QED Meson Description of the Anomalous Particles at ∼17 and ∼38 MeV †
Abstract
:1. Introduction
2. The Schwinger Confinement Mechanism
3. Generalizing the Schwinger Confinement Mechanism from Quarks in QED in (1+1)D to (QED+QCD) in (1+1)D
4. Do the QED and QCD Mesons in (1+1)D Represent Physical Mesons in (3+1)D?
5. Phenomenological Open-String Model of QCD and QED Mesons
6. Production, Decay, and Detection of the QED Mesons
7. Experimental Evidence for the Possible Existence of the QED Mesons
7.1. The ATOMKI Observation of the X17 Particle by Measurements
7.2. The Dubna Observation of the X17 and the E38 Particle by Diphoton Measurements
8. Implications of Quark Confinement in the QED Interaction
8.1. Confinement May Be an Intrinsic Property of Quarks
8.2. QED Meson Assembly and Dark Matter
8.3. New Family of QED-Confined Particles and Dark QED Neutron
8.4. Beyond the Confining Interaction of a Quark and an Antiquark in (3+1)D
9. Conclusions and Discussion
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | The Author thanks the Referee of this Special Issue of Universe for bringing this to his attention. |
References
- Perepelitsa, V. [The DELPHI Collaboration]. Anomalous soft photons in hadronic decays of Z0. In Proceedings of the XXXIX International Symposium on Multiparticle Dynamics, Gomel, Belarus, 4–9 September 2009. [Google Scholar]
- Chliapnikov, P.V. et al. [Brussels-CERN-Genova-Mons-Nijmegen-Serpukhov Collaboration] Observation of direct soft photon production in π−p interactions at 280 GeV/c. Phys. Lett. B 1984, 141, 276–280. [Google Scholar] [CrossRef]
- Botterweck, F. et al. [EHS-NA22 Collaboration] Direct soft photon production in K+p and π+p interactions at 250 GeV/c. Z. Phys. C 1991, 51, 541–548. [Google Scholar] [CrossRef]
- Banerjee, S. et al. [SOPHIE/WA83 Collaboration] Observation of direct soft photon production in π−p interactions at 280 GeV/c. Phys. Lett. B 1993, 305, 182–186. [Google Scholar] [CrossRef]
- Belogianni, A. et al. [WA91 Collaboration] Confirmation of a soft photon signal in excess of QED expectations in π−p interactions at 280 GeV/c. Phys. Lett. B 1997, 408, 487–492. [Google Scholar] [CrossRef]
- Belogianni, A. et al. [WA102 Collaboration] Further analysis of a direct soft photon excess in pi- p interactions at 280-GeV/c. Phys. Lett. B 2002, 548, 122–128. [Google Scholar] [CrossRef]
- Belogianni, A. et al. [WA102 Collaboration] Observation of a soft photon signal in excess of QED expectations in pp interactions. Phys. Lett. B 2002, 548, 129–139. [Google Scholar] [CrossRef]
- Abdallah, J. et al. [DELPHI Collaboration] Evidence for an excess of soft photons in hadronic decays of Z0. Eur. Phys. J. C 2006, 47, 273–294. [Google Scholar] [CrossRef]
- Abdallah, J. et al. [DELPHI Collaboration] Observation of the muon inner bremsstrahlung at LEP1. Eur. Phys. J. C 2008, 57, 499–514. [Google Scholar] [CrossRef]
- Abdallah, J. et al. [DELPHI Collaboration] Study of the dependence of direct soft photon production on the jet characteristics in hadronic Z0 decays. Eur. Phys. J. C 2010, 67, 343–366. [Google Scholar] [CrossRef]
- Hove, L.V. Cold quark-gluon plasma and multiparticle production. Ann. Phys. 1989, 192, 66–76. [Google Scholar] [CrossRef]
- Lichard, P.; Hove, L.V. The cold quark-gluon plasma as a source of very soft photons in high energy collisions. Phys. Lett. 1990, 245, 605–608. [Google Scholar] [CrossRef]
- Lichard, P. Consistency of data on soft photon production in hadronic interactions. Phys. Rev. D 1994, 50, 6824. [Google Scholar] [CrossRef] [PubMed]
- Kokoulina, E.; Kutov, A.; Nikitin, V. Gluon dominance model and cluster production. Braz. J. Phys. 2007, 37, 785. [Google Scholar] [CrossRef]
- Barshay, S. Anomalous soft photons from a coherent hadronic phase in high-energy collisions. Phys. Lett. B 1989, 227, 279–284. [Google Scholar] [CrossRef]
- Shuryak, E. The soft photon puzzle and pion modification in hadronic matter. Phys. Lett. B 1989, 231, 175–177. [Google Scholar] [CrossRef]
- Balek, V.; Pisutova, N.; Pisut, J. The puzzle of very soft photon production in hadronic Interactions. Acta. Phys. Pol. 1990, B21, 149. [Google Scholar]
- Czyz, W.; Florkowski, W. Soft photon production in the boost invariant color flux tube model. Z. Phys. 1994, C61, 171. [Google Scholar]
- Nachtmann, O. Nonperturbative QCD effects in high-energy collisions. arXiv 1994, arXiv:hep-ph/9411345. [Google Scholar]
- Lebiedowicz, P.; Nachtmann, O.; Szczurek, A. Soft-photon radiation in high-energy proton-proton collisions within the tensor-Pomeron approach: Bremsstrahlung. Phys. Rev. D 2022, 106, 034023. [Google Scholar] [CrossRef]
