Standard and Non-Standard Aspects of Neutrino Physics
Abstract
:1. Introduction
2. The Standard Neutrino Picture
2.1. Neutrinos in the Standard Model of Particle Physics
2.2. The Three-Neutrino Mixing Scheme and Neutrino Oscillations
3. Current Measurements and Unknowns in the Standard Neutrino Mixing Paradigm
3.1. The Ordering of the Neutrino Mass Spectrum and the Absolute Mass Scale
- Normal Ordering (NO): , ;
- Inverted Ordering (IO): , .
3.2. CP-Violation in the PMNS Matrix
3.3. Neutrinos Can Be Either Dirac or Majorana Fermions
3.4. Deviations from the Standard Three-Neutrino Mixing Scheme
3.4.1. Sterile Neutrinos
3.4.2. Non-Unitary Neutrino Mixing Matrix
3.4.3. Non-Standard Neutrino Interactions
4. Possible Origins of Neutrino Masses beyond the Standard Model
4.1. Dirac Mass Term from the Usual Higgs Mechanism
4.2. Majorana Mass Term from the Weinberg Operator and Seesaw Mechanisms
4.2.1. Type-I Seesaw
4.2.2. Type-II Seesaw
4.2.3. Type-III Seesaw
4.2.4. Leptogenesis within the Seesaw Extensions of the Standard Model
5. The Origin of the Lepton Mixing Pattern
6. Outlook and Conclusions
- What are the ordering and the absolute mass scale of neutrino masses?
- What is the amount of CP-violation in the lepton sector?
- Are neutrinos Dirac or Majorana particles?
- What are the precise values of the mixing angles?
- Is the three-neutrino mixing accurate or are there deviations, such as sterile neutrinos, non-unitary PMNS matrix, and/or non-standard interactions?
- What mechanism is responsible for the generation of light neutrino masses?
- What is the origin of the lepton masses and mixing pattern, and why is it substantially different from that in the quark sector?
Funding
Acknowledgments
Conflicts of Interest
1 | The Majorana condition can be defined up to an overall unphysical phase which we have taken equal to unity. |
2 | |
3 | We note that, in case , one neutrino remains massless. This latter situation is viable as neutrino oscillations dictates the existence of at least two non-zero neutrino masses. |
4 | |
5 | Typically, the values of are larger than the sub-eV scale of the light neutrino masses, and so we will refer to further on as heavy Majorana neutrinos, or simply heavy neutrinos. |
6 | See, e.g., ref. [123] for a derivation of the seesaw relations at arbitrary order in . |
7 | |
8 | Higher-order corrections lead, in particular, to deviations from unitarity of the PMNS matrix [100]. |
References
- Pauli, W. Pauli Letter Collection: Letter to Lise Meitner. Published in Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg, Letter 259. 1930. Available online: https://cds.cern.ch/record/83282?ln=en (accessed on 28 March 2024).
- Fermi, E. Tentativo di una Teoria Dei Raggi β. Il Nuovo Cimento 1934, 11, 1–19. [Google Scholar] [CrossRef]
- Reines, F.; Cowan, C.L. The neutrino. Nature 1956, 178, 446–449. [Google Scholar] [CrossRef]
- Cowan, C.L.; Reines, F.; Harrison, F.B.; Kruse, H.W.; McGuire, A.D. Detection of the Free Neutrino: A Confirmation. Science 1956, 124, 103–104. [Google Scholar] [CrossRef] [PubMed]
- Vitagliano, E.; Tamborra, I.; Raffelt, G. Grand Unified Neutrino Spectrum at Earth: Sources and Spectral Components. Rev. Mod. Phys. 2020, 92, 45006. [Google Scholar] [CrossRef]
- Abbott, B.P. et al. [LIGO Scientific Collaboration and Virgo Collaboration] GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Phys. Rev. Lett. 2016, 116, 241103. [Google Scholar] [CrossRef] [PubMed]
- Glashow, S.L. Partial Symmetries of Weak Interactions. Nucl. Phys. 1961, 22, 579–588. [Google Scholar] [CrossRef]
- Weinberg, S. A Model of Leptons. Phys. Rev. Lett. 1967, 19, 1264–1266. [Google Scholar] [CrossRef]
- Salam, A. Weak and Electromagnetic Interactions. In Selected Papers of Abdus Salam; World Scientific Series in 20th Century Physics; World Scientific: Singapore, 1994; pp. 244–254. [Google Scholar] [CrossRef]
- Ahmad, Q.R. et al. [SNO Collaboration] Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory. Phys. Rev. Lett. 2002, 89, 011301. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, Y. et al. [Super-Kamiokande Collaboration] Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 1998, 81, 1562–1567. [Google Scholar] [CrossRef]
- Arbey, A.; Mahmoudi, F. Dark matter and the early Universe: A review. Prog. Part. Nucl. Phys. 2021, 119, 103865. [Google Scholar] [CrossRef]
- Di Bari, P. On the origin of matter in the Universe. Prog. Part. Nucl. Phys. 2022, 122, 103913. [Google Scholar] [CrossRef]
- Giunti, C.; Kim, C.W. Fundamentals of Neutrino Physics and Astrophysics; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Lesgourgues, J.; Mangano, G.; Miele, G.; Pastor, S. Neutrino Cosmology; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Workman, R.L. et al. [PDG Collaboration] Review of Particle Physics. Prog. Theor. Exp. Phys. 2022, 2022, 083C01. [Google Scholar] [CrossRef]
- Formaggio, J.A.; Zeller, G.P. From eV to EeV: Neutrino Cross Sections Across Energy Scales. Rev. Mod. Phys. 2012, 84, 1307–1341. [Google Scholar] [CrossRef]
- Pontecorvo, B. Mesonium and antimesonium. Sov. Phys. JETP 1957, 6, 429. [Google Scholar]
- Pontecorvo, B. Inverse beta processes and nonconservation of lepton charge. Zh. Eksp. Teor. Fiz. 1957, 34, 247. [Google Scholar]
- Maki, Z.; Nakagawa, M.; Sakata, S. Remarks on the unified model of elementary particles. Prog. Theor. Phys. 1962, 28, 870–880. [Google Scholar] [CrossRef]
- Olive, K.A. et al. [PDG Collaboration] Review of Particle Physics. Chin. Phys. C 2014, 38, 090001. [Google Scholar] [CrossRef]
- Bilenky, S.M.; Hosek, J.; Petcov, S.T. On Oscillations of Neutrinos with Dirac and Majorana Masses. Phys. Lett. B 1980, 94, 495–498. [Google Scholar] [CrossRef]
- Kayser, B. On the Quantum Mechanics of Neutrino Oscillation. Phys. Rev. D 1981, 24, 110. [Google Scholar] [CrossRef]
