Uncovering the First AGN Jets with AXIS
Abstract
:1. Introduction
2. Jet-Assisted Black Hole Growth
3. The Hidden Population
4. The Need for AXIS
5. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AGN | Active Galactic Nucleus or Active Galactic Nuclei |
AXIS | Advanced X-ray Imaging Satellite |
CMB | Cosmic Microwave Background |
IC-CMB | Inverse Compton emission from CMB photons |
ngVLA | Next Generation Very Large Array |
SKA | Square Kilometer Array |
SMBH | Supermassive Black Hole |
SWG | Science Working Group |
VLBI | Very Long Baseline Interferometry |
References
- Larson, R.L.; Finkelstein, S.L.; Kocevski, D.D.; Hutchison, T.A.; Trump, J.R.; Arrabal Haro, P.; Bromm, V.; Cleri, N.J.; Dickinson, M.; Fujimoto, S.; et al. A CEERS Discovery of an Accreting Supermassive Black Hole 570 Myr after the Big Bang: Identifying a Progenitor of Massive z > 6 Quasars. Astrophys. J. 2023, 953, L29. [Google Scholar] [CrossRef]
- Wang, F.; Yang, J.; Hennawi, J.F.; Fan, X.; Sun, F.; Champagne, J.B.; Costa, T.; Habouzit, M.; Endsley, R.; Li, Z.; et al. A SPectroscopic Survey of Biased Halos in the Reionization Era (ASPIRE): JWST Reveals a Filamentary Structure around a z = 6.61 Quasar. Astrophys. J. 2023, 951, L4. [Google Scholar] [CrossRef]
- Yang, J.; Wang, F.; Fan, X.; Hennawi, J.F.; Barth, A.J.; Bañados, E.; Sun, F.; Liu, W.; Cai, Z.; Jiang, L.; et al. A SPectroscopic Survey of Biased Halos in the Reionization Era (ASPIRE): A First Look at the Rest-frame Optical Spectra of z > 6.5 Quasars Using JWST. Astrophys. J. 2023, 951, L5. [Google Scholar] [CrossRef]
- Hardcastle, M.J.; Croston, J.H. Radio galaxies and feedback from AGN jets. New A Rev. 2020, 88, 101539. [Google Scholar] [CrossRef]
- Reynolds, C.S.; Kara, E.A.; Mushotzky, R.F.; Ptak, A.; Koss, M.J.; Williams, B.J.; Allen, S.W.; Bauer, F.E.; Bautz, M.; Bodaghee, A.; et al. Overview of the Advanced X-ray Imaging Satellite (AXIS). arXiv 2023, arXiv:2311.00780. [Google Scholar] [CrossRef]
- Bañados, E.; Venemans, B.P.; Decarli, R.; Farina, E.P.; Mazzucchelli, C.; Walter, F.; Fan, X.; Stern, D.; Schlafly, E.; Chambers, K.C.; et al. The Pan-STARRS1 Distant z > 5.6 Quasar Survey: More than 100 Quasars within the First Gyr of the Universe. Astrophys. J. Suppl. Ser. 2016, 227, 11. [Google Scholar] [CrossRef]
- Bañados, E.; Schindler, J.T.; Venemans, B.P.; Connor, T.; Decarli, R.; Farina, E.P.; Mazzucchelli, C.; Meyer, R.A.; Stern, D.; Walter, F.; et al. The Pan-STARRS1 z > 5.6 Quasar Survey. II. Discovery of 55 Quasars at 5.6 < z < 6.5. Astrophys. J. Suppl. Ser. 2023, 265, 29. [Google Scholar] [CrossRef]
- Wang, F.; Yang, J.; Fan, X.; Wu, X.B.; Yue, M.; Li, J.T.; Bian, F.; Jiang, L.; Bañados, E.; Schindler, J.T.; et al. Exploring Reionization-era Quasars. III. Discovery of 16 Quasars at 6.4 ≲ z ≲ 6.9 with DESI Legacy Imaging Surveys and the UKIRT Hemisphere Survey and Quasar Luminosity Function at z ∼ 6.7. Astrophys. J. 2019, 884, 30. [Google Scholar] [CrossRef]