- Hatta, Y.; Ueda, T. Soft photon anomaly and gauge/string duality. Nucl. Phys. 2010, 837, 22–39. [Google Scholar] [CrossRef]
- Darbinian, S.M.; Ispirian, K.A.; Margarian, A.T. Unruh radiation of quarks and the soft photon puzzle in hadronic interactions. Sov. J. Nucl. Phys. 1991, 54, 364. [Google Scholar]
- Simonov, Y.A. Di-pion decays of heavy quarkonium in the field correlator method. Phys. At. Nucl. 2008, 71, 1048–1076. [Google Scholar] [CrossRef]
- Wong, C.Y. Anomalous soft photons in hadron production. Phys. Rev. C 2010, 81, 064903. [Google Scholar] [CrossRef]
- Wong, C.Y. Anomalous soft photons associated with hadron production in string fragmentation. AIP Conf. Proc. 2011, 1343, 447–449. [Google Scholar]
- Wong, C.Y. An overview of the anomalous soft photons in hadron production. Proc. Sci. 2014, 192, 2. [Google Scholar]
- Wong, C.Y. Open string QED meson description of the X17 particle and dark matter. J. High Energy Phys. 2020, 2020, 165. [Google Scholar] [CrossRef]
- Wong, C.Y. On the stability of the open-string QED neutron and dark matter. Eur. Phys. J. A 2022, 58, 100. [Google Scholar] [CrossRef]
- Wong, C.Y. QED mesons, the QED neutron, and the dark matter. EPJ Web Conf. 2022, 259, 13016. [Google Scholar] [CrossRef]
- Wong, C.Y. QED meson description of the X17 and other anomalous particles. In Proceedings of the “Shedding Light on X17” Workshop, Rome, Italy, 6–8 September 2021. [Google Scholar]
- Wong, C.Y. On the question of quark confinement in the QED interaction. Front. Phys. 2023, 18, 64401. [Google Scholar] [CrossRef]
- Koshelkin, A.; Wong, C.Y. Dynamics of quarks and gauge fields in the lowest-energy states in QCD and QED. In Proceedings of the 41st International Conference in High Energy Physics, Bologna, Italy, 6–13 July 2022. [Google Scholar]
- Wong, C.Y.; Koshelkin, A. Dynamics of quarks and gauge fields in the lowest-energy states in QCD and QED. Eur. Phys. J. A 2023, 59, 285. [Google Scholar] [CrossRef]
- Kharzeev, D.E.; Loshaj, F. Anomalous soft photon production from the induced currents in Dirac sea. Phys. Rev. D 2014, 89, 074053. [Google Scholar] [CrossRef]
- Schwinger, J. Gauge invariance and mass II. Phys. Rev. 1962, 128, 2425. [Google Scholar] [CrossRef]
- Schwinger, J. Gauge theory of vector particles. In Theoretical Physics: Trieste Lectures; IAEA: Vienna, Austria, 1963; p. 89. [Google Scholar]
- Krasznahorkay, A.J.; Csatlos, M.; Csige, L.; Gacsi, Z.; Gulyas, J.; Hunyadi, M.; Kuti, I.; Nyako, B.; Stuhl, L.; Timar, J.; et al. Observation of anomalous internal pair creation in 8Be: A possible indication of a light, neutral boson. Phys. Rev. Lett. 2016, 116, 042501. [Google Scholar] [CrossRef] [PubMed]
- Krasznahorkay, A.J.; Csatlos, M.; Csige, L.; Gulyas, J.; Koszta, M.; Szihalmi, B.; Timar, J.; Firak, D.S.; Nagy, A.; Sas, N.J.; et al. New evidence supporting the existence of the hypothetical X17 particle. arXiv 2019, arXiv:1910.10459. [Google Scholar]
- Krasznahorkay, A.J.; Csatlos, M.; Csige, L.; Gulyas, J.; Krasznahorkay, A.; Nyako, B.M.; Rajta, I.; Timar, J.; Vajda, I.; Sas, N.J. New anomaly observed in 4He supports the existence of the hypothetical X17 particle. Phys. Rev. C 2021, 104, 044003. [Google Scholar] [CrossRef]
- Sas, N.J.; Krasznahorkay, A.J.; Csatlos, M.; Gulyas, J.; Kertesz, B.; Krasznahorkay, A.; Molnar, J.; Rajta, I.; Timar, J.; Vajda, I.; et al. Observation of the X17 anomaly in the 7Li(p,e+e−)8Be direct proton-capture reaction. arXiv 2022, arXiv:2205.07744. [Google Scholar]
- Krasznahorkay, A.J.; Krasznahorkay, A.; Begala, M.; Csatlos, M.; Csige, L.; Gulyas, J.; Krako, A.; Timar, J.; Rajta, I.; Vajda, I.; et al. New anomaly observed in 12C supports the existence and the vector character of the hypothetical X17 boson. arXiv 2022, arXiv:2209.10795. [Google Scholar]
- Alves, D.S.M.; Barducci, D.; Cavoto, G.; Darmé, L.; Rose, L.D.; Doria, L.; Feng, J.L.; Frankenthal, A.; Gasparian, A.; Goudzovski, E.; et al. Shedding light on X17: Community report. Eur. Phys. J. C 2023, 83, 230. [Google Scholar] [CrossRef]
- Krasznahorkay, A.J. X17: Status of the experiments on 8Be and 4He. In Proceedings of the “Shedding Light on X17” Workshop, Rome, Italy, 6–8 September 2021. [Google Scholar]
- Krasznahorkay, A.J.; Krasznahorkay, A.; Csatlos, M.; Csige, L.; Timar, J.; Begala, M.; Krako, A.; Rajta, I.; Vajda, I. Observation of the X17 anomaly in the decay of the Giant Dipole Resonance of 8Be. In Proceedings of the International Symposium on Multiparticle Dynamics, Gyöngyös, Hungary, 20–26 August 2023; Available online: https://indico.cern.ch/event/1258038/contributions/5538279/ (accessed on 1 January 2024).