- Kiers, K.; Nussinov, S.; Weiss, N. Coherence effects in neutrino oscillations. Phys. Rev. D 1996, 53, 537–547. [Google Scholar] [CrossRef]
- Akhmedov, E.K.; Smirnov, A.Y. Paradoxes of neutrino oscillations. Phys. Atom. Nucl. 2009, 72, 1363–1381. [Google Scholar] [CrossRef]
- Akhmedov, E.K.; Kopp, J. Neutrino Oscillations: Quantum Mechanics vs. Quantum Field Theory. J. High Energy Phys. 2010, 04, 008, Erratumed in J. High Energy Phys. 2013, 10, 052. [Google Scholar] [CrossRef]
- Wolfenstein, L. Neutrino Oscillations in Matter. Phys. Rev. D 1978, 17, 2369–2374. [Google Scholar] [CrossRef]
- Freund, M.; Lindner, M.; Petcov, S.T.; Romanino, A. Testing matter effects in very long baseline neutrino oscillation experiments. Nucl. Phys. B 2000, 578, 27–57. [Google Scholar] [CrossRef]
- Freund, M. Analytic approximations for three neutrino oscillation parameters and probabilities in matter. Phys. Rev. D 2001, 64, 053003. [Google Scholar] [CrossRef]
- Akhmedov, E.K.; Johansson, R.; Lindner, M.; Ohlsson, T.; Schwetz, T. Series expansions for three flavor neutrino oscillation probabilities in matter. J. High Energy Phys. 2004, 04, 078. [Google Scholar] [CrossRef]
- Mikheyev, S.P.; Smirnov, A.Y. Resonance Amplification of Oscillations in Matter and Spectroscopy of Solar Neutrinos. Sov. J. Nucl. Phys. 1985, 42, 913–917. [Google Scholar]
- Cleveland, B.T.; Daily, T.; Davis, R., Jr.; Distel, J.R.; Lande, K.; Lee, C.K.; Wildenhain, P.S.; Ullman, J. Measurement of the solar electron neutrino flux with the Homestake chlorine detector. Astrophys. J. 1998, 496, 505–526. [Google Scholar] [CrossRef]
- Aharmim, B. et al. [SNO Collaboration] Combined Analysis of all Three Phases of Solar Neutrino Data from the Sudbury Neutrino Observatory. Phys. Rev. C 2013, 88, 025501. [Google Scholar] [CrossRef]
- Kaether, F.; Hampel, W.; Heusser, G.; Kiko, J.; Kirsten, T. Reanalysis of the GALLEX solar neutrino flux and source experiments. Phys. Lett. B 2010, 685, 47–54. [Google Scholar] [CrossRef]
- Abdurashitov, J.N. et al. [SAGE Collaboration] Measurement of the solar neutrino capture rate with gallium metal. III: Results for the 2002–2007 data-taking period. Phys. Rev. C 2009, 80, 015807. [Google Scholar] [CrossRef]
- Abe, K. et al. [Super-Kamiokande Collaboration] Solar neutrino measurements using the full data period of Super-Kamiokande-IV. arXiv 2023, arXiv:2312.12907. [Google Scholar]
- Abbasi, R. et al. [IceCube Collaboration] Measurement of atmospheric neutrino mixing with improved IceCube DeepCore calibration and data processing. Phys. Rev. D 2023, 108, 012014. [Google Scholar] [CrossRef]
- Wester, T. et al. [Super-Kamiokande Collaboration] Atmospheric neutrino oscillation analysis with neutron tagging and an expanded fiducial volume in Super-Kamiokande I-V. arXiv 2023, arXiv:2311.05105. [Google Scholar]
- Abe, Y. et al. [Double Chooz Collaboration] Improved measurements of the neutrino mixing angle θ13 with the Double Chooz detector. J. High Energy Phys. 2014, 10, 086, Erratumed in J. High Energy Phys. 2015, 02, 074. [Google Scholar] [CrossRef]
- Adey, D. et al. [Daya Bay Collaboration] Measurement of the Electron Antineutrino Oscillation with 1958 Days of Operation at Daya Bay. Phys. Rev. Lett. 2018, 121, 241805. [Google Scholar] [CrossRef] [PubMed]
- Bak, G. et al. [RENO Collaboration] Measurement of Reactor Antineutrino Oscillation Amplitude and Frequency at RENO. Phys. Rev. Lett. 2018, 121, 201801. [Google Scholar] [CrossRef]
- Gando, A. et al. [KamLAND Collaboration] Reactor On-Off Antineutrino Measurement with KamLAND. Phys. Rev. D 2013, 88, 033001. [Google Scholar] [CrossRef]
- Ahn, M.H. et al. [K2K Collaboration] Measurement of Neutrino Oscillation by the K2K Experiment. Phys. Rev. D 2006, 74, 072003. [Google Scholar] [CrossRef]
- Adamson, P. et al. [MINOS Collaboration] Measurement of Neutrino and Antineutrino Oscillations Using Beam and Atmospheric Data in MINOS. Phys. Rev. Lett. 2013, 110, 251801. [Google Scholar] [CrossRef] [PubMed]
- Agafonova, N. et al. [OPERA Collaboration] Final Results of the OPERA Experiment on ντ Appearance in the CNGS Neutrino Beam. Phys. Rev. Lett. 2018, 120, 211801, Erratumed in Phys. Rev. Lett. 2018, 121, 139901. [Google Scholar] [CrossRef]
- Abe, K. et al. [T2K Collaboration] Combined Analysis of Neutrino and Antineutrino Oscillations at T2K. Phys. Rev. Lett. 2017, 118, 151801. [Google Scholar] [CrossRef] [PubMed]
- Abe, K. et al. [T2K Collaboration] Search for CP Violation in Neutrino and Antineutrino Oscillations by the T2K Experiment with 2.2×1021 Protons on Target. Phys. Rev. Lett. 2018, 121, 171802. [Google Scholar] [CrossRef] [PubMed]
- Adamson, P. et al. [NOvA Collaboration] Measurement of the neutrino mixing angle θ23 in NOvA. Phys. Rev. Lett. 2017, 118, 151802. [Google Scholar] [CrossRef] [PubMed]
- Acero, M.A. et al. [NOvA Collaboration] New constraints on oscillation parameters from νe appearance and νμ disappearance in the NOvA experiment. Phys. Rev. D 2018, 98, 032012. [Google Scholar] [CrossRef]
- de Salas, P.F.; Forero, D.V.; Gariazzo, S.; Martínez-Miravé, P.; Mena, O.; Ternes, C.A.; Tórtola, M.; Valle, J.W.F. 2020 global reassessment of the neutrino oscillation picture. J. High Energy Phys. 2021, 02, 071. [Google Scholar] [CrossRef]
- Esteban, I.; Gonzalez-Garcia, M.C.; Maltoni, M.; Schwetz, T.; Zhou, A. The fate of hints: Updated global analysis of three-flavor neutrino oscillations. J. High Energy Phys. 2020, 09, 178. [Google Scholar] [CrossRef]
- Capozzi, F.; Di Valentino, E.; Lisi, E.; Marrone, A.; Melchiorri, A.; Palazzo, A. Unfinished fabric of the three neutrino paradigm. Phys. Rev. D 2021, 104, 083031. [Google Scholar] [CrossRef]
- NuFIT Collaboration “Nufit v5.2”. Available online: http://www.nu-fit.org (accessed on 28 March 2024).
