Neutrino at Different Epochs of the Friedmann Universe
Abstract
:1. Introduction
2. The Enigmatic Neutrino
- Neutrinos are the second most abundant particles in the universe (after photons). The density of relic photons in the present era is cm−3, whereas the density of relic neutrinos (taking into account three flavors of neutrinos and antineutrinos) is cm−3.
- It is the lightest known particle with non-zero mass; the neutrino is more than a million times lighter than the electron (see Equation (1)).
- They explicitly break the symmetry of right and left; neutrinos are solely left-handed, antineutrinos are solely right-handed.
- Neutrinos are one of the components of dark matter. Their contribution to the total energy density of dark matter may be up to 1% in the present cosmological epoch.
- Neutrinos have one of the smallest cross sections for interaction with matter (∼ cm2 at MeV energies) which determines their enormous penetrating ability, allowing us to see the interiors of stars. In the future, they may allow us to study the first seconds, minutes, and hours of the birth of our universe; the early universe is opaque to electromagnetic radiation.
3. Grand Unified Neutrino Spectrum
4. Cosmological Manifestations of Neutrinos
4.1. Radiation-Dominated Epoch, Primordial Nucleosynthesis
- Abundance of the primordial D is estimated via the analysis of the quasar spectra containing absorption lines of damped Lyman-alpha (DLA) systems associated with metal-poor intergalactic medium, whose chemical composition is close to the primordial one. The analysis yields D/H (see [33] and references therein). There are circumstances that make it difficult to obtain estimates (and their uncertainties) for the abundance of primordial deuterium; a discussion of this problem is presented in [34].
4.2. Antineutrinos of Primordial Nucleosynthesis
4.3. Antineutrinos of Primordial Nucleosynthesis as the Probe of Baryon Asymmetry of the Universe
5. Sterile Neutrinos as an Extension of the Standard Model of Particle Physics and the CDM Cosmological Model
- Superheavy sterile neutrinos with masses of ∼ GeV. Such neutrinos are capable of generating baryon asymmetry in the early universe through the mechanism described in [42]. Moreover, their lifetime is so short that they will decay even before the Primordial Nucleosynthesis and thermodynamics will “erase” all traces of their existence. Today, only the fact of the presence of baryon asymmetry in the universe could indicate such a possibility (not excluding others).
- Heavy sterile neutrinos with masses of ∼ GeV. Such neutrinos have lifetimes comparable to or longer than the current age of the universe, and are therefore good candidates for cold dark matter particles. In addition, at high temperatures (∼100 GeV), they can lead to the generation of lepton asymmetry due to oscillations with active neutrinos [43].
- Light sterile neutrinos with masses of ∼1 eV–1 keV could have a significant impact on cosmology, which will be discussed in more detail below.
Light Sterile Neutrinos at the Radiation-Dominated Stage and During the Era of Primordial Nucleosynthesis
6. The Influence of Neutrinos on the Formation of the CMB Anisotropy
7. The Influence of Neutrinos on Subsequent Stages of the Evolution of the Universe
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
1 | The H0-tension is the most statistically significant deviation in modern cosmology (∼ CL), which is the discrepancy between the estimates of the Hubble parameter obtained on cosmological data [14] and “late” model-independent measurements of H0 in the local universe [21]. A detailed discussion of possible solutions can be found in the review [22]. |
2 | In reality, cosmological neutrinos are a mixture of neutrinos and antineutrinos, however, in the scientific literature, where this does not lead to confusion, neutrinos and antineutrinos are commonly referenced as neutrinos. |