- Tran, T.-A.; Tran, T.D.; Krasznahorkay, A.J.; Krasznahorkay, A.; Molnár, J.; Pintye, Z.; Nguyen, A.V.; Nguyen, T.N.; Do, T.K.L.; Bui, T.H.; et al. Checking the 8Be anomaly with a two-arm electron positron pair spectrometer. In Proceedings of the International Symposium on Multiparticle Dynamics, Gyöngyös, Hungary, 20–26 August 2023; Available online: https://indico.cern.ch/event/1258038/contributions/5538280/ (accessed on 1 January 2024).
- D’yachenko, A.T.; Gromova, E.S. Detection of particles of dark matter from the spectrum of secondary particles in high-energy proton-proton collisions in a thermodynamic model. J. Phys. Conf. Ser. 2021, 2131, 22. [Google Scholar] [CrossRef]
- Nagy, A.; Krasznahorkay, A.J.; Ciemala, M.; Csige, L.; Gacsi, Z.; Hunyadi, M.; Klaus, T.; Kmieck, M.; Maj, A.; Pietralla, N.; et al. Searching for the double γ-decay of the X17 particle. Nuo. Cim. 2019, 42C, 124. [Google Scholar]
- Zhang, X.; Miller, G.A. Can nuclear physics explain the anomaly observed in the internal pair production in the Beryllium-8 nucleus? Phys. Lett. 2017, 773, 159–165. [Google Scholar] [CrossRef]
- Alves, D.S.M.; Weiner, N.J. A viable QCD axion in the MeV mass range. J. High Energy Phys. 2018, 7, 92. [Google Scholar] [CrossRef]
- Feng, J.L.; Fornal, B.; Galon, I.; Gardner, S.; Smolinsky, J.; Tait, T.M.P.; Tanedo, P. Protophobic fifth force interpretation of the observed anomaly in 8Be nuclear transitions. Phys. Rev. Lett. 2016, 117, 071803. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.L.; Fornal, B.; Galon, I.; Gardner, S.; Smolinsky, J.; Tait, T.M.P.; Tanedo, P. Particle physics models for the 17 MeV anomaly in beryllium nuclear decays. Phys. Rev. D 2017, 95, 035017. [Google Scholar] [CrossRef]
- Feng, J.L.; Tait, J.M.P.; Verhaaren, B. Dynamical Evidence For a Fifth Force Explanation of the ATOMKI Nuclear Anomalies. Phys. Rev. D 2020, 102, 036016. [Google Scholar] [CrossRef]
- Batley, J. et al. [NA48/2 Collaboration] Search for the dark photon in π0 decays. Phys. Lett. 2015, 178, B746. [Google Scholar]
- Fornal, B. Is there a sign of new physics in beryllium transitions? Int. J. Mod. Phys. A 2017, 32, 1730020. [Google Scholar] [CrossRef]
- Bordes, J.; Chan, H.M.; Tsun, T.S. Accommodating three low-scale anomalies (g-2, Lamb shift, and Atomki) in the framed standard model. Int. J. Mod. Phys. A 2019, 34, 1830034. [Google Scholar] [CrossRef]
- Chan, H.M.; Tsou, S.T. Two variations on the theme of Yang and Mills—The SM and the FSM. arXiv 2022, arXiv:2201.12256. [Google Scholar]
- Bordes, J.; Chan, H.M.; Tsun, T.S. Resolving an ambiguity of Higgs couplings in the FSM, greatly improving thereby the model’s predictive range and prospects. Int. J. Mod. Phys. A 2022, 37, 2250167. [Google Scholar] [CrossRef]
- Bordes, J.; Chan, H.M.; Tsun, T.S. A vacuum transition in the FSM with a possible new take on the horizon problem in cosmology. Int. J. Mod. Phys. A 2023, 38, 2350124. [Google Scholar] [CrossRef]
- Rose, L.D.; Khalil, S.; King, S.J.D.; Moretti, S.; Thabt, A.M. Explanation of the 17 MeV Atomki anomaly in a U(1)-extended two Higgs doublet model. Phys. Rev. D 2017, 96, 115024. [Google Scholar] [CrossRef]
- Rose, L.D.; Khalil, S.; King, S.J.D.; Moretti, S.; Thabt, A.M. Atomki anomaly in family-dependent U(1) extension of the standard model. Phys. Rev. D 2019, 99, 055022. [Google Scholar] [CrossRef]
- Rose, L.D.; Khalil, S.; King, S.J.D.; Moretti, S.; Thabt, A.M. New physics suggested by Atomki anomaly. Front. Phys. 2019, 7, 73. [Google Scholar] [CrossRef]
- Kubarovsky, V.; West, J.R.; Brodsky, S.J. Quantum Chromodynamics Resolution of the ATOMKI Anomaly in 4He Nuclear Transitions. arXiv 2022, arXiv:2206.14441. [Google Scholar]
- Ellwanger, U.; Moretti, S. Possible explanation of the electron positron anomaly at 17 MeV in 8Be transitions through a light pseudoscalar. J. High Energy Phys. 2016, 11, 39. [Google Scholar] [CrossRef]