- Gariazzo, S.; Gerbino, M.; Brinckmann, T.; Lattanzi, M.; Mena, O.; Schwetz, T.; Choudhury, S.R.; Freese, K.; Hannestad, S.; Ternes, C.A.; et al. Neutrino mass and mass ordering: No conclusive evidence for normal ordering. J. Cosmol. Astropart. Phys. 2022, 10, 010. [Google Scholar] [CrossRef]
- Ayres, D.S. et al. [NOvA Collaboration] NOvA: Proposal to Build a 30 Kiloton Off-Axis Detector to Study νμ→νe Oscillations in the NuMI Beamline. arXiv 2004, arXiv:hep-ex/0503053. [Google Scholar]
- Hewes, V. et al. [DUNE Collaboration] Deep Underground Neutrino Experiment (DUNE) Near Detector Conceptual Design Report. Instruments 2021, 5, 31. [Google Scholar] [CrossRef]
- Ahmed, S. et al. [ICAL Collaboration] Physics Potential of the ICAL detector at the India-based Neutrino Observatory (INO). Pramana 2017, 88, 79. [Google Scholar] [CrossRef]
- Aartsen, M.G. et al. [IceCube-Gen2 Collaboration] Letter of Intent: The Precision IceCube Next Generation Upgrade (PINGU). arXiv 2004, arXiv:1401.2046. [Google Scholar]
- Aartsen, M.G. et al. [IceCube-PINGU Collaboration] PINGU: A Vision for Neutrino and Particle Physics at the South Pole. J. Phys. Nucl. Part. Phys. 2017, 44, 054006. [Google Scholar] [CrossRef]
- Aiello, S. et al. [KM3NET Collaboration] Determining the neutrino mass ordering and oscillation parameters with KM3NeT/ORCA. Eur. Phys. J. C 2022, 82, 26. [Google Scholar] [CrossRef]
- Abe, K. et al. [Hyper-Kamiokande proto-Collaboration] Hyper-Kamiokande Design Report. arXiv 2018, arXiv:1805.04163. [Google Scholar]
- Petcov, S.T.; Piai, M. The LMA MSW solution of the solar neutrino problem, inverted neutrino mass hierarchy and reactor neutrino experiments. Phys. Lett. B 2002, 533, 94–106. [Google Scholar] [CrossRef]
- An, F. et al. [JUNO Collaboration] Neutrino Physics with JUNO. J. Phys. Nucl. Part. Phys. 2016, 43, 030401. [Google Scholar] [CrossRef]
- Abusleme, A. et al. [JUNO Collaboration] JUNO physics and detector. Prog. Part. Nucl. Phys. 2022, 123, 103927. [Google Scholar] [CrossRef]
- Wolf, J. The KATRIN Neutrino Mass Experiment. Nucl. Instrum. Meth. A 2010, 623, 442–444. [Google Scholar] [CrossRef]
- Aker, M. et al. [KATRIN Collaboration] Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN. Phys. Rev. Lett. 2019, 123, 221802. [Google Scholar] [CrossRef] [PubMed]
- Aker, M. et al. [KATRIN Collaboration] First direct neutrino-mass measurement with sub-eV sensitivity. arXiv 2021, arXiv:2105.08533. [Google Scholar]
- Gando, A. et al. [KamLAND-Zen Collaboration] Search for Majorana Neutrinos near the Inverted Mass Hierarchy Region with KamLAND-Zen. Phys. Rev. Lett. 2016, 117, 082503, Addendumed in Phys. Rev. Lett. 2016, 117, 109903. [Google Scholar] [CrossRef] [PubMed]
- Agostini, M. et al. [GERDA Collaboration] Final Results of GERDA on the Search for Neutrinoless Double-β Decay. Phys. Rev. Lett. 2020, 125, 252502. [Google Scholar] [CrossRef]
- Penedo, J.T.; Petcov, S.T. The 10−3 eV frontier in neutrinoless double beta decay. Phys. Lett. B 2018, 786, 410–417. [Google Scholar] [CrossRef]
- Aghanim, N. et al. [Planck Collaboration] Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2021, 641, A6, Erratumed in Astron. Astrophys. 2021, 652, C4. [Google Scholar] [CrossRef]
- Lesgourgues, J. et al. [Particle Data Group] Neutrinos in Cosmology (Review of Particle Physics). Prog. Theor. Exp. Phys. 2020, 2020, 083C01. [Google Scholar] [CrossRef]
- Capozzi, F.; Di Valentino, E.; Lisi, E.; Marrone, A.; Melchiorri, A.; Palazzo, A. Addendum to “Global constraints on absolute neutrino masses and their ordering”. Phys. Rev. D 2020, 101, 116013. [Google Scholar] [CrossRef]
- Vagnozzi, S.; Giusarma, E.; Mena, O.; Freese, K.; Gerbino, M.; Ho, S.; Lattanzi, M. Unveiling ν secrets with cosmological data: Neutrino masses and mass hierarchy. Phys. Rev. D 2017, 96, 123503. [Google Scholar] [CrossRef]
- Roy Choudhury, S.; Hannestad, S. Updated results on neutrino mass and mass hierarchy from cosmology with Planck 2018 likelihoods. J. Cosmol. Astropart. Phys. 2020, 07, 037. [Google Scholar] [CrossRef]
- Ivanov, M.M.; Simonović, M.; Zaldarriaga, M. Cosmological Parameters and Neutrino Masses from the Final Planck and Full-Shape BOSS Data. Phys. Rev. D 2020, 101, 083504. [Google Scholar] [CrossRef]
- Abbott, T.M.C. et al. [DES Collaboration] Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and weak lensing. Phys. Rev. D 2022, 105, 023520. [Google Scholar] [CrossRef]
- Tanseri, I.; Hagstotz, S.; Vagnozzi, S.; Giusarma, E.; Freese, K. Updated neutrino mass constraints from galaxy clustering and CMB lensing-galaxy cross-correlation measurements. J. High Energy Astrophys. 2022, 36, 1–26. [Google Scholar] [CrossRef]