3 | The title is taken from [29]. |
References
- Particle Data Group. Review of Particle Physics. Prog. Theor. Exp. Phys. 2022, 2022, 083C01. [Google Scholar] [CrossRef]
- Sakharov, A. Violation of CP Invariance, C Asymmetry, and Baryon Asymmetry of the universe. JETP Lett. 1967, 5, 32–35. [Google Scholar]
- Riotto, A.; Trodden, M. Recent Progress in Baryogenesis. Annu. Rev. Nucl. Part. Sci. 1999, 49, 35–75. [Google Scholar] [CrossRef]
- Bertone, G.; Hooper, D.; Silk, J. Particle dark matter: Evidence, candidates and constraints. Phys. Rep. 2005, 405, 279–390. [Google Scholar] [CrossRef]
- Feng, J. Dark Matter Candidates from Particle Physics and Methods of Detection. Annu. Rev. Astron. Astrophys. 2010, 48, 495–545. [Google Scholar] [CrossRef]
- Copeland, E.; Sami, M.; Tsujikawa, S. Dynamics of Dark Energy. Int. J. Mod. Phys. D 2006, 15, 1753–1935. [Google Scholar] [CrossRef]
- Frieman, J.; Turner, M.; Huterer, D. Dark Energy and the Accelerating universe. Annu. Rev. Astron. Astrophys. 2008, 46, 385–432. [Google Scholar] [CrossRef]
- Bilenky, S.; Petcov, S. Massive neutrinos and neutrino oscillations. Rev. Mod. Phys. 1987, 59, 671–754. [Google Scholar] [CrossRef]
- De Salas, P.; Forero, D.; Gariazzo, S.; Martínez-Miravé, P.; Mena, O.; Ternes, C.; Tórtola, M.; Valle, J. 2020 global reassessment of the neutrino oscillation picture. J. High Energy Phys. 2021, 2, 71. [Google Scholar] [CrossRef]
- Weinberg, S. Cosmology; Oxford University Press: Oxford, UK, 2008; p. 611. [Google Scholar]
- Gorbunov, D.; Rubakov, V. Introduction to the Theory of the Early universe: Hot Big Bang Theory; World Scientific Publishing Co. Pte., Ltd.: Singapore, 2011; p. 488. [Google Scholar]
- Ivanchik, A.V.; Yurchenko, V.Y. Relic neutrinos: Antineutrinos of primordial nucleosynthesis. Phys. Rev. D 2018, 98, 081301. [Google Scholar] [CrossRef]
- Yurchenko, V.Y.; Ivanchik, A.V. Spectral features of non-equilibrium antineutrinos of primordial nucleosynthes. Astropart. Phys. 2021, 127, 102537. [Google Scholar] [CrossRef]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.; Barreiro, R.; Bartolo, N.; Basak, S. et al. [Planck Collaboration] Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar]
- Pontecorvo, B. Neutrino Experiments and the Problem of Conservation of Leptonic Charge. Sov. Phys. JETP 1967, 26, 984–988. [Google Scholar]
- Asaka, T.; Shaposhnikov, M. The νMSM, dark matter and baryon asymmetry of the universe. Phys. Lett. B 2005, 620, 17–26. [Google Scholar] [CrossRef]
- Boyarsky, A.; Ruchayskiy, O.; Shaposhnikov, M. The Role of Sterile Neutrinos in Cosmology and Astrophysics. Ann. Rev. Nucl. Part. Sci. 2009, 59, 191–214. [Google Scholar] [CrossRef]
- Chernikov, P.; Ivanchik, A. The influence of the effective number of active and sterile neutrinos on the determination of the values of cosmological parameters. Astron. Lett. 2022, 48, 689–701. [Google Scholar] [CrossRef]
- Serebrov, A.; Samoilov, R.; Ivochkin, V.; Fomin, A.; Zinoviev, V.; Neustroev, P.; Golovtsov, V.; Volkov, S.; Chernyj, A.; Zherebtsov, O.; et al. Search for sterile neutrinos with the Neutrino-4 experiment and measurement results. Phys. Rev. D 2021, 104, 032003. [Google Scholar] [CrossRef]
- Barinov, V.; Cleveland, B.; Danshin, S.; Ejiri, H.; Elliott, S.; Frekers, D.; Gavrin, V.; Gorbachev, V.; Gorbunov, D.; Haxton, W.; et al. Results from the Baksan Experiment on Sterile Transitions (BEST). Phys. Rev. Lett. 2022, 128, 232501. [Google Scholar] [CrossRef] [PubMed]
- Riess, A.; Yuan, W.; Macri, L.; Scolnic, D.; Brout, D.; Casertano, S.; Jones, D.; Murakami, Y.; Anand, G.; Breuval, L.; et al. A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km/s/Mpc Uncertainty from the Hubble Space Telescope and the SH0ES Team. Astrophys. J. Lett. 2022, 934, L7. [Google Scholar] [CrossRef]
- Di Valentino, E.; Mena, O.; Pan, S.; Visinelli, L.; Yang, W.; Melchiorri, A.; Mota, D.; Riess, A.; Silk, J. In the realm of the Hubble tension—A review of solutions. Clas. Quant. Grav. 2021, 38, 153001. [Google Scholar] [CrossRef]