- Banerjee, D. et al. [NA64 Collaboration] Search for a hypothetical 16.7 MeV gauge boson and dark photons in the NA64 Experiment at CERN. Phys. Rev. Lett. 2018, 120, 231802. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, D. et al. [NA64 Collaboration] Search for vector mediator of dark matter production in invisible decay mode. Phys. Rev. D 2018, 97, 072002. [Google Scholar] [CrossRef]
- Banerjee, D. et al. [NA64 Collaboration] Improved limits on a hypothetical X(16.7) boson and a dark photon decaying into e+e− pairs. Phys. Rev. D 2020, 101, 071101. [Google Scholar] [CrossRef]
- Taruggi, C. et al. [PADME Collaboration] Searching for dark photons with the PADME experiment. Frascati Phys. Ser. 2018, 67, 17–28. [Google Scholar]
- Viviani, M.; Girlanda, L.; Kievsky, A.; Marcucci, L.E. n + 3 H, p + 3 He, p + 3 H, and n + 3 He scattering with the hyperspherical harmonic method. Phys. Rev. C 2020, 102, 034007. [Google Scholar] [CrossRef]
- Viviani, M.; Filandri, E.; Girlanda, L.; Gustavino, C.; Kievsky, A.; Marcucci, L.E.; Schiavilla, R. X 17 boson and the 3 H (p, e+ e-) 4 He and 3 He(n, e+ e-) 4 He processes: A theoretical analysis. Phys. Rev. C 2022, 105, 014001. [Google Scholar] [CrossRef]
- Barducci, D.; Toni, C. An updated view on the ATOMKI nuclear anomalies. J. High Energy Phys. 2023, 154, 1–46. [Google Scholar] [CrossRef]
- Varro, S. Proposal for an electromagnetic mass formula for the X17 particle. In Proceedings of the ISMD2023 International Symposium on Multiparticle Dynamics, Gyöngyös, Hungary, 20–26 August 2023; Available online: https://indico.cern.ch/event/1258038/contributions/5538336/ (accessed on 1 January 2024).
- Abraamyan, K.; Austin, C.; Baznat, M.I.; Gudima, K.K.; Kozhin, M.A.; Reznikov, S.G.; Sorin, A.S. Observation of structures at ∼17 and ∼38 MeV/c2 in the γγ invariant mass spectra in pC, dC, and dCu collisions at plab of a few GeV/c per nucleon. In Proceedings of the ISMD2023 International Symposium on Multiparticle Dynamics, Gyöngyös, Hungary, 20–26 August 2023; Available online: https://indico.cern.ch/event/1258038/contributions/5538282/ (accessed on 1 January 2024).
- Bastin, B.; Kiener, J.; Deloncle, I.; Coc, A.; Pospelov, M.; Mrazek, J.; Lamia, L.; Ackermann, D.; Adsley, P.; Bacri, C.-O.; et al. Investigation of a light Dark Boson existence: The New JEDI project. EPJ Web Conf. 2023, 275, 01012. [Google Scholar] [CrossRef]
- Original Cheng, Y.S. et al. [STAR Collaboration] Private communications.
- Papa, A. X17 search with the MEGII apparatus. In Proceedings of the “Shedding Light on X17” Workshop, Rome, Italy, 6–8 September 2021. [Google Scholar]
- Benmansour, H. The X17 search with the MEGII apparatus. In Proceedings of the International Symposium on Multiparticle Dynamics, Gyöngyös, Hungary, 20–26 August 2023; Available online: https://indico.cern.ch/event/1258038/contributions/5538281/ (accessed on 1 January 2024).
- Maj, K. BSM physics using photon-photon fusion processes in UPC in Pb+Pb collisions with ATLAS. In Proceedings of the International Symposium on Multiparticle Dynamics, Gyöngyös, Hungary, 20–26 August 2023; Available online: https://indico.cern.ch/event/1258038/contributions/5538283/ (accessed on 1 January 2024).
- Kaczmarska, A. Searches for new physics in the Higgs sector at ATLAS. In Proceedings of the International Symposium on Multiparticle Dynamics, Gyöngyös, Hungary, 20–26 August 2023; Available online: https://indico.cern.ch/event/1258038/contributions/5538334/ (accessed on 1 January 2024).
- da Luz, H.N. Measurements of Internal Pair Creation with a Time Projection Chamber-based setup. In Proceedings of the “Shedding Light on X17” Workshop, Rome, Italy, 6–8 September 2021. [Google Scholar]
- da Luz, H.N. The construction of the X17 spectrometer at CTU in Prague. In Proceedings of the International Symposium on Multiparticle Dynamics, Gyöngyös, Hungary, 20–26 August 2023; Available online: https://indico.cern.ch/event/1258038/contributions/5538285/ (accessed on 1 January 2024).