- Pascoli, S.; Petcov, S.T.; Riotto, A. Leptogenesis and Low Energy CP Violation in Neutrino Physics. Nucl. Phys. B 2007, 774, 1–52. [Google Scholar] [CrossRef]
- Krastev, P.I.; Petcov, S.T. Resonance Amplification and T-Violation Effects in Three Neutrino Oscillations in the Earth. Phys. Lett. B 1988, 205, 84–92. [Google Scholar] [CrossRef]
- Rahaman, U.; Razzaque, S.; Sankar, S.U. A Review of the Tension between the T2K and NOνA Appearance Data and Hints to New Physics. Universe 2022, 8, 109. [Google Scholar] [CrossRef]
- Abe, K. et al. [T2K Collaboration] Indication of Electron Neutrino Appearance from an Accelerator-produced Off-axis Muon Neutrino Beam. Phys. Rev. Lett. 2011, 107, 041801. [Google Scholar] [CrossRef] [PubMed]
- Abe, K. et al. [Hyper-Kamiokande proto-Collaboration] Physics potentials with the second Hyper-Kamiokande detector in Korea. Prog. Theor. Exp. Phys. 2018, 2018, 063C01. [Google Scholar] [CrossRef]
- Panda, P.; Ghosh, M.; Mishra, P.; Mohanta, R. Extracting the best physics sensitivity from T2HKK: A study on optimal detector volume. Phys. Rev. D 2022, 106, 073006. [Google Scholar] [CrossRef]
- Langacker, P.; Petcov, S.T.; Steigman, G.; Toshev, S. On the Mikheev-Smirnov-Wolfenstein (MSW) Mechanism of Amplification of Neutrino Oscillations in Matter. Nucl. Phys. B 1987, 282, 589–609. [Google Scholar] [CrossRef]
- Pal, P.B. Dirac, Majorana and Weyl fermions. Am. J. Phys. 2011, 79, 485–498. [Google Scholar] [CrossRef]
- Bilenky, S.M.; Petcov, S.T. Massive Neutrinos and Neutrino Oscillations. Rev. Mod. Phys. 1987, 59, 671, Erratumed in Rev. Mod. Phys. 1989, 61, 169; Erratumed in Rev. Mod. Phys. 1988, 60, 575–575. [Google Scholar] [CrossRef]
- Agostini, M.; Benato, G.; Detwiler, J.A.; Menéndez, J.; Vissani, F. Toward the discovery of matter creation with neutrinoless ββ decay. Rev. Mod. Phys. 2023, 95, 025002. [Google Scholar] [CrossRef]
- Argüelles, C.A.; Barenboim, G.; Bustamante, M.; Coloma, P.; Denton, P.B.; Esteban, I.; Farzan, Y.; Martínez, E.F.; Forero, D.V.; Gago, A.M.; et al. Snowmass white paper: Beyond the standard model effects on neutrino flavor: Submitted to the proceedings of the US community study on the future of particle physics (Snowmass 2021). Eur. Phys. J. C 2023, 83, 15. [Google Scholar] [CrossRef]
- Voutsinas, G.; Perez, E.; Dam, M.; Janot, P. Beam-beam effects on the luminosity measurement at LEP and the number of light neutrino species. Phys. Lett. B 2020, 800, 135068. [Google Scholar] [CrossRef]
- Janot, P.; Jadach, S. Improved Bhabha cross section at LEP and the number of light neutrino species. Phys. Lett. B 2020, 803, 135319. [Google Scholar] [CrossRef]
- Acero, M.A.; Argüelles, C.A.; Hostert, M.; Kalra, D.; Karagiorgi, G.; Kelly, K.J.; Littlejohn, B.; Machado, P.; Pettus, W.; Toups, M.; et al. White Paper on Light Sterile Neutrino Searches and Related Phenomenology. arXiv 2022, arXiv:2203.07323. [Google Scholar]
- Elliott, S.R.; Gavrin, V.; Haxton, W. The gallium anomaly. Prog. Part. Nucl. Phys. 2024, 134, 104082. [Google Scholar] [CrossRef]
- Zhang, C.; Qian, X.; Fallot, M. Reactor antineutrino flux and anomaly. arXiv 2023, arXiv:2310.13070. [Google Scholar] [CrossRef]
- Acciarri, R. et al. [ICARUS-WA104 Collaboration, LArl-ND Collaboration, MicroBooNE Collaboration] A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam. arXiv 2015, arXiv:1503.01520. [Google Scholar]
- Cianci, D.; Furmanski, A.; Karagiorgi, G.; Ross-Lonergan, M. Prospects of Light Sterile Neutrino Oscillation and CP Violation Searches at the Fermilab Short Baseline Neutrino Facility. Phys. Rev. D 2017, 96, 055001. [Google Scholar] [CrossRef]
- Boyarsky, A.; Drewes, M.; Lasserre, T.; Mertens, S.; Ruchayskiy, O. Sterile neutrino Dark Matter. Prog. Part. Nucl. Phys. 2019, 104, 1–45. [Google Scholar] [CrossRef]
- Forero, D.V.; Giunti, C.; Ternes, C.A.; Tortola, M. Nonunitary neutrino mixing in short and long-baseline experiments. Phys. Rev. D 2021, 104, 075030. [Google Scholar] [CrossRef]
- Gariazzo, S.; Martínez-Miravé, P.; Mena, O.; Pastor, S.; Tórtola, M. Non-unitary three-neutrino mixing in the early Universe. J. Cosmol. Astropart. Phys. 2023, 03, 046. [Google Scholar] [CrossRef]
- Blennow, M.; Fernández-Martínez, E.; Hernández-García, J.; López-Pavón, J.; Marcano, X.; Naredo-Tuero, D. Bounds on lepton non-unitarity and heavy neutrino mixing. arXiv 2023, arXiv:2306.01040. [Google Scholar] [CrossRef]
- Guzzo, M.M.; Masiero, A.; Petcov, S.T. On the MSW effect with massless neutrinos and no mixing in the vacuum. Phys. Lett. B 1991, 260, 154–160. [Google Scholar] [CrossRef]
