. Rev. D 2017, 95, 123013. [Google Scholar] [CrossRef]
- Klimchitskaya, G.L. Recent breakthrough and outlook in constraining the non-Newtonian gravity and axion-like particles from Casimir physics. Eur. Phys. J. C 2017, 77, 315. [Google Scholar] [CrossRef]
- Klimchitskaya, G.L.; Kuusk, P.; Mostepanenko, V.M. Constraints on non-Newtonian gravity and axionlike particles from measuring the Casimir force in nanometer separation range. Phys. Rev. D 2020, 101, 056013. [Google Scholar] [CrossRef]
- Antoniadis, I.; Baessler, S.; Bücher, M.; Fedorov, V.V.; Hoedl, S.; Lambrecht, A.; Nesvizhevsky, V.V.; Pignol, G.; Protasov, K.V.; Reynaud, S.; et al. Short-range fundamental forces. Compt. Rend. 2011, 12, 755–778. [Google Scholar] [CrossRef]
- Klimchitskaya, G.L. Constraints on theoretical predictions beyond the Standard Model from the Casimir effect and some other tabletop physics. Universe 2021, 7, 47. [Google Scholar] [CrossRef]
- Klimchitskaya, G.L.; Mostepanenko, V.M. Testing gravity and predictions beyond the standard model at short distances: The Casimir effect. In Modified and Quantum Gravity. From Theory to Experimental Searches on All Scales; Pfeifer, C., Lämmerzahl, C., Eds.; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Mota, D.F.; Shaw, D.J. Strongly Coupled Chameleon Fields: New Horizons in Scalar Field Theory. Phys. Rev. Lett. 2006, 97, 151102. [Google Scholar] [CrossRef]
- Mota, D.F.; Shaw, D.J. Evading equivalence principle violations, cosmological, and other experimental constraints in scalar field theories with a strong coupling to matter. Phys. Rev. D 2007, 75, 063501. [Google Scholar] [CrossRef]
- Brax, P.; van de Bruck, C.; Davis, A.-C.; Mota, D.F.; Shaw, D. Detecting chameleons through Casimir force measurements. Phys. Rev. D 2007, 76, 124034. [Google Scholar] [CrossRef]
- Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M. The Casimir force between real materials: Experiment and theory. Rev. Mod. Phys. 2009, 81, 1827–1885. [Google Scholar] [CrossRef]
- Brax, P.; Pitschmann, M. Exact solutions to nonlinear symmetron theory: One- and two-mirror systems. Phys. Rev. D 2018, 97, 064015. [Google Scholar] [CrossRef]
- Abele, H.; Jenke, T.; Leeb, H.; Schmiedmayer, J. Ramsey’s method of separated oscillating fields and its application to gravitationally induced quantum phase shifts. Phys. Rev. D 2010, 81, 065019. [Google Scholar] [CrossRef]
- Jenke, T.; Geltenbort, P.; Lemme, H.; Abele, H. Realization of a gravity-resonance-spectroscopy technique. Nat. Phys. 2011, 7, 468–472. [Google Scholar] [CrossRef]
- Klimchitskaya, G.L.; Mostepanenko, V.M.; Sedmik, R.I.P.; Abele, H. Prospects for searching thermal effects, non-Newtonian gravity and axion-like particles: CANNEX test of the quantum vacuum. Symmetry 2019, 11, 407. [Google Scholar] [CrossRef]
- Almasi, A.; Brax, P.; Iannuzzi, D.; Sedmik, R.I.P. Force sensor for chameleon and Casimir force experiments with parallel-plate configuration. Phys. Rev. D 2015, 91, 102002. [Google Scholar] [CrossRef]
- Sedmik, R.I.P. Casimir and non-Newtonian force experiment (CANNEX): Review, status, and outlook. Int. J. Mod. Phys. A 2020, 35, 2040008. [Google Scholar] [CrossRef]
- Elder, B.; Vardanyan, V.; Akrami, Y.; Brax, P.; Davis, A.-C.; Decca, R.S. Classical symmetron force in Casimir experiments. Phys. Rev. D 2020, 101, 064065. [Google Scholar] [CrossRef]
- Chen, Y.J.; Tham, W.K.; Krause, D.E.; López, D.; Fischbach, E.; Decca, R.S. Stronger Limits on Hypothetical Yukawa Interactions in the 30–8000 Nm Range. Phys. Rev. Lett. 2016, 116, 221102. [Google Scholar] [CrossRef] [PubMed]
- Fischer, H.; Käding, C.; Sedmik, R.I.P.; Abele, H.; Brax, P.; Pitschmann, M. Search for environment-dependent dilatons. Phys. Dark Univ. 2024, 43, 101419. [Google Scholar] [CrossRef]
- Weinberg, S. A New Light Boson? Phys. Rev. Lett. 1978, 40, 223–226. [Google Scholar] [CrossRef]
- Wilczek, F. Problem of Strong P and T Invariance in the Presence of Instantons. Phys. Rev. Lett. 1978, 40, 279–283. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klimchitskaya, G.L.; Mostepanenko, V.M. The Nature of Dark Energy and Constraints on Its Hypothetical Constituents from Force Measurements. Universe 2024, 10, 119. https://doi.org/10.3390/universe10030119
Klimchitskaya GL, Mostepanenko VM. The Nature of Dark Energy and Constraints on Its Hypothetical Constituents from Force Measurements. Universe. 2024; 10(3):119. https://doi.org/10.3390/universe10030119
Chicago/Turabian StyleKlimchitskaya, Galina L., and Vladimir M. Mostepanenko. 2024. "The Nature of Dark Energy and Constraints on Its Hypothetical Constituents from Force Measurements" Universe 10, no. 3: 119. https://doi.org/10.3390/universe10030119
APA StyleKlimchitskaya, G. L., & Mostepanenko, V. M. (2024). The Nature of Dark Energy and Constraints on Its Hypothetical Constituents from Force Measurements. Universe, 10(3), 119. https://doi.org/10.3390/universe10030119