- Gustavino, C. The search for 4 He anomaly at n_TOF experiment. In Proceedings of the “Shedding Light on X17” Workshop, Rome, Italy, 6–8 September 2021. [Google Scholar]
- Depero, E. X17 in the NA64 experiment. In Proceedings of the “Shedding Light on X17” Workshop, Rome, Italy, 6–8 September 2021. [Google Scholar]
- Darmé, L.; Raggi, M.; Nardi, E. X17 production mechanism at accelerators. In Proceedings of the “Shedding Light on X17” Workshop, Rome, Italy, 6–8 September 2021. [Google Scholar]
- Goudzovski, E. Search for dark photon in π0 decays by NA48/2 at CERN. In Proceedings of the “Shedding Light on X17” Workshop, Rome, Italy, 6–8 September 2021. [Google Scholar]
- Perrevoort, A.-K. Prospects for Dark Photon Searches in the Mu3e Experiment. In Proceedings of the “Shedding Light on X17” Workshop, Rome, Italy, 6–8 September 2021. [Google Scholar]
- Doria, L. Dark Matter and X17 Searches at MESA 4.4.2 Light Dark Matter. In Proceedings of the “Shedding Light on X17” Workshop, Rome, Italy, 6–8 September 2021. [Google Scholar]
- Gasparian, A. A Direct Detection Search for Hidden Sector New Particles in the 3–60 MeV Mass Range. In Proceedings of the “Shedding Light on X17” Workshop, Rome, Italy, 6–8 September 2021. [Google Scholar]
- Ahmidouch, A. et al. [JLAB-PAC50 Proposal] A Direct Detection Search for Hidden Sector New Particles in the 3-60 MeV Mass Range. arXiv 2021, arXiv:2108.13276. [Google Scholar]
- Kozhuharov, V. Searching X17 with positrons at PADME. In Proceedings of the “Shedding Light on X17” Workshop, Rome, Italy, 6–8 September 2021. [Google Scholar]
- Raggi, M. Search for the resonant X17 boson production in PADME Run III. In Proceedings of the International Symposium on Multiparticle Dynamics, Gyöngyös, Hungary, 20–26 August 2023; Available online: https://indico.cern.ch/event/1258038/contributions/5538332/ (accessed on 1 January 2024).
- Cline, E. et al. [DarkLight Collaboration] Searching for New Physics with DarkLight at the ARIEL Electron-Linac. J. Phys. Conf. Ser. 2022, 2391, 012010. [Google Scholar] [CrossRef]
- Navratil, P. ARIEL experiments and theory. J. Phys. Conf. Ser. 2022, 2391, 012002. [Google Scholar] [CrossRef]
- Huang, S. et al. [LUXE Collaboration] Probing new physics at the LUXE experiment. In Proceedings of the 41st International Conference on High Energy physics—ICHEP2022, Bologna, Italy, 6–13 July 2022. [Google Scholar]
- Feng, J. Collider searches for X17 and other light gauge bosons. In Proceedings of the International Symposium on Multiparticle Dynamics, Gyöngyös, Hungary, 20–26 August 2023; Available online: https://indico.cern.ch/event/1258038/contributions/5538331/ (accessed on 1 January 2024).
- Kibédi, T. Searching for the x17 using magnetic separation. In Proceedings of the International Symposium on Multiparticle Dynamics, Gyöngyös, Hungary, 20–26 August 2023; Available online: https://indico.cern.ch/event/1258038/contributions/5538333/ (accessed on 1 January 2024).
- Azuelos, G.; Broerman, B.; Bryman, D.; Chen, W.C.; da Luz, H.N.; Doria, L.; Gupta, A.; Hamel, L.; Laurin, M.; Leach, K.; et al. Status of the X17 search in Montreal. arXiv 2022, arXiv:2211.11900v1. [Google Scholar]
- Abraamyan, K.H.; Baznat, M.; Friesen, A.; Gudima, K.; Kozhin, M.; Lebedev, S.; Maxim, N.; Nikitin, S.; Ososkov, G.; Reznikov, S.; et al. Resonance structure in the γγ invariant mass spectrum in pC and dC interactions. Phys. Rev. C 2009, 80, 034001. [Google Scholar] [CrossRef]
- van Beveren, E.; Rupp, G. First indications of the existence of a 38 MeV light scalar boson. arXiv 2011, arXiv:1102.1863. [Google Scholar]
- van Beveren, E.; Rupp, G. Material evidence of a 38 MeV boson. arXiv 2012, arXiv:1202.1739. [Google Scholar]
- van Beveren, E.; Rupp, G. Reply to Comment on “Material evidence of a 38 MeV boson”. arXiv 2012, arXiv:1204.3287. [Google Scholar]
- van Beveren, E.; Rupp, G. Z0(57) and E(38): Possible surprises in the Standard Model. Acta Phys. Pol. Proc. 2020; accepted for publication. [Google Scholar]
- Abraamyan, K.; Anisimov, A.B.; Baznat, M.I.; Gudima, K.K.; Nazarenko, M.A.; Reznikov, S.G.; Sorin, A.S. Observation of the E(38)-boson. arXiv 2012, arXiv:1208.3829v1. [Google Scholar]