- Farzan, Y.; Tortola, M. Neutrino oscillations and Non-Standard Interactions. Front. Phys. 2018, 6, 10. [Google Scholar] [CrossRef]
- Dev, B.; Babu, K.S.; Denton, P.; Machado, P.; Argüelles, C.A.; Barrow, J.L.; Chatterjee, S.S.; Chen, M.C.; de Gouvêa, A.; Dutta, B.; et al. Neutrino Non-Standard Interactions: A Status Report. SciPost Phys. Proc. 2019, 2, 001. [Google Scholar] [CrossRef]
- Esteban, I.; Gonzalez-Garcia, M.C.; Maltoni, M.; Martinez-Soler, I.; Salvado, J. Updated constraints on non-standard interactions from global analysis of oscillation data. J. High Energy Phys. 2018, 08, 180, Addendumed in J. High Energy Phys. 2020, 12, 152. [Google Scholar] [CrossRef]
- Coloma, P.; Gonzalez-Garcia, M.C.; Maltoni, M.; Pinheiro, J.a.P.; Urrea, S. Global constraints on non-standard neutrino interactions with quarks and electrons. J. High Energy Phys. 2023, 08, 032. [Google Scholar] [CrossRef]
- Weinberg, S. Baryon and Lepton Nonconserving Processes. Phys. Rev. Lett. 1979, 43, 1566–1570. [Google Scholar] [CrossRef]
- Grzadkowski, B.; Iskrzynski, M.; Misiak, M.; Rosiek, J. Dimension-Six Terms in the Standard Model Lagrangian. J. High Energy Phys. 2010, 10, 085. [Google Scholar] [CrossRef]
- Minkowski, P. μ→eγ at a Rate of One Out of 109 Muon Decays? Phys. Lett. B 1977, 67, 421–428. [Google Scholar] [CrossRef]
- Yanagida, T. Horizontal Symmetry and Masses Of Neutrinos. Conf. Proc. 1979, C7902131, 95–99. [Google Scholar] [CrossRef]
- Gell-Mann, M.; Ramond, P.; Slansky, R. Complex Spinors and Unified Theories. Conf. Proc. 1979, C790927, 315–321. [Google Scholar]
- Glashow, S. The Future of Elementary Particle Physics. In Quarks and Leptons; NATO Advanced Study Institutes Series; Springer: Boston, MA, USA, 1980; Volume 61, pp. 687–713. [Google Scholar] [CrossRef]
- Mohapatra, R.N.; Senjanovic, G. Neutrino Mass and Spontaneous Parity Violation. Phys. Rev. Lett. 1980, 44, 912. [Google Scholar] [CrossRef]
- Magg, M.; Wetterich, C. Neutrino Mass Problem and Gauge Hierarchy. Phys. Lett. B 1980, 94, 61–64. [Google Scholar] [CrossRef]
- Schechter, J.; Valle, J.W.F. Neutrino Masses in SU(2) × U(1) Theories. Phys. Rev. D 1980, 22, 2227. [Google Scholar] [CrossRef]
- Mohapatra, R.N.; Senjanovic, G. Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation. Phys. Rev. D 1981, 23, 165. [Google Scholar] [CrossRef]
- Foot, R.; Lew, H.; He, X.G.; Joshi, G.C. Seesaw Neutrino Masses Induced by a Triplet of Leptons. Z. Phys. C 1989, 44, 441. [Google Scholar] [CrossRef]
- Cai, Y.; Han, T.; Li, T.; Ruiz, R. Lepton Number Violation: Seesaw Models and Their Collider Tests. Front. Phys. 2018, 6, 40. [Google Scholar] [CrossRef]
- Zee, A. A Theory of Lepton Number Violation, Neutrino Majorana Mass, and Oscillation. Phys. Lett. B 1980, 93, 389, Erratumed in Phys. Lett. B 1980, 95, 461. [Google Scholar] [CrossRef]
- Petcov, S.T. Remarks on the Zee model of neutrino mixing (μ →e + γ, νH →νL + γ, etc.). Phys. Lett. B 1982, 115, 401–406. [Google Scholar] [CrossRef]
- Petcov, S.T.; Toshev, S.T. Conservation of Lepton Charges, Massive Majorana and Massless Neutrinos. Phys. Lett. B 1984, 143, 175–178. [Google Scholar] [CrossRef]
- Babu, K.S.; Ma, E. Natural Hierarchy of Radiatively Induced Majorana Neutrino Masses. Phys. Rev. Lett. 1988, 61, 674. [Google Scholar] [CrossRef] [PubMed]
- Farzan, Y.; Pascoli, S.; Schmidt, M.A. Recipes and Ingredients for Neutrino Mass at Loop Level. J. High Energy Phys. 2013, 03, 107. [Google Scholar] [CrossRef]
- Grimus, W.; Lavoura, L. The Seesaw mechanism at arbitrary order: Disentangling the small scale from the large scale. J. High Energy Phys. 2000, 11, 042. [Google Scholar] [CrossRef]
- Grimus, W.; Lavoura, L. One-loop corrections to the seesaw mechanism in the multi-Higgs-doublet standard model. Phys. Lett. B 2002, 546, 86–95. [Google Scholar] [CrossRef]
- Aristizabal Sierra, D.; Yaguna, C.E. On the importance of the 1-loop finite corrections to seesaw neutrino masses. J. High Energy Phys. 2011, 08, 013. [Google Scholar] [CrossRef]
- Lopez-Pavon, J.; Pascoli, S.; Wong, C.F. Can heavy neutrinos dominate neutrinoless double beta decay? Phys. Rev. D 2013, 87, 093007. [Google Scholar] [CrossRef]
- Lopez-Pavon, J.; Molinaro, E.; Petcov, S.T. Radiative Corrections to Light Neutrino Masses in Low Scale Type I Seesaw Scenarios and Neutrinoless Double Beta Decay. J. High Energy Phys. 2015, 11, 030. [Google Scholar] [CrossRef]
- Petcov, S.T. On Pseudodirac Neutrinos, Neutrino Oscillations and Neutrinoless Double beta Decay. Phys. Lett. B 1982, 110, 245–249. [Google Scholar] [CrossRef]