- Yang, J.; Fan, X.; Gupta, A.; Myers, A.D.; Palanque-Delabrouille, N.; Wang, F.; Yèche, C.; Aguilar, J.N.; Ahlen, S.; Alexander, D.M.; et al. DESI z ≳ 5 Quasar Survey. I. A First Sample of 400 New Quasars at z 4.7–6.6. Astrophys. J. Suppl. Ser. 2023, 269, 27. [Google Scholar] [CrossRef]
- Wang, F.; Yang, J.; Fan, X.; Hennawi, J.F.; Barth, A.J.; Banados, E.; Bian, F.; Boutsia, K.; Connor, T.; Davies, F.B.; et al. A Luminous Quasar at Redshift 7.642. Astrophys. J. 2021, 907, L1. [Google Scholar] [CrossRef]
- Fryer, C.L.; Woosley, S.E.; Heger, A. Pair-Instability Supernovae, Gravity Waves, and Gamma-Ray Transients. Astrophys. J. 2001, 550, 372–382. [Google Scholar] [CrossRef]
- Hirano, S.; Hosokawa, T.; Yoshida, N.; Umeda, H.; Omukai, K.; Chiaki, G.; Yorke, H.W. One Hundred First Stars: Protostellar Evolution and the Final Masses. Astrophys. J. 2014, 781, 60. [Google Scholar] [CrossRef]
- Whalen, D.J.; Fryer, C.L. The Formation of Supermassive Black Holes from Low-mass Pop III Seeds. Astrophys. J. 2012, 756, L19. [Google Scholar] [CrossRef]
- Devecchi, B.; Volonteri, M. Formation of the First Nuclear Clusters and Massive Black Holes at High Redshift. Astrophys. J. 2009, 694, 302–313. [Google Scholar] [CrossRef]
- Sakurai, Y.; Yoshida, N.; Fujii, M.S.; Hirano, S. Formation of intermediate-mass black holes through runaway collisions in the first star clusters. Mon. Not. R. Astron. Soc. 2017, 472, 1677–1684. [Google Scholar] [CrossRef]
- Latif, M.A.; Schleicher, D.R.G.; Schmidt, W.; Niemeyer, J. Black hole formation in the early Universe. Mon. Not. R. Astron. Soc. 2013, 433, 1607–1618. [Google Scholar] [CrossRef]
- Habouzit, M.; Volonteri, M.; Latif, M.; Dubois, Y.; Peirani, S. On the number density of ‘direct collapse’ black hole seeds. Mon. Not. R. Astron. Soc. 2016, 463, 529–540. [Google Scholar] [CrossRef]
- Wise, J.H.; Regan, J.A.; O’Shea, B.W.; Norman, M.L.; Downes, T.P.; Xu, H. Formation of massive black holes in rapidly growing pre-galactic gas clouds. Nature 2019, 566, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Bhowmick, A.K.; Blecha, L.; Torrey, P.; Kelley, L.Z.; Vogelsberger, M.; Nelson, D.; Weinberger, R.; Hernquist, L. Impact of gas spin and Lyman-Werner flux on black hole seed formation in cosmological simulations: Implications for direct collapse. Mon. Not. R. Astron. Soc. 2022, 510, 177–196. [Google Scholar] [CrossRef]
- Jolley, E.J.D.; Kuncic, Z. Jet-enhanced accretion growth of supermassive black holes. Mon. Not. R. Astron. Soc. 2008, 386, 989–994. [Google Scholar] [CrossRef]
- Ghisellini, G.; Haardt, F.; Della Ceca, R.; Volonteri, M.; Sbarrato, T. The role of relativistic jets in the heaviest and most active supermassive black holes at high redshift. Mon. Not. R. Astron. Soc. 2013, 432, 2818–2823. [Google Scholar] [CrossRef]
- Bañados, E.; Venemans, B.P.; Morganson, E.; Hodge, J.; Decarli, R.; Walter, F.; Stern, D.; Schlafly, E.; Farina, E.P.; Greiner, J.; et al. Constraining the Radio-loud Fraction of Quasars at z > 5.5. Astrophys. J. 2015, 804, 118. [Google Scholar] [CrossRef]