- Almazán, H.; Bernard, L.; Blanchet, A.; Bonhomme, A.; Buck, C.; Chalil, A.; Del Amo Sanchez, P.; El Atmani, I.; Labit, L.; Lamblin, J.; et al. [The STEREO Collaboration] STEREO neutrino spectrum of 235U fission rejects sterile neutrino hypothesis. Nature 2023, 613, 257–261. [Google Scholar]
- Dolgov, A. Neutrinos in cosmology. Phys. Rep. 2002, 370, 333–535. [Google Scholar] [CrossRef]
- Lesgourgues, J.; Pastor, S. Massive neutrinos and cosmology. Phys. Rep. 2006, 429, 307–379. [Google Scholar] [CrossRef]
- Weinberg, S. Universal Neutrino Degeneracy. Phys. Rev. 1962, 128, 1457. [Google Scholar] [CrossRef]
- IceCube Collaboration. Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector. Science 2013, 342, 1242856. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, M.; Bustamante, M.; Lu, L.; Otte, N.; Reno, M.; Wissel, S.; Ackermann, M.; Agarwalla, S.; Alvarez-Muñiz, J.; Alves Batista, R.; et al. High-energy and ultra-high-energy neutrinos: A Snowmass white paper. J. High Energy Astrophys. 2022, 36, 55–110. [Google Scholar] [CrossRef]
- Vitagliano, E.; Tamborra, I.; Raffelt, G. Grand unified neutrino spectrum at Earth: Sources and spectral components. Rev. Mod. Phys. 2020, 48, 045006. [Google Scholar] [CrossRef]
- Steigman, G. Primordial Nucleosynthesis in the Precision Cosmology Era. Annu. Rev. Nucl. Part. Sci. 2007, 57, 463–491. [Google Scholar] [CrossRef]
- Kurichin, O.; Kislitsyn, P.; Ivanchik, A. Determination of H II Region Metallicity in the Context of Estimating the Primordial Helium Abundance. Astron. Lett. 2021, 47, 674–685. [Google Scholar] [CrossRef]
- Kurichin, O.; Kislitsyn, P.; Klimenko, V.; Balashev, S.; Ivanchik, A. A new determination of the primordial helium abundance using the analyses of H II region spectra from SDSS. Mon. Not. R. Astron. Soc. 2021, 502, 3045–3056. [Google Scholar] [CrossRef]
- Kislitsyn, P.; Balashev, S.; Murphy, M.; Ledoux, C.; Noterdaeme, P.; Ivanchik, A. A New Precise Determination of the Primordial Abundance of Deuterium: Measurement in the metal-poor sub-DLA system at z = 3.42 towards quasar J1332+0052. Mon. Not. R. Astron. Soc. 2024, 528, 4068–4081. [Google Scholar] [CrossRef]
- Balashev, S.; Zavarygin, E.; Ivanchik, A.; Telikova, K.; Varshalovich, D. The primordial deuterium abundance: SubDLA system at zabs = 2.437 towards the QSO J1444+2919. Mon. Not. R. Astron. Soc. 2016, 458, 2188–2198. [Google Scholar] [CrossRef]
- Ryan, S.; Beers, T.; Olive, K.; Fields, B.; Norris, J. Primordial Lithium and Big Bang Nucleosynthesis. Astrophys. J. 2000, 530, L57–L60. [Google Scholar] [CrossRef] [PubMed]
- Sbordone, L.; Bonifacio, P.; Caffau, E.; Ludwig, H.; Behara, N.; González Hernández, J.; Steffen, M.; Cayrel, R.; Freytag, B.; van’t Veer, C.; et al. The metal-poor end of the Spite plateau. Astron. Astrophys. 2010, 522, A26. [Google Scholar] [CrossRef]
- Fields, B.; Olive, K.; Yeh, T.; Young, C. Big-Bang Nucleosynthesis after Planck. J. Cosmol. Astropart. Phys. 2020, 3, 10. [Google Scholar] [CrossRef]
- Serebrov, A.P.; Kolomensky, E.A.; Fomin, A.K.; Krasnoshchekova, I.A.; Vassiljev, A.V.; Prudnikov, D.M.; Shoka, I.V.; Chechkin, A.V.; Chaikovskiy, M.E.; Varlamov, V.E.; et al. Neutron lifetime measurements with a large gravitational trap for ultracold neutrons. Phys. Rev. C 2018, 97, 055503. [Google Scholar] [CrossRef]
- Wang, M.; Audi, G.; Kondev, F.; Huang, W.; Naimi, S.; Xu, X. The AME2016 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C 2017, 41, 030003. [Google Scholar] [CrossRef]
- Akulov, Y.; Mamyrin, B. Half-life and fT1/2 value for the bare triton. Phys. Lett. B. 2005, 610, 45–49. [Google Scholar] [CrossRef]
- Gorbunov, D. Sterile neutrinos and their role in particle physics and cosmology. Phys. Uspekhi 2014, 57, 503–511. [Google Scholar] [CrossRef]
- Fukugita, M.; Yanagida, T. Barygenesis without grand unification. Phys. Lett. B 1986, 174, 45–47. [Google Scholar] [CrossRef]