- Abada, A.; Arcadi, G.; Domcke, V.; Lucente, M. Lepton number violation as a key to low-scale leptogenesis. J. Cosmol. Astropart. Phys. 2015, 11, 041. [Google Scholar] [CrossRef]
- Atre, A.; Han, T.; Pascoli, S.; Zhang, B. The Search for Heavy Majorana Neutrinos. J. High Energy Phys. 2009, 05, 030. [Google Scholar] [CrossRef]
- Deppisch, F.F.; Bhupal Dev, P.S.; Pilaftsis, A. Neutrinos and Collider Physics. New J. Phys. 2015, 17, 075019. [Google Scholar] [CrossRef]
- Chrzaszcz, M.; Drewes, M.; Gonzalo, T.E.; Harz, J.; Krishnamurthy, S.; Weniger, C. A frequentist analysis of three right-handed neutrinos with GAMBIT. Eur. Phys. J. C 2020, 80, 569. [Google Scholar] [CrossRef]
- Bolton, P.D.; Deppisch, F.F.; Bhupal Dev, P.S. Neutrinoless double beta decay versus other probes of heavy sterile neutrinos. J. High Energy Phys. 2020, 03, 170. [Google Scholar] [CrossRef]
- Urquía-Calderón, K.A.; Timiryasov, I.; Ruchayskiy, O. Heavy neutral leptons—Advancing into the PeV domain. J. High Energy Phys. 2023, 08, 167. [Google Scholar] [CrossRef]
- Agrawal, P.; Bauer, M.; Beacham, J.; Berlin, A.; Boyarsky, A.; Cebrian, S.; Cid-Vidal, X.; d’Enterria, D.; De Roeck, A.; Drewes, M.; et al. Feebly-interacting particles: FIPs 2020 workshop report. Eur. Phys. J. C 2021, 81, 1015. [Google Scholar] [CrossRef]
- Abdullahi, A.M.; Alzas, P.B.; Batell, B.; Boyarsky, A.; Carbajal, S.; Chatterjee, A.; Crespo-Anadon, J.A.; Deppisch, F.F.; De Roeck, A.; Drewes, M.; et al. The Present and Future Status of Heavy Neutral Leptons, in 2022 Snowmass Summer Study. arXiv 2022, arXiv:2203.08039. [Google Scholar]
- Antel, C.; Battaglieri, M.; Beacham, J.; Boehm, C.; Buchmüller, O.; Calore, F.; Carenza, P.; Chauhan, B.; Cladè, P.; Coloma, P.; et al. Feebly Interacting Particles: FIPs 2022 workshop report. Eur. Phys. J. C 2023, 83, 1122. [Google Scholar] [CrossRef]
- Antusch, S.; Cazzato, E.; Fischer, O. Sterile neutrino searches at future e−e+, pp, and e−p colliders. Int. J. Mod. Phys. A 2017, 32, 1750078. [Google Scholar] [CrossRef]
- Abada, A. et al. [FCC Collaboration] FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2. Eur. Phys. J. Spec. Top. 2019, 228, 261–623. [Google Scholar] [CrossRef]
- Dong, M. et al. [CEPC Collaboration] CEPC Conceptual Design Report: Volume 2—Physics & Detector. arXiv 2018, arXiv:1811.10545. [Google Scholar]
- Li, P.; Liu, Z.; Lyu, K.F. Heavy neutral leptons at muon colliders. J. High Energy Phys. 2023, 03, 231. [Google Scholar] [CrossRef]
- Casas, J.A.; Ibarra, A. Oscillating neutrinos and μ→e,γ. Nucl. Phys. B 2001, 618, 171–204. [Google Scholar] [CrossRef]
- Primulando, R.; Julio, J.; Uttayarat, P. Scalar phenomenology in type-II seesaw model. J. High Energy Phys. 2019, 08, 024. [Google Scholar] [CrossRef]
- Ashanujjaman, S.; Ghosh, K. Revisiting type-II see-saw: Present limits and future prospects at LHC. J. High Energy Phys. 2022, 03, 195. [Google Scholar] [CrossRef]
- Das, A.; Mandal, S. Bounds on the triplet fermions in type-III seesaw and implications for collider searches. Nucl. Phys. B 2021, 966, 115374. [Google Scholar] [CrossRef]
- Ashanujjaman, S.; Ghosh, K. Type-III see-saw: Phenomenological implications of the information lost in decoupling from high-energy to low-energy. Phys. Lett. B 2021, 819, 136403. [Google Scholar] [CrossRef]
- Fukugita, M.; Yanagida, T. Baryogenesis Without Grand Unification. Phys. Lett. B 1986, 174, 45–47. [Google Scholar] [CrossRef]
- Sakharov, A.D. Violation of CP Invariance, C Asymmetry, and Baryon Asymmetry of the Universe. Sov. Phys. Uspekhi 1991, 5, 32–35, Corrected in Usp. Fiz. Nauk 1991, 161, 61. [Google Scholar] [CrossRef]
- Kuzmin, V.A.; Rubakov, V.A.; Shaposhnikov, M.E. On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe. Phys. Lett. B 1985, 155, 36. [Google Scholar] [CrossRef]
- D’Onofrio, M.; Rummukainen, K.; Tranberg, A. Sphaleron Rate in the Minimal Standard Model. Phys. Rev. Lett. 2014, 113, 141602. [Google Scholar] [CrossRef]
- Bodeker, D.; Buchmuller, W. Baryogenesis from the weak scale to the grand unification scale. Rev. Mod. Phys. 2021, 93, 035004. [Google Scholar] [CrossRef]
- Klarić, J.; Shaposhnikov, M.; Timiryasov, I. Reconciling resonant leptogenesis and baryogenesis via neutrino oscillations. Phys. Rev. D 2021, 104, 055010. [Google Scholar] [CrossRef]
- Abada, A.; Arcadi, G.; Domcke, V.; Drewes, M.; Klaric, J.; Lucente, M. Low-scale leptogenesis with three heavy neutrinos. J. High Energy Phys. 2019, 1, 164. [Google Scholar] [CrossRef]
- Klarić, J.; Shaposhnikov, M.; Timiryasov, I. Uniting Low-Scale Leptogenesis Mechanisms. Phys. Rev. Lett. 2021, 127, 111802. [Google Scholar] [CrossRef] [PubMed]