- Connor, T.; Stern, D.; Bañados, E.; Mazzucchelli, C. X-ray Evidence Against the Hypothesis that the Hyperluminous z = 6.3 Quasar J0100+2802 is Lensed. Astrophys. J. 2021, 922, L24. [Google Scholar] [CrossRef]
- Frey, S.; Gurvits, L.I.; Paragi, Z.; Gabányi, K.É. High-resolution double morphology of the most distant known radio quasar at z = 6.12. Astron. Astrophys. 2008, 484, L39–L42. [Google Scholar] [CrossRef]
- Spingola, C.; Dallacasa, D.; Belladitta, S.; Caccianiga, A.; Giroletti, M.; Moretti, A.; Orienti, M. Parsec-scale properties of the radio brightest jetted AGN at z > 6. Astron. Astrophys. 2020, 643, L12. [Google Scholar] [CrossRef]
- Momjian, E.; Carilli, C.L.; McGreer, I.D. Very Large Array and Very Long Baseline Array Observations of the Highest Redshift Radio-Loud QSO J1427+3312 at Z = 6.12. Astron. J. 2008, 136, 344–349. [Google Scholar] [CrossRef]
- Momjian, E.; Carilli, C.L.; Bañados, E.; Walter, F.; Venemans, B.P. Resolving the Powerful Radio-loud Quasar at z ∼ 6. Astrophys. J. 2018, 861, 86. [Google Scholar] [CrossRef]
- Tavecchio, F.; Maraschi, L.; Sambruna, R.M.; Urry, C.M. The X-ray Jet of PKS 0637-752: Inverse Compton Radiation from the Cosmic Microwave Background? Astrophys. J. 2000, 544, L23–L26. [Google Scholar] [CrossRef]
- Celotti, A.; Ghisellini, G.; Chiaberge, M. Large-scale jets in active galactic nuclei: Multiwavelength mapping. Mon. Not. R. Astron. Soc. 2001, 321, L1–L5. [Google Scholar] [CrossRef]
- Ghisellini, G.; Celotti, A.; Tavecchio, F.; Haardt, F.; Sbarrato, T. Radio-loud active galactic nuclei at high redshifts and the cosmic microwave background. Mon. Not. R. Astron. Soc. 2014, 438, 2694–2700. [Google Scholar] [CrossRef]
- Lucchini, M.; Tavecchio, F.; Ghisellini, G. Revisiting the EC/CMB model for extragalactic large scale jets. Mon. Not. R. Astron. Soc. 2017, 466, 4299–4306. [Google Scholar] [CrossRef]
- Reddy, K.; Georganopoulos, M.; Meyer, E.T.; Keenan, M.; Kollmann, K.E. Offsets between X-ray and Radio Components in X-ray Jets: The AtlasX. Astrophys. J. Suppl. Ser. 2023, 265, 8. [Google Scholar] [CrossRef]
- Connor, T.; Bañados, E.; Stern, D.; Carilli, C.; Fabian, A.; Momjian, E.; Rojas-Ruiz, S.; Decarli, R.; Farina, E.P.; Mazzucchelli, C.; et al. Enhanced X-ray Emission from the Most Radio-powerful Quasar in the Universe’s First Billion Years. Astrophys. J. 2021, 911, 120. [Google Scholar] [CrossRef]
- Bañados, E.; Carilli, C.; Walter, F.; Momjian, E.; Decarli, R.; Farina, E.P.; Mazzucchelli, C.; Venemans, B.P. A Powerful Radio-loud Quasar at the End of Cosmic Reionization. Astrophys. J. 2018, 861, L14. [Google Scholar] [CrossRef]
- Ighina, L.; Moretti, A.; Tavecchio, F.; Caccianiga, A.; Belladitta, S.; Dallacasa, D.; Della Ceca, R.; Sbarrato, T.; Spingola, C. Direct observation of an extended X-ray jet at z = 6.1. Astron. Astrophys. 2022, 659, A93. [Google Scholar] [CrossRef]
- Ghisellini, G.; Nardini, M.; Tagliaferri; Greiner, J.; Schady, P.; Rau, A.; Foschini, L.; Tavecchio, F.; Ghirlanda, G.; Sbarrato, T. High-redshift Fermi blazars observed by GROND and Swift. Mon. Not. R. Astron. Soc. 2013, 428, 1449–1459. [Google Scholar] [CrossRef]
