Detectors and Shieldings: Past and Future at LUNA
Abstract
:1. Introduction
2. Simulations and SimLuna
3. Detectors
3.1. The 20,21,22Ne21,22,23Na Reactions
3.2. The 2H3He Reaction
3.3. The 17O18F Reaction
3.4. The 22Ne25Mg Reaction
3.5. The Case of the 16O(p, γ)17F Reaction
3.6. Outlooks: The 12C + 12C Reaction
4. Charged Particle Detectors at LUNA
4.1. The Case of the 3He(3He, 2p)4He Reaction
4.2. The 17,18O Reactions
4.3. Outlooks: The 23Na20Ne Reaction
5. Neutron Detectors at LUNA
5.1. The 13C16O Reaction
5.2. Outlooks: The 22Ne25Mg Reaction
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azuma, R.E.; Uberseder, E.; Simpson, E.C.; Brune, C.R.; Costantini, H.; de Boer, R.J.; Görres, J.; Heil, M.; Leblanc, P.J.; Ugalde, C.; et al. AZURE: An R-matrix code for nuclear astrophysics. Phys. Rev. C 2010, 81, 045805. [Google Scholar] [CrossRef]
- Assenbaum, H.J.; Langanke, K.; Rolfs, C. Effects of electron screening on low-energy fusion cross sections. Z. Phys. Hadron. Nucl. 1987, 327, 461–468. [Google Scholar] [CrossRef]
- Buompane, R.; Cavanna, F.; Curceanu, C.; D’Onofrio, A.; Di Leva, A.; Formicola, A.; Gialanella, L.; Gustavino, C.; Imbriani, G.; Junker, M.; et al. Nuclear Physics Mid Term Plan at LNGS. Eur. Phys. J. Plus 2024, 139, 224. [Google Scholar] [CrossRef]
- Aliotta, M.; Buompane, R.; Couder, M.; Couture, A.; deBoer, R.; Formicola, A.; Gialanella, L.; Glorius, J.; Imbriani, G.; Junker, M.; et al. The status and future of direct nuclear reaction measurements for stellar burning. J. Phys. G, 2021; in preparation. [Google Scholar] [CrossRef]
- Broggini, C.; Bemmerer, D.; Caciolli, A.; Trezzi, D. LUNA: Status and prospects. Prog. Part. Nucl. Phys. 2018, 98, 55–84. [Google Scholar] [CrossRef]
- Dombos, A.C.; Robertson, D.; Simon, A.; Kadlecek, T.; Hanhardt, M.; Görres, J.; Couder, M.; Kelmar, R.; Olivas-Gomez, O.; Stech, E.; et al. Measurement of Low-Energy Resonance Strengths in the 18O(α, γ)22Ne Reaction. Phys. Rev. Lett. 2022, 128, 162701. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Li, Z.; He, J.; Tang, X.; Lian, G.; An, Z.; Chang, J.; Chen, H.; Chen, Q.; Chen, X.; et al. Progress of Jinping Underground laboratory for Nuclear Astrophysics (JUNA). Sci. China Phys. Mech. Astron. 2016, 59, 5785. [Google Scholar] [CrossRef]
- Ferraro, F.; Ciani, G.F.; Boeltzig, A.; Cavanna, F.; Zavatarelli, S. The Study of Key Reactions Shaping the Post-Main Sequence Evolution of Massive Stars in Underground Facilities. Front. Astron. Space Sci. 2021, 7, 617946. [Google Scholar] [CrossRef]
- Bemmerer, D.; Cowan, T.E.; Domula, A.; Döring, T.; Grieger, M.; Hammer, S.; Hensel, T.; Hübinger, L.; Junghans, A.R.; Ludwig, F.; et al. The new Felsenkeller 5 MV underground accelerator. In Proceedings of the Solar Neutrinos—5th International Solar Neutrino Conference, Dresden, Germany, 11–14 June 2018; Meyer, M., Zuber, K., Eds.; World Scientific Publishing Co Pte Ltd.: Singapore, 2019; pp. 249–263. [Google Scholar]
- Greife, U.; Arpesella, C.; Barnes, C.; Bartolucci, F.; Bellotti, E.; Broggini, C.; Corvisiero, P.; Fiorentini, G.; Fubini, A.; Gervino, G.; et al. Laboratory for Underground Nuclear Astrophysics (LUNA). Nucl. Instrum. Methods Phys. Res. A 1994, 350, 327–337. [Google Scholar] [CrossRef]
- Szücs, T.; Bemmerer, D.; Degering, D.; Domula, A.; Grieger, M.; Ludwig, F.; Schmidt, K.; Steckling, J.; Turkat, S.; Zuber, K. Background in γ-ray detectors and carbon beam tests in the Felsenkeller shallow-underground accelerator laboratory. Eur. Phys. J. A 2019, 55, 174. [Google Scholar] [CrossRef]