- Drewes, M.; Georis, Y.; Klarić, J. Mapping the Viable Parameter Space for Testable Leptogenesis. Phys. Rev. Lett. 2022, 128, 051801. [Google Scholar] [CrossRef] [PubMed]
- Granelli, A.; Klarić, J.; Petcov, S.T. Tests of low-scale leptogenesis in charged lepton flavour violation experiments. Phys. Lett. B 2023, 837, 137643. [Google Scholar] [CrossRef]
- King, S.F. Invariant see-saw models and sequential dominance. Nucl. Phys. B 2007, 786, 52–83. [Google Scholar] [CrossRef]
- Chen, P.; Ding, G.J.; King, S.F. Leptogenesis and residual CP symmetry. J. High Energy Phys. 2016, 03, 206. [Google Scholar] [CrossRef]
- Hagedorn, C.; Molinaro, E. Flavor and CP symmetries for leptogenesis and 0 νββ decay. Nucl. Phys. B 2017, 919, 404–469. [Google Scholar] [CrossRef]
- Anisimov, A.; Blanchet, S.; Di Bari, P. Viability of Dirac phase leptogenesis. J. Cosmol. Astropart. Phys. 2008, 04, 033. [Google Scholar] [CrossRef]
- Molinaro, E.; Petcov, S.T. The Interplay Between the ’Low’ and ’High’ Energy CP-Violation in Leptogenesis. Eur. Phys. J. C 2009, 61, 93–109. [Google Scholar] [CrossRef]
- Molinaro, E.; Petcov, S.T. A Case of Subdominant/Suppressed “High Energy” Contribution to the Baryon Asymmetry of the Universe in Flavoured Leptogenesis. Phys. Lett. B 2009, 671, 60–65. [Google Scholar] [CrossRef]
- Dolan, M.J.; Dutka, T.P.; Volkas, R.R. Dirac-Phase Thermal Leptogenesis in the extended Type-I Seesaw Model. J. Cosmol. Astropart. Phys. 2018, 06, 012. [Google Scholar] [CrossRef]
- Moffat, K.; Pascoli, S.; Petcov, S.T.; Turner, J. Leptogenesis from Low Energy CP Violation. J. High Energy Phys. 2019, 03, 034. [Google Scholar] [CrossRef]
- Granelli, A.; Moffat, K.; Petcov, S.T. Aspects of high scale leptogenesis with low-energy leptonic CP violation. J. High Energy Phys. 2021, 11, 149. [Google Scholar] [CrossRef]
- Granelli, A.; Pascoli, S.; Petcov, S.T. Low-Scale Leptogenesis with Low-Energy Dirac CP-Violation. Phys. Rev. D 2023, 108, L101302. [Google Scholar] [CrossRef]
- Nardi, E.; Nir, Y.; Roulet, E.; Racker, J. The Importance of flavor in leptogenesis. J. High Energy Phys. 2006, 01, 164. [Google Scholar] [CrossRef]
- Abada, A.; Davidson, S.; Josse-Michaux, F.X.; Losada, M.; Riotto, A. Flavour issues in leptogenesis. J. Cosmol. Astropart. Phys. 2006, 0604, 004. [Google Scholar] [CrossRef]
- Buchmuller, W.; Di Bari, P.; Plumacher, M. Leptogenesis for pedestrians. Ann. Phys. 2005, 315, 305–351. [Google Scholar] [CrossRef]
- Davidson, S.; Ibarra, A. A Lower bound on the right-handed neutrino mass from leptogenesis. Phys. Lett. B 2002, 535, 25–32. [Google Scholar] [CrossRef]
- Racker, J.; Pena, M.; Rius, N. Leptogenesis with small violation of B-L. J. Cosmol. Astropart. Phys. 2012, 07, 030. [Google Scholar] [CrossRef]
- Moffat, K.; Pascoli, S.; Petcov, S.T.; Schulz, H.; Turner, J. Three-flavored nonresonant leptogenesis at intermediate scales. Phys. Rev. D 2018, 98, 015036. [Google Scholar] [CrossRef]
- Pilaftsis, A.; Underwood, T.E.J. Resonant Leptogenesis. Nulcear Phys. B 2004, 692, 303–345. [Google Scholar] [CrossRef]
- Akhmedov, E.K.; Rubakov, V.A.; Smirnov, A.Y. Baryogenesis via neutrino oscillations. Phys. Rev. Lett. 1998, 81, 1359–1362. [Google Scholar] [CrossRef]
- Hambye, T. Leptogenesis: Beyond the minimal type I seesaw scenario. New J. Phys. 2012, 14, 125014. [Google Scholar] [CrossRef]
- Ma, E.; Sarkar, U. Neutrino masses and leptogenesis with heavy Higgs triplets. Phys. Rev. Lett. 1998, 80, 5716–5719. [Google Scholar] [CrossRef]
- Hambye, T.; Senjanovic, G. Consequences of triplet seesaw for leptogenesis. Phys. Lett. B 2004, 582, 73–81. [Google Scholar] [CrossRef]
- Affleck, I.; Dine, M. A New Mechanism for Baryogenesis. Nucl. Phys. B 1985, 249, 361–380. [Google Scholar] [CrossRef]
- Barrie, N.D.; Han, C.; Murayama, H. Affleck-Dine Leptogenesis from Higgs Inflation. Phys. Rev. Lett. 2022, 128, 141801. [Google Scholar] [CrossRef] [PubMed]
- Barrie, N.D.; Han, C.; Murayama, H. Type II Seesaw leptogenesis. J. High Energy Phys. 2022, 05, 160. [Google Scholar] [CrossRef]
- Hambye, T.; Lin, Y.; Notari, A.; Papucci, M.; Strumia, A. Constraints on neutrino masses from leptogenesis models. Nucl. Phys. B 2004, 695, 169–191. [Google Scholar] [CrossRef]
- Strumia, A. Sommerfeld corrections to type-II and III leptogenesis. Nucl. Phys. B 2009, 809, 308–317. [Google Scholar] [CrossRef]
- de Gouvea, A.; Murayama, H. Statistical test of anarchy. Phys. Lett. B 2003, 573, 94–100. [Google Scholar] [CrossRef]