- Abraamyan, K.; Austin, C.; Baznat, M.; Gudima, K.; Kozhin, M.; Reznikov, S.; Sorin, A. Check of the structure in photon pairs spectra at the invariant mass of about 38 MeV/c2. EPJ Web Conf. 2019, 204, 08004. [Google Scholar] [CrossRef]
- Diamantini, M.C.; Trugenberger, C.A.; Vinokur, V.M. Confinement and Asymptotic Freedom with Cooper pairs. Nat. Comm. Phys. 2018, 1, 77. [Google Scholar] [CrossRef]
- Diamantini, M.C.; Gammaitoni, L.; Trugenberger, C.A.; Vinokur, V.M. Vogel-Fulcher-Tamman criticality of 3D superinsulators. Sci. Rep. 2018, 8, 15718. [Google Scholar] [CrossRef] [PubMed]
- Diamantini, M.C.; Postolova, S.V.; Mironov, A.Y.; Gammaitoni, L.; Strunk, C.; Trugenberger, C.A.; M, V. Vinokur Direct probe of the interior of an electric pion in a Cooper pair superinsulator. Nat. Comm. Phys. 2020, 3, 142. [Google Scholar]
- Diamantini, M.C.; Trugenberger, C.A. Superinsulators: A Toy Realization of QCD in Condensed Matter; World Scientific: Singapore, 2020. [Google Scholar]
- Diamantini, M.C.; Trugenberger, C.A.; Vinokur, V.M. Quantum magnetic monopole condensate. Nat. Comm. Phys. 2021, 4, 25. [Google Scholar] [CrossRef]
- Tanabashi, M. et al. [Particle Data Group 2019] Review of Particle Physics. Phys. Rev. D 2018, 98, 030001. [Google Scholar] [CrossRef]
- Workman, R.L. et al. [Particle Data Group 2022] Review of Particle Physics. Prog. Theor. Exp. Phys. 2022, 2022, 083C01. [Google Scholar] [CrossRef]
- Coleman, S.; Jackiw, R.; Suskind, L. Charge shielding and quark confinement in the massive Schwinger model. Ann. Phys. 1975, 93, 267–275. [Google Scholar] [CrossRef]
- Coleman, S. More about the massive Schwinger model. Ann. Phys. 1976, 101, 239–267. [Google Scholar] [CrossRef]
- Wong, C.Y. Introduction to High-Energy Heavy-Ion Collisions; World Scientific: Singapore, 1994. [Google Scholar]
- Casher, A.; Kogut, J.; Susskind, L. Vacuum polarization and the absence of free quarks. Phys. Rev. D 1974, 10, 732. [Google Scholar] [CrossRef]
- Bjorken, J.D. Lectures Presented in the 1973 Proceedings of the Summer Institute on Particle Physics; SLAC: Menlo Park, CA, USA, 1973; SLAC-167. [Google Scholar]
- Nambu, Y. Quark model of the factorization of the Veneziano Amplitude. In Lectures at the Copenhagen Symposium: Symmetry and Quark Models; Chand, R., Ed.; Gordon and Breach: Philadelphia, PA, USA, 1970; p. 269. [Google Scholar]
- Nambu, Y. Strings, monopoles, and gauge fields. Phys. Rev. D 1974, 10, 4262. [Google Scholar] [CrossRef]
- Goto, T. Relativistic quantum mechanics of one-dimensional mechanical continuum and subsidiary condition of dual resonance model. Prog. Theo. Phys. 1971, 46, 1560–1569. [Google Scholar] [CrossRef]
- ’t Hooft, G. A planar diagram theory for strong interactions. Nucl. Phys. B 1974, 72, 461–473. [Google Scholar] [CrossRef]
- ’t Hooft, G. A two-dimensional model for mesons. Nucl. Phys. B 1974, 75, 461–470. [Google Scholar] [CrossRef]
- Bali, G.S. et al. [SESAM Collaboration] Observation of string breaking in QCD. Phys. Rev. D 2005, 71, 114513. [Google Scholar] [CrossRef]
- Amado, A.; Cardoso, N.; Bicudo, P. Flux tube widening in compact U(1) lattice gauge theory computed at T < Tc with the multilevel method and GPUs. arXiv 2013, arXiv:1309.3859. [Google Scholar]
- Cardoso, N.; Cardoso, M.; Bicudo, P. Inside the SU(3) quark-antiquark QCD flux tube: Screening versus quantum widening. Phys. Rev. D 2013, 88, 054504. [Google Scholar] [CrossRef]
- Artru, X.; Mennessier, G. String model and multiproduction. Nucl. Phys. B 1974, 70, 93–115. [Google Scholar] [CrossRef]
- Andersson, B.; Gustafson, G.; Sjostrand, T. A general model for jet fragmentation. Zeit Phys. C 1983, 20, 317–329. [Google Scholar] [CrossRef]
- Wong, C.Y. The Wigner function of produced particles in string fragmentation. Phys. Rev. C 2009, 80, 054917. [Google Scholar] [CrossRef]
- Koshelkin, A.V.; Wong, C.Y. The compactification of QCD4 to QCD2 in a flux tube. Phys. Rev. D 2012, 86, 125026. [Google Scholar] [CrossRef]
- Wong, C.Y.; Swanson, E.S.; Barnes, T. Cross sections for π- and ρ-induced dissociation of J/ψ and ψ′. Phys. Rev. C 2000, 62, 045201. [Google Scholar]
- Wong, C.Y.; Swanson, E.S.; Barnes, T. Heavy quarkonium dissociation cross sections in relativistic heavy-ion collisions. Phy. Rev. C 2001, 65, 014903. [Google Scholar] [CrossRef]