- Simionescu, A.; Stawarz, Ł.; Ichinohe, Y.; Cheung, C.C.; Jamrozy, M.; Siemiginowska, A.; Hagino, K.; Gandhi, P.; Werner, N. Serendipitous Discovery of an Extended X-ray Jet without a Radio Counterpart in a High-redshift Quasar. Astrophys. J. 2016, 816, L15. [Google Scholar] [CrossRef]
- Schwartz, D.A.; Siemiginowska, A.; Snios, B.; Worrall, D.M.; Birkinshaw, M.; Cheung, C.C.; Marshall, H.; Migliori, G.; Wardle, J.F.C.; Gobeille, D. Two Candidate High-redshift X-ray Jets without Coincident Radio Jets. Astrophys. J. 2020, 904, 57. [Google Scholar] [CrossRef]
- Snios, B.; Schwartz, D.A.; Siemiginowska, A.; Sobolewska, M.; Birkinshaw, M.; Cheung, C.C.; Gobeille, D.B.; Marshall, H.L.; Migliori, G.; Wardle, J.F.C.; et al. X-ray Jets in the High-redshift Quasars J1405+0415 and J1610+1811. Astrophys. J. 2022, 934, 107. [Google Scholar] [CrossRef]
- Momjian, E.; Bañados, E.; Carilli, C.L.; Walter, F.; Mazzucchelli, C. Resolving the Radio Emission from the Quasar P172+18 at z = 6.82. Astron. J. 2021, 161, 207. [Google Scholar] [CrossRef]
- Arnaud, K.A. XSPEC: The First Ten Years. Astron. Data Anal. Softw. Syst. V 1996, 101, 17. [Google Scholar]
- Harikane, Y.; Nakajima, K.; Ouchi, M.; Umeda, H.; Isobe, Y.; Ono, Y.; Xu, Y.; Zhang, Y. Pure Spectroscopic Constraints on UV Luminosity Functions and Cosmic Star Formation History from 25 Galaxies at zspec = 8.61–13.20 Confirmed with JWST/NIRSpec. Astrophys. J. 2024, 960, 56. [Google Scholar] [CrossRef]
- Maiolino, R.; Uebler, H.; Perna, M.; Scholtz, J.; D’Eugenio, F.; Witten, C.; Laporte, N.; Witstok, J.; Carniani, S.; Tacchella, S.; et al. JWST-JADES. Possible Population III signatures at z = 10.6 in the halo of GN-z11. arXiv 2023, arXiv:2306.00953. [Google Scholar] [CrossRef]
- Sodini, A.; D’Odorico, V.; Salvadori, S.; Vanni, I.; Bischetti, M.; Cupani, G.; Davies, R.; Becker, G.D.; Bañados, E.; Bosman, S.; et al. Evidence of Pop III stars’ chemical signature in neutral gas at z∼6. A study based on the E-XQR-30 spectroscopic sample. arXiv 2024, arXiv:2404.10722. [Google Scholar] [CrossRef]
- Mirocha, J.; Mebane, R.H.; Furlanetto, S.R.; Singal, K.; Trinh, D. Unique signatures of Population III stars in the global 21-cm signal. Mon. Not. R. Astron. Soc. 2018, 478, 5591–5606. [Google Scholar] [CrossRef]
- Pochinda, S.; Gessey-Jones, T.; Bevins, H.T.J.; Fialkov, A.; Heimersheim, S.; Abril-Cabezas, I.; de Lera Acedo, E.; Singh, S.; Sikder, S.; Barkana, R. Constraining the properties of Population III galaxies with multi-wavelength observations. Mon. Not. R. Astron. Soc. 2024, arXiv:2312.08095. [Google Scholar]
- Sun, G.; Mirocha, J.; Mebane, R.H.; Furlanetto, S.R. Revealing the formation histories of the first stars with the cosmic near-infrared background. Mon. Not. R. Astron. Soc. 2021, 508, 1954–1972. [Google Scholar] [CrossRef]
- Melia, F.; Shevchuk, A.S.H. The Rh = ct universe. Mon. Not. R. Astron. Soc. 2012, 419, 2579–2586. [Google Scholar] [CrossRef]