- Akhmedov, E.; Rubakov, V.; Smirnov, A. Baryogenesis via Neutrino Oscillations. Phys. Rev. Let. 1998, 81, 1359–1362. [Google Scholar] [CrossRef]
- Abazajian, K. Sterile neutrinos in cosmology. Phys. Rep. 2017, 711, 1–28. [Google Scholar] [CrossRef]
- Hagstotz, S.; de Salas, P.; Gariazzo, S.; Pastor, S.; Gerbino, M.; Lattanzi, M.; Vagnozzi, S.; Freese, K. Bounds on light sterile neutrino mass and mixing from cosmology and laboratory searches. Phys. Rev. D 2020, 104, 123524. [Google Scholar] [CrossRef]
- Froustey, J.; Pitrou, C.; Volpe, M. Neutrino decoupling including flavour oscillations and Primordial Nucleosynthesis. J. Cosmol. Astropart. Phys. 2020, 2020, 15. [Google Scholar] [CrossRef]
- Bennett, J.; Buldgen, G.; de Salas, P.; Drewes, M.; Gariazzo, S.; Pastor, S.; Wong, Y. Towards a precision calculation of the effective number of neutrinos Neff in the Standard Model. Part II. Neutrino decoupling in the presence of flavour oscillations and finite-temperature QED. J. Cosmol. Astropart. Phys. 2021, 2021, 73. [Google Scholar] [CrossRef]
- Dodelson, S.; Widrow, L. Sterile neutrinos as dark matter. Phys. Rev. Lett. 1994, 72, 17. [Google Scholar] [CrossRef] [PubMed]
- Serebrov, A.; Samoilov, R.; Chaikovskii, M.; Zherebtsov, O. The result of the Neutrino-4 experiment, sterile neutrinos and dark matter, the fourth neutrino and the Hubble constant. arXiv 2023, arXiv:2302.09958. [Google Scholar]
- Serebrov, A.; Samoilov, R.; Chaikovskii, M. Analysis of the result of the Neutrino-4 experiment in conjunction with other experiments on the search for sterile neutrinos within the framework of the 3 + 1 neutrino model. arXiv 2023, arXiv:2112.14856. [Google Scholar]
- Wagoner, R.; Fowler, W.; Hoyle, F. On the Synthesis of Elements at Very High Temperatures. Astrophys. J. 1967, 148, 3. [Google Scholar] [CrossRef]
- Simha, V.; Steigman, G. Constraining the universal lepton asymmetry. J. Cosmol. Astropart. Phys. 2008, 2008, 11. [Google Scholar] [CrossRef]
- Knee, A.; Contreras, D.; Scott, D. Cosmological constraints on sterile neutrino oscillations from Planck. J. Cosmol. Astropart. Phys. 2019, 2019, 39. [Google Scholar] [CrossRef]
- Adams, M.; Bezrukov, F.; Elvin-Poole, J.; Evans, J.; Guzowski, P.; Fearraigh, B.; Söldner-Rembold, S. Direct comparison of sterile neutrino constraints from cosmological data, νe disappearance data and νμ→νe appearance data in a 3 + 1 model. Eur. Phys. J. C 2020, 80, 758. [Google Scholar] [CrossRef]
- Pan, S.; Seto, O.; Takahashi, T.; Toda, Y. Constraints on sterile neutrinos and the cosmological tensions. arXiv 2023, arXiv:2312.15435. [Google Scholar]
- Gelmini, G.; Kusenko, A.; Takhistov, V. Possible hints of sterile neutrinos in recent measurements of the Hubble parameter. J. Cosmol. Astropart. Phys. 2021, 2021, 2. [Google Scholar] [CrossRef]
Parameter | Planck 2018 | = 1.94 K | = 2.07 K |
---|---|---|---|
= 4 | = 3.9 | ||
26.45 ± 0.50 | 32.36 ± 0.57 | 24.92 ± 0.49 | |
4.93 ± 0.09 | 5.88 ± 0.11 | 4.33 ± 0.08 | |
0.14 | 7.58 | 0.15 | |
31.53 ± 0.73 | 45.8 ± 1.1 | 29.41 ± 0.87 | |
68.47 ± 0.73 | 54.2 ± 1.1 | 70.58 ± 0.87 | |
H0 | 67.36 ± 0.54 1 | 62.20 ± 0.53 | 72.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanchik, A.V.; Kurichin, O.A.; Yurchenko, V.Y. Neutrino at Different Epochs of the Friedmann Universe. Universe 2024, 10, 169. https://doi.org/10.3390/universe10040169
Ivanchik AV, Kurichin OA, Yurchenko VY. Neutrino at Different Epochs of the Friedmann Universe. Universe. 2024; 10(4):169. https://doi.org/10.3390/universe10040169
Chicago/Turabian StyleIvanchik, Alexandre V., Oleg A. Kurichin, and Vlad Yu. Yurchenko. 2024. "Neutrino at Different Epochs of the Friedmann Universe" Universe 10, no. 4: 169. https://doi.org/10.3390/universe10040169
APA StyleIvanchik, A. V., Kurichin, O. A., & Yurchenko, V. Y. (2024). Neutrino at Different Epochs of the Friedmann Universe. Universe, 10(4), 169. https://doi.org/10.3390/universe10040169