- Crater, H.W.; Yoon, J.; Wong, C.Y. Singularity Structures in Coulomb-Type Potentials in Two Body Dirac Equations of Constraint Dynamics. Phys. Rev. D 2009, 79, 034011. [Google Scholar] [CrossRef]
- Baldicchi, M.; Nesterenko, A.V.; Prosperi, G.M.; Simolo, C. QCD coupling below 1 GeV from quarkonium spectrum. Phys. Rev. D 2008, 77, 034013. [Google Scholar] [CrossRef]
- Deur, A.; Brodsky, S.J.; de Teramond, G.F. The QCD Running Coupling. Prog. Part. Nucl. Phys. 2016, 90, 1–74. [Google Scholar] [CrossRef]
- Cosmai, L.; Cea, P.; Cuteri, F.; Papa, A. Flux tubes in QCD with (2+1) HISQ fermions. In Proceedings of the 4th Annual International Symposium on Lattice Field Theory, Southampton, UK, 24–30 July 2016. [Google Scholar]
- Petersen, A. et al. [Mark II Collaboration] Multihadronic events at ECM = 29 GeV and predictions of QCD models from ECM = 29 GeV to ECM = 93 GeV. Phys. Rev. D 1988, 37, 1. [Google Scholar] [CrossRef] [PubMed]
- Nagy, S. Massless fermions in mutiflavor QED. Phys. Rev. D 2009, 79, 045004. [Google Scholar] [CrossRef]
- Gell-Mann, M.; Oakes, R.J.; Renner, B. Behavior of current divergences under SU(3) X SU(3). Phys. Rev. 1968, 175, 2195. [Google Scholar] [CrossRef]
- Barnes, T.; Swanson, E.S. Diagrammatic approach to meson-meson scattering in the nonrelativistic quark potential model. Phys. Rev. D 1992, 46, 131. [Google Scholar] [CrossRef] [PubMed]
- Peskin, M.E.; Schroeder, D.V. An Introduction to Quantum Field Theory; Addison-Wesley Publishing Company: Boston, MA, USA, 1995. [Google Scholar]
- Wong, C.Y. Shells in a simple anisotropic harmonic oscillator. Phys. Lett. B 1970, 14, 668–671. [Google Scholar] [CrossRef]
- Bernhard, J.; Schonning, K. et al. [COMPASS Collaboration] Test of OZI violation in vector meson production with COMPASS. arXiv 2013, arXiv:1109.0272v2. [Google Scholar]
- Bernhard, J. Exclusive Vector Meson Production in pp Collisions at the COMPASS Experiment. Ph.D. Thesis, University of Mainz, Mainz, Germany, 2014. [Google Scholar]
- Schlüter, T. et al. [COMPASS Collaboration] The exotic ηπ− wave in 190 GeV π−p → π−η′p at COMPASS. arXiv 2011, arXiv:1108.6191v2. [Google Scholar]
- Schlüter, T. The π−η and and π−η′ Systems in Exclusive 190 GeV/c π−p Reactions at COMPASS. Ph.D. Thesis, Univ. München, Munich, Germany, 2012. [Google Scholar]
- Bernhard, J.; Friedrich, J.M.; Schlüter, T.; Schönning, K. Comment on “Material evidence of a 38 MeV boson". arXiv 2012, arXiv:1204.2349. [Google Scholar]
- Snook, B.A. Measurement of the v2 of π0 Mesons Produced in sNN=2.76 TeV PbPb Collisions at the Large Hadron Collider. Ph.D. Thesis, Vanderbilt University, Nashville, TN, USA, 2014. [Google Scholar]
- Chatrchyan, S. et al. [CMS Collaboration] Measurement of the azimuthal anisotropy of neutral pions in Pb-Pb collisions at sNN=2.76 TeV. Phys. Rev. Lett. 2013, 110, 042301. [Google Scholar] [CrossRef] [PubMed]
- Bauswein, A.; Bastian, N.-F.; Blaschke, D.; Chatziioannou, K.; Clark, J.A.; Fischer, T.; Oertel, M. Identifying a first-order phase transition in neutron-star mergers through gravitational waves. Phys. Rev. Lett. 2019, 122, 061102. [Google Scholar] [CrossRef] [PubMed]
- Bauswein, A.; Blacker, S.; Vijayan, V.; Stergioulas, N.; Chatziioannou, K.; Clark, J.A.; Bastian, N.-F.; Blaschke, D.B.; Cierniak, M.; Fischer, T. Equation of state constraints from the threshold binary mass for prompt collapse of neutron star mergers. Phys. Rev. Lett. 2020, 125, 141103. [Google Scholar] [CrossRef]
- Weih, L.R.; Hanauske, M.; Rezzolla, L. Postmerger gravitational-wave signatures of phase transitions in binary mergers. Phys. Rev. Lett. 2020, 124, 171103. [Google Scholar] [CrossRef] [PubMed]
- Annala, E.; Gorda, T.; Kurkela, A.; Naettilae, J.; Vuorinen, A. Evidence for quark-matter cores in massive neutron stars. Nat. Phys. 2020, 16, 907–910. [Google Scholar] [CrossRef]
- Lüscher, M. Symmetry Breaking Aspects of the roughening Transition In Gauge Theories. Nucl. Phys. B 1981, 180, 317–329. [Google Scholar] [CrossRef]
- Lüscher, M.; Symanzik, K.; Weisz, P. Anomalies Of The Free Loop Wave Equation In The Wkb Approximation. Nucl. Phys. B 1980, 173, 365–396. [Google Scholar] [CrossRef]
- Polchinski, J.; Strominger, A. Effective string theory. Phys. Rev. Lett. 1991, 67, 1681. [Google Scholar] [CrossRef] [PubMed]
