Gravitational Waves of Holographic QCD Phase Transition with Hyperscaling Violation
Abstract
:1. Introduction
2. Holographic QCD Phase Transition with Hyperscaling Violation
3. Gravitational Waves from Holographic QCD Phase Transition with Hyperscaling Violation
4. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Einstein, A. Approximative Integration of the Field Equations of Gravitation. Sitzungsber. Preuss. Akad. Wiss. Berl. (Math. Phys.) 1916, 1916, 688–696. [Google Scholar]
- Einstein, A. Uber Gravitationswellen. Sitzungsber. Preuss. Akad. Wiss. Berl. (Math. Phys.) 1918, 1918, 154–167. [Google Scholar]
- Abbott, B.P. et al. [LIGO Scientific and Virgo] Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed]
- Arzoumanian, Z. et al. [NANOGrav] The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background. Astrophys. J. Lett. 2020, 905, L34. [Google Scholar] [CrossRef]
- Cai, R.G.; Cao, Z.; Guo, Z.K.; Wang, S.J.; Yang, T. The Gravitational-Wave Physics. Natl. Sci. Rev. 2017, 4, 687–706. [Google Scholar] [CrossRef]
- Kosowsky, A.; Turner, M.S.; Watkins, R. Gravitational waves from first order cosmological phase transitions. Phys. Rev. Lett. 1992, 69, 2026–2029. [Google Scholar] [CrossRef] [PubMed]
- Kosowsky, A.; Turner, M.S. Gravitational radiation from colliding vacuum bubbles: Envelope approximation to many bubble collisions. Phys. Rev. D 1993, 47, 4372–4391. [Google Scholar] [CrossRef]
- Kamionkowski, M.; Kosowsky, A.; Turner, M.S. Gravitational radiation from first order phase transitions. Phys. Rev. D 1994, 49, 2837–2851. [Google Scholar] [CrossRef]
- Caprini, C.; Hindmarsh, M.; Huber, S.; Konstandin, T.; Kozaczuk, J.; Nardini, G.; No, J.M.; Petiteau, A.; Schwaller, P.; Servant, G.; et al. Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions. JCAP 2016, 4, 1. [Google Scholar] [CrossRef]
- Jinno, R.; Nakayama, K.; Takimoto, M. Gravitational waves from the first order phase transition of the Higgs field at high energy scales. Phys. Rev. D 2016, 93, 045024. [Google Scholar] [CrossRef]
- Gao, F.; Sun, S.; White, G. A first-order deconfinement phase transition in the early universe and gravitational waves. arXiv 2024, arXiv:2405.00490. [Google Scholar]
- Caprini, C. et al. [LISA Cosmology Working Group] Gravitational waves from first-order phase transitions in LISA: Reconstruction pipeline and physics interpretation. arXiv 2024, arXiv:2403.03723. [Google Scholar]
- Han, X.; Shao, G. Stochastic gravitational waves produced by the first-order QCD phase transition. arXiv 2023, arXiv:2312.00571. [Google Scholar]
- Arsene, I. et al. [BRAHMS Collaboration] Quark gluon plasma and color glass condensate at RHIC? The Perspective from the BRAHMS experiment. Nucl. Phys. A 2005, 757, 1. [Google Scholar] [CrossRef]
- Adcox, K. et al. [PHENIX Collaboration] Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration. Nucl. Phys. A 2005, 757, 184. [Google Scholar] [CrossRef]
- Back, B.B. et al. [PHOBOS Collaboration] The PHOBOS perspective on discoveries at RHIC. Nucl. Phys. A 2005, 757, 28. [Google Scholar] [CrossRef]
- Lucini, B.; Rago, A.; Rinaldi, E. SU(Nc) gauge theories at deconfinement. Phys. Lett. B 2012, 712, 279–283. [Google Scholar] [CrossRef]
- Aoki, Y.; Fodor, Z.; Katz, S.D.; Szabo, K.K. The QCD transition temperature: Results with physical masses in the continuum limit. Phys. Lett. B 2006, 643, 46–54. [Google Scholar] [CrossRef]