- de Gouvea, A.; Murayama, H. Neutrino Mixing Anarchy: Alive and Kicking. Phys. Lett. B 2015, 747, 479–483. [Google Scholar] [CrossRef]
- Hall, L.J.; Murayama, H.; Weiner, N. Neutrino mass anarchy. Phys. Rev. Lett. 2000, 84, 2572–2575. [Google Scholar] [CrossRef]
- Harrison, P.F.; Perkins, D.H.; Scott, W.G. Tri-bimaximal mixing and the neutrino oscillation data. Phys. Lett. B 2002, 530, 167. [Google Scholar] [CrossRef]
- Xing, Z.Z. Nearly tri bimaximal neutrino mixing and CP violation. Phys. Lett. B 2002, 533, 85–93. [Google Scholar] [CrossRef]
- Vissani, F. A Study of the scenario with nearly degenerate Majorana neutrinos. arXiv 1997, arXiv:hep-ph/9708483. [Google Scholar]
- Barger, V.D.; Pakvasa, S.; Weiler, T.J.; Whisnant, K. Bimaximal mixing of three neutrinos. Phys. Lett. B 1998, 437, 107–116. [Google Scholar] [CrossRef]
- Datta, A.; Ling, F.S.; Ramond, P. Correlated hierarchy, Dirac masses and large mixing angles. Nucl. Phys. B 2003, 671, 383–400. [Google Scholar] [CrossRef]
- Everett, L.L.; Stuart, A.J. Icosahedral (A(5)) Family Symmetry and the Golden Ratio Prediction for Solar Neutrino Mixing. Phys. Rev. D 2009, 79, 085005. [Google Scholar] [CrossRef]
- Kajiyama, Y.; Raidal, M.; Strumia, A. The Golden ratio prediction for the solar neutrino mixing. Phys. Rev. D 2007, 76, 117301. [Google Scholar] [CrossRef]
- Rodejohann, W. Unified Parametrization for Quark and Lepton Mixing Angles. Phys. Lett. B 2009, 671, 267–271. [Google Scholar] [CrossRef]
- Adulpravitchai, A.; Blum, A.; Rodejohann, W. Golden Ratio Prediction for Solar Neutrino Mixing. New J. Phys. 2009, 11, 063026. [Google Scholar] [CrossRef]
- Albright, C.H.; Dueck, A.; Rodejohann, W. Possible Alternatives to Tri-bimaximal Mixing. Eur. Phys. J. C 2010, 70, 1099–1110. [Google Scholar] [CrossRef]
- Kim, J.E.; Seo, M.S. Quark and lepton mixing angles with a dodeca-symmetry. J. High Energy Phys. 2011, 02, 097. [Google Scholar] [CrossRef]
- Ishimori, H.; Kobayashi, T.; Ohki, H.; Shimizu, Y.; Okada, H.; Tanimoto, M. Non-Abelian Discrete Symmetries in Particle Physics. Prog. Theor. Phys. Suppl. 2010, 183, 1–163. [Google Scholar] [CrossRef]
- Altarelli, G.; Feruglio, F. Discrete Flavor Symmetries and Models of Neutrino Mixing. Rev. Mod. Phys. 2010, 82, 2701–2729. [Google Scholar] [CrossRef]
- King, S.F.; Luhn, C. Neutrino Mass and Mixing with Discrete Symmetry. Rept. Prog. Phys. 2013, 76, 056201. [Google Scholar] [CrossRef] [PubMed]
- Petcov, S.T. Discrete Flavour Symmetries, Neutrino Mixing and Leptonic CP Violation. Eur. Phys. J. C 2018, 78, 709. [Google Scholar] [CrossRef]
- Feruglio, F.; Romanino, A. Lepton flavor symmetries. Rev. Mod. Phys. 2021, 93, 015007. [Google Scholar] [CrossRef]
- Feruglio, F.; Hagedorn, C.; Ziegler, R. Lepton Mixing Parameters from Discrete and CP Symmetries. J. High Energy Phys. 2013, 7, 27. [Google Scholar] [CrossRef]
- Holthausen, M.; Lindner, M.; Schmidt, M.A. CP and Discrete Flavour Symmetries. J. High Energy Phys. 2013, 4, 122. [Google Scholar] [CrossRef]
- Agarwalla, S.K.; Chatterjee, S.S.; Petcov, S.T.; Titov, A.V. Addressing Neutrino Mixing Models with DUNE and T2HK. Eur. Phys. J. C 2018, 78, 286. [Google Scholar] [CrossRef]
- Blennow, M.; Ghosh, M.; Ohlsson, T.; Titov, A. Testing Lepton Flavor Models at ESSnuSB. J. High Energy Phys. 2020, 7, 14. [Google Scholar] [CrossRef]
- Blennow, M.; Ghosh, M.; Ohlsson, T.; Titov, A. Probing Lepton Flavor Models at Future Neutrino Experiments. Phys. Rev. D 2020, 102, 115004. [Google Scholar] [CrossRef]
- Froggatt, C.D.; Nielsen, H.B. Hierarchy of Quark Masses, Cabibbo Angles and CP Violation. Nucl. Phys. B 1979, 147, 277–298. [Google Scholar] [CrossRef]
- Feruglio, F. Are neutrino masses modular forms. In From My Vast Repertoire⋯: Guido Altarelli’s Legacy; Levy, A., Forte, S., Ridolfi, G., Eds.; World Scientific: Singapore, 2019; pp. 227–266. [Google Scholar] [CrossRef]
- de Medeiros Varzielas, I.; Levy, M.; Penedo, J.T.; Petcov, S.T. Quarks at the modular S4 cusp. J. High Energy Phys. 2023, 09, 196. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Granelli, A. Standard and Non-Standard Aspects of Neutrino Physics. Universe 2024, 10, 164. https://doi.org/10.3390/universe10040164
Granelli A. Standard and Non-Standard Aspects of Neutrino Physics. Universe. 2024; 10(4):164. https://doi.org/10.3390/universe10040164
Chicago/Turabian StyleGranelli, Alessandro. 2024. "Standard and Non-Standard Aspects of Neutrino Physics" Universe 10, no. 4: 164. https://doi.org/10.3390/universe10040164
APA StyleGranelli, A. (2024). Standard and Non-Standard Aspects of Neutrino Physics. Universe, 10(4), 164. https://doi.org/10.3390/universe10040164