- Hellerman, S.; Maeda, J.; Maltz, J.; Swanson, I. Effective string theory simplified. J. High Energy Phys. 2014, 9, 183. [Google Scholar] [CrossRef]
- Aharony, O.; Komargodski, Z. The Effective Theory of Long Strings. J. High Energy Phys. 2013, 5, 118. [Google Scholar] [CrossRef]
- Bonati, C.; Caselle, M.; Morlacchi, S. The unreasonable effectiveness of effective string theory: The case of the 3d SU(2) Higgs model. Phys. Rev. D 2021, 104, 054501. [Google Scholar] [CrossRef]
- Billo, M.; Caselle, M.; Pellegrini, R. New numerical results and novel effective string predictions for Wilson loops. J. High Energy Phys. 2012, 1, 104, Erratum in: J. High Energy Phys. 2013, 4, 97. [Google Scholar] [CrossRef]
- Lüscher, M.; Weisz, P. String excitation energies in SU(N) gauge theories beyond the free-string approximation. J. High Energy Phys. 2004, 7, 14. [Google Scholar] [CrossRef]
- Billo, M.; Caselle, M. Polyakov loop correlators from D0-brane interactions in bosonic string theory. J. High Energy Phys. 2005, 507, 38. [Google Scholar] [CrossRef]
- Billo, M.; Caselle, M.; Ferro, L. The partition function of interfaces from the Nambu-Goto effective string theory. J. High Energy Phys. 2006, 602, 70. [Google Scholar] [CrossRef]
- Eichten, E.; Gottfried, K.; Kinoshita, T.; Kogut, J.B.; Lane, K.B.; Yan, T.M. Spectrum of charmed quark-antiquark bound states. Phys. Rev. Lett. 1975, 34, 369. [Google Scholar] [CrossRef]
- t’Hooft, G. Topology of the gauge condition and new confinement phases in non-Abelian gauge theories. Nucl. Phys. B 1981, 190, 455. [Google Scholar]
- Belvedere, L.V.; Swieca, J.A.; Rothe, K.D.; Schroer, B. Generlaized two-dimensional Abelian gauge theories and confinement. Nucl. Phys. B 1979, 153, 112–140. [Google Scholar] [CrossRef]
- Sekido, T.; Ishiguro, K.; Koma, Y.; Mori, Y.; Suzuki, T. Abelian dominance and the dual Meissner effect in local unitary gauges in SU(2) gluodynamics. Phys. Rev.C 2007, 75, 064906. [Google Scholar] [CrossRef]
- Suzuki, T.; Ishiguro, K.; Koma, Y.; Sekido, T. Gauge-independent Abelian mechanism of color confinement in gluodynamics. Phys. Rev. D 2008, 77, 034502. [Google Scholar] [CrossRef]
- Suganuma, H.; Ohata, H. Local correlation among the chiral condensate, monopoles, and color magnetic fields in Abelian projected QCD. arXiv 2021, arXiv:2108.08499. [Google Scholar]
I | Experimental Mass (MeV) | Meson Mass in Massless Quark Limit (MeV) | Meson Mass Including Quark Mass and Quark Condensate Contributions (MeV) | ||
---|---|---|---|---|---|
QCD | 1 | 134.9 | 0 | 134.9 | |
meson | 0 | 547.9 | 329.7 | 498.4 | |
0 | 957.8 | 723.4 | 948.2 | ||
QED | isoscalar | 0 | 11.2 | 17.9 | |
meson | isovector | 1 | 33.6 | 36.4 | |
Possible | X17 | 16.70 ± 0.35 ± 0.5 [37] | |||
QED | X17 | 16.84 ± 0.16 ± 0.20 [38] | |||
meson | X17 | 17.03 ± 0.11 ± 0.20 [41] | |||
candidates | X17 | 16.7 ± 0.47 [45] | |||
X17 | 17.1 ± 0.7 [72] | ||||
E38 | 37.38 ± 0.71 [103] | ||||
E38 | 40.89 ± 0.91 [103] | ||||
E38 | 39.71 ± 0.71 [103] |
Reaction | (MeV) | Compound Nucleus | (MeV) | K (MeV) | (min) (Degree) |
---|---|---|---|---|---|
p + H | 0.510 [39] | He | 20.20 | 3.50 ± 0.5 | 100 ± 5 |
0.610 [39] | He | 20.27 | 3.57 ± 0.5 | 90 ± 5 | |
0.900 [39] | He | 20.49 | 3.79 ± 0.5 | 96 ± 5 | |
p + Li | 1.10 [37,39] | Be | 18.22 | 1.52 ± 0.5 | 130 ± 5 |
p + Li | 4.0 [44] | Be | 20.76 | Be→Be(gs) + X17 4.06 ± 0.5 | 110 ± 5 |
p + Li | 4.0 [44] | Be | 20.76 | Be→Be(3.03 MeV) + X17 1.03 ± 0.5 | 136 ± 6 |
p+B | 1.50 [41] | C | 17.33 | 0.63 ± 0.5 | 145 ± 3 |
1.70 [41] | C | 17.52 | 0.82 ± 0.5 | 144 ± 3 | |
1.88 [41] | C | 17.68 | 0.98 ± 0.5 | 138 ± 3 | |
2.10 [41] | C | 17.88 | 1.18 ± 0.5 | 134 ± 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wong, C.-Y. QED Meson Description of the Anomalous Particles at ∼17 and ∼38 MeV. Universe 2024, 10, 173. https://doi.org/10.3390/universe10040173
Wong C-Y. QED Meson Description of the Anomalous Particles at ∼17 and ∼38 MeV. Universe. 2024; 10(4):173. https://doi.org/10.3390/universe10040173
Chicago/Turabian StyleWong, Cheuk-Yin. 2024. "QED Meson Description of the Anomalous Particles at ∼17 and ∼38 MeV" Universe 10, no. 4: 173. https://doi.org/10.3390/universe10040173
APA StyleWong, C. -Y. (2024). QED Meson Description of the Anomalous Particles at ∼17 and ∼38 MeV. Universe, 10(4), 173. https://doi.org/10.3390/universe10040173