- Bazavov, A.; Bhattacharya, T.; Cheng, M.; DeTar, C.; Ding, H.T.; Gottlieb, S.; Gupta, R.; Hegde, P.; Heller, U.M.; Karsch, F.; et al. The chiral and deconfinement aspects of the QCD transition. Phys. Rev. D 2012, 85, 054503. [Google Scholar] [CrossRef]
- Bhattacharya, T.; Buchoff, M.I.; Christ, N.H.; Ding, H.T.; Gupta, R.; Jung, C.; Karsch, F.; Lin, Z.; Mawhinney, R.D.; McGlynn, G.; et al. QCD Phase Transition with Chiral Quarks and Physical Quark Masses. Phys. Rev. Lett. 2014, 113, 082001. [Google Scholar] [CrossRef]
- Witten, E. Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 1998, 2, 253. [Google Scholar] [CrossRef]
- Gubser, S.S.; Klebanov, I.R.; Polyakov, A.M. Gauge theory correlators from noncritical string theory. Phys. Lett. B 1998, 428, 105. [Google Scholar] [CrossRef]
- Maldacena, J.M. The Large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 1998, 2, 231. [Google Scholar] [CrossRef]
- Hawking, S.W.; Page, D.N. Thermodynamics of Black Holes in anti-De Sitter Space. Commun. Math. Phys. 1983, 87, 577. [Google Scholar] [CrossRef]
- Herzog, C.P. A Holographic Prediction of the Deconfinement Temperature. Phys. Rev. Lett. 2007, 98, 091601. [Google Scholar] [CrossRef] [PubMed]
- Ahmadvand, M.; Fadafan, K.B. Gravitational waves generated from the cosmological QCD phase transition within AdS/QCD. Phys. Lett. B 2017, 772, 747–751. [Google Scholar] [CrossRef]
- Ahmadvand, M.; Fadafan, K.B. The cosmic QCD phase transition with dense matter and its gravitational waves from holography. Phys. Lett. B 2018, 779, 1–8. [Google Scholar] [CrossRef]
- Rezapour, S.; Fadafan, K.B.; Ahmadvand, M. Gravitational waves of a first-order QCD phase transition at finite coupling from holography. Annals Phys. 2022, 437, 168731. [Google Scholar] [CrossRef]
- Rezapour, S.; Fadafan, K.B.; Ahmadvand, M. Gravitational waves of the QCD phase transition in a 5D soft wall model with Gauss-Bonnet correction. Phys. Scripta 2022, 97, 035301. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, M.; Yan, Q.S. Gravitation waves from QCD and electroweak phase transitions. J. High Energy Phys. 2018, 5, 178. [Google Scholar] [CrossRef]
- Ares, F.R.; Hindmarsh, M.; Hoyos, C.; Jokela, N. Gravitational waves from a holographic phase transition. J. High Energy Phys. 2020, 21, 100. [Google Scholar] [CrossRef]
- Cai, R.G.; He, S.; Li, L.; Wang, Y.X. Probing QCD critical point and induced gravitational wave by black hole physics. Phys. Rev. D 2022, 106, L121902. [Google Scholar] [CrossRef]
- He, S.; Li, L.; Li, Z.; Wang, S.J. Gravitational Waves and Primordial Black Hole Productions from Gluodynamics by Holography. Sci. China Phys. Mech. Astron. 2024, 67, 240411. [Google Scholar] [CrossRef]
- Zhu, Z.R.; Chen, J.; Hou, D. Gravitational waves from holographic QCD phase transition with gluon condensate. Eur. Phys. J. A 2022, 58, 104. [Google Scholar] [CrossRef]
- Batell, B.; Ghalsasi, A.; Low, M.; Rai, M. Gravitational Waves from Nnaturalness. J. High Energy Phys. 2024, 1, 148. [Google Scholar] [CrossRef]
- Gouttenoire, Y. Primordial Black Holes from Conformal Higgs. arXiv 2023, arXiv:2311.13640. [Google Scholar]
- Kachru, S.; Liu, X.; Mulligan, M. Gravity duals of Lifshitz-like fixed points. Phys. Rev. D 2008, 78, 106005. [Google Scholar] [CrossRef]