- Melia, F. J1342+0928 supports the timeline in the Rh = ct cosmology. Astron. Astrophys. 2018, 615, A113. [Google Scholar] [CrossRef]
- Melia, F. The cosmic timeline implied by the JWST high-redshift galaxies. Mon. Not. R. Astron. Soc. 2023, 521, L85–L89. [Google Scholar] [CrossRef]
- Gupta, R.P. JWST early Universe observations and ΛCDM cosmology. Mon. Not. R. Astron. Soc. 2023, 524, 3385–3395. [Google Scholar] [CrossRef]
- DESI Collaboration; Adame, A.G.; Aguilar, J.; Ahlen, S.; Alam, S.; Alexander, D.M.; Alvarez, M.; Alves, O.; Anand, A.; Andrade, U.; et al. DESI 2024 VI: Cosmological Constraints from the Measurements of Baryon Acoustic Oscillations. arXiv 2024, arXiv:2404.03002. [Google Scholar] [CrossRef]
- Planck Collaboration; Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar] [CrossRef]
- Breiding, P.; Meyer, E.T.; Georganopoulos, M.; Reddy, K.; Kollmann, K.E.; Roychowdhury, A. A multiwavelength study of multiple spectral component jets in AGN: Testing the IC/CMB model for the large-scale-jet X-ray emission. Mon. Not. R. Astron. Soc. 2023, 518, 3222–3250. [Google Scholar] [CrossRef]
- Marcotulli, L.; Paliya, V.; Ajello, M.; Kaur, A.; Marchesi, S.; Rajagopal, M.; Hartmann, D.; Gasparrini, D.; Ojha, R.; Madejski, G. NuSTAR Perspective on High-redshift MeV Blazars. Astrophys. J. 2020, 889, 164. [Google Scholar] [CrossRef]
- Zech, A.; Cerruti, M.; Mazin, D. Expected signatures from hadronic emission processes in the TeV spectra of BL Lacertae objects. Astron. Astrophys. 2017, 602, A25. [Google Scholar] [CrossRef]
- Cheng, J.G.; Huang, X.L.; Wang, Z.R.; Huang, J.K.; Liang, E.W. TeV and keV-MeV Excesses as Probes for Hadronic Process in BL Lacertaes. Astrophys. J. Lett. 2022, 925, L19. [Google Scholar] [CrossRef]
- Schwartz, D.A.; Marshall, H.L.; Lovell, J.E.J.; Piner, B.G.; Tingay, S.J.; Birkinshaw, M.; Chartas, G.; Elvis, M.; Feigelson, E.D.; Ghosh, K.K.; et al. Chandra Discovery of a 100 kiloparsec X-ray Jet in PKS 0637-752. Astrophys. J. 2000, 540, 69–72. [Google Scholar] [CrossRef]
- Chartas, G.; Worrall, D.M.; Birkinshaw, M.; Cresitello-Dittmar, M.; Cui, W.; Ghosh, K.K.; Harris, D.E.; Hooper, E.J.; Jauncey, D.L.; Kim, D.W.; et al. The Chandra X-ray Observatory Resolves the X-ray Morphology and Spectra of a Jet in PKS 0637-752. Astrophys. J. 2000, 542, 655–666. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Connor, T.; Bañados, E.; Cappelluti, N.; Foord, A. Uncovering the First AGN Jets with AXIS. Universe 2024, 10, 227. https://doi.org/10.3390/universe10050227
Connor T, Bañados E, Cappelluti N, Foord A. Uncovering the First AGN Jets with AXIS. Universe. 2024; 10(5):227. https://doi.org/10.3390/universe10050227
Chicago/Turabian StyleConnor, Thomas, Eduardo Bañados, Nico Cappelluti, and Adi Foord. 2024. "Uncovering the First AGN Jets with AXIS" Universe 10, no. 5: 227. https://doi.org/10.3390/universe10050227
APA StyleConnor, T., Bañados, E., Cappelluti, N., & Foord, A. (2024). Uncovering the First AGN Jets with AXIS. Universe, 10(5), 227. https://doi.org/10.3390/universe10050227