- Koroteev, P.; Libanov, M. On Existence of Self-Tuning Solutions in Static Braneworlds without Singularities. J. High Energy Phys. 2008, 2, 104. [Google Scholar] [CrossRef]
- Charmousis, C.; Gouteraux, B.; Kim, B.S.; Kiritsis, E.; Meyer, R. Effective Holographic Theories for low-temperature condensed matter systems. JHEP 2010, 11, 151. [Google Scholar] [CrossRef]
- Sachan, S. Study of confinement/deconfinement transition in AdS/QCD with generalized warp factors. Adv. High Energy Phys. 2014, 2014, 543526. [Google Scholar] [CrossRef]
- Singh, H. Special limits and non-relativistic solutions. J. High Energy Phys. 2010, 12, 61. [Google Scholar] [CrossRef]
- Narayan, K. On Lifshitz scaling and hyperscaling violation in string theory. Phys. Rev. D 2012, 85, 106006. [Google Scholar] [CrossRef]
- Singh, H. Lifshitz/Schrödinger Dp-branes and dynamical exponents. J. High Energy Phys. 2012, 7, 82. [Google Scholar] [CrossRef]
- Alishahiha, M.; Colgain, E.O.; Yavartanoo, H. Charged Black Branes with Hyperscaling Violating Factor. J. High Energy Phys. 2012, 11, 137. [Google Scholar] [CrossRef]
- Moore, C.J.; Cole, R.H.; Berry, C.P.L. Gravitational-wave sensitivity curves. Class. Quant. Grav. 2015, 32, 015014. [Google Scholar] [CrossRef]
- Schmitz, K. New Sensitivity Curves for Gravitational-Wave Signals from Cosmological Phase Transitions. J. High Energy Phys. 2021, 1, 97. [Google Scholar] [CrossRef]
- Ruan, W.H.; Guo, Z.K.; Cai, R.G.; Zhang, Y.Z. Taiji program: Gravitational-wave sources. Int. J. Mod. Phys. A 2020, 35, 2050075. [Google Scholar] [CrossRef]
- Sin, S.J. Gravity back-reaction to the baryon density for bulk filling branes. J. High Energy Phys. 2007, 10, 78. [Google Scholar] [CrossRef]
- Lee, B.H.; Park, C.; Sin, S.J. A Dual Geometry of the Hadron in Dense Matter. J. High Energy Phys. 2009, 7, 87. [Google Scholar] [CrossRef]
- Hindmarsh, M.; Huber, S.J.; Rummukainen, K.; Weir, D.J. Numerical simulations of acoustically generated gravitational waves at a first order phase transition. Phys. Rev. D 2015, 92, 123009. [Google Scholar] [CrossRef]
- Jovanovic, V.B.; Ignjatovic, S.R.; Borka, D.; Jovanovic, P. Constituent quark masses obtained from hadron masses with contributions of Fermi-Breit and Glozman-Riska hyperfine interactions. Phys. Rev. D 2010, 82, 117501. [Google Scholar] [CrossRef]
- Bodeker, D.; Moore, G.D. Can electroweak bubble walls run away? J. Cosmol. Astropart. Phys. 2009, 5, 9. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.; Sun, M.; Zhou, R.; Han, J.; Hou, D. Gravitational Waves of Holographic QCD Phase Transition with Hyperscaling Violation. Universe 2024, 10, 224. https://doi.org/10.3390/universe10050224
Zhu Z, Sun M, Zhou R, Han J, Hou D. Gravitational Waves of Holographic QCD Phase Transition with Hyperscaling Violation. Universe. 2024; 10(5):224. https://doi.org/10.3390/universe10050224
Chicago/Turabian StyleZhu, Zhourun, Manman Sun, Rui Zhou, Jinzhong Han, and Defu Hou. 2024. "Gravitational Waves of Holographic QCD Phase Transition with Hyperscaling Violation" Universe 10, no. 5: 224. https://doi.org/10.3390/universe10050224
APA StyleZhu, Z., Sun, M., Zhou, R., Han, J., & Hou, D. (2024). Gravitational Waves of Holographic QCD Phase Transition with Hyperscaling Violation. Universe, 10(5), 224. https://doi.org/10.3390/universe10050224