- Bruno, C.G.; Scott, D.A.; Formicola, A.; Aliotta, M.; Davinson, T.; Anders, M.; Best, A.; Bemmerer, D.; Broggini, C.; Caciolli, A.; et al. Resonance strengths in the 17,18O(p, α)14,15N reactions and background suppression underground. Commissioning of a new setup for charged-particle detection at LUNA. Eur. Phys. J. A 2015, 51, 94. [Google Scholar] [CrossRef]
- Formicola, A.; Imbriani, G.; Junker, M.; Bemmerer, D.; Bonetti, R.; Broggini, C.; Casella, C.; Corvisiero, P.; Costantini, H.; Gervino, G.; et al. The LUNA II 400 kV accelerator. Nucl. Instrum. Methods Phys. Res. A 2003, 507, 609–616. [Google Scholar] [CrossRef]
- Sen, A.; Domínguez-Cañizares, G.; Podaru, N.C.; Mous, D.J.W.; Junker, M.; Imbriani, G.; Rigato, V. A high intensity, high stability 3.5 MV Singletron™ accelerator. Nucl. Instrum. Methods Phys. Res. B 2019, 450, 390–395. [Google Scholar] [CrossRef]
- Skowronski, J.; Boeltzig, A.; Ciani, G.F.; Csedreki, L.; Piatti, D.; Aliotta, M.; Ananna, C.; Barile, F.; Bemmerer, D.; Best, A.; et al. Proton-Capture Rates on Carbon Isotopes and Their Impact on the Astrophysical 12C/13C Ratio. Phys. Rev. Lett. 2023, 131, 162701. [Google Scholar] [CrossRef] [PubMed]
- GEANT4 Collaboration. GEANT4 Website. Available online: https://geant4.web.cern.ch/ (accessed on 6 May 2024).
- ROOT Collaboration. ROOT Website. Available online: https://root.cern/ (accessed on 6 May 2024).
- Masha, E.; Barbieri, L.; Skowronski, J.; Aliotta, M.; Ananna, C.; Barile, F.; Bemmerer, D.; Best, A.; Boeltzig, A.; Broggini, C.; et al. First measurement of the low-energy direct capture in 20Ne(p, γ)21Na and improved energy and strength of the Ec.m. = 368 keV resonance. Phys. Rev. C 2023, 108, L052801. [Google Scholar] [CrossRef]
- Mossa, V.; Stöckel, K.; Cavanna, F.; Ferraro, F.; Aliotta, M.; Barile, F.; Bemmerer, D.; Best, A.; Boeltzig, A.; Broggini, C.; et al. The baryon density of the Universe from an improved rate of deuterium burning. Nature 2020, 587, 210–213. [Google Scholar] [CrossRef] [PubMed]
- Cavanna, F.; Depalo, R.; Aliotta, M.; Anders, M.; Bemmerer, D.; Best, A.; Boeltzig, A.; Broggini, C.; Bruno, C.G.; Caciolli, A.; et al. Three New Low-Energy Resonances in the 22Ne(p, γ)23Na Reaction. Phys. Rev. Lett. 2015, 115, 252501. [Google Scholar] [CrossRef] [PubMed]
- Depalo, R.; Cavanna, F.; Aliotta, M.; Anders, M.; Bemmerer, D.; Best, A.; Boeltzig, A.; Broggini, C.; Bruno, C.G.; Caciolli, A.; et al. Direct measurement of low-energy 22Ne(p, γ)23Na resonances. Phys. Rev. C 2016, 94, 055804. [Google Scholar] [CrossRef]
- Timmes, F.; Fryer, C.; Timmes, F.; Hungerford, A.L.; Couture, A.; Adams, F.; Aoki, W.; Arcones, A.; Arnett, D.; Auchettl, K.; et al. Catching Element Formation In The Act; The Case for a New MeV Gamma-Ray Mission: Radionuclide Astronomy in the 2020s. Bull. Am. Astron. Soc. 2019, 51, 2. [Google Scholar] [CrossRef]
- Pignatari, M.; Zinner, E.; Hoppe, P.; Jordan, C.J.; Gibson, B.K.; Trappitsch, R.; Herwig, F.; Fryer, C.; Hirschi, R.; Timmes, F.X. Carbon-rich Presolar Grains from Massive Stars: Subsolar 12C/13C and 14N/15N Ratios and the Mystery of 15N. Astrophys. J. Lett. 2015, 808, L43. [Google Scholar] [CrossRef]
- Iliadis, C.; Champagne, A.; José, J.; Starrfield, S.; Tupper, P. The Effects of Thermonuclear Reaction-Rate Variations on Nova Nucleosynthesis: A Sensitivity Study. Astrophys. J. Suppl. Ser. 2002, 142, 105–137. [Google Scholar] [CrossRef]
- Depalo, R. The Neon-Sodium Cycle: Study of the 22Ne(p, γ)23Na Reaction at Astrophysical Energies. Ph.D. Thesis, Università Degli Studi di Padova, Genoa, Italy, 2015. [Google Scholar]
- Cavanna, F. A direct measurement of the 22Ne(p, γ)23Na reaction down to the energies of astrophysical interest. Ph.D. Thesis, Università Degli Studi di Genova, Genoa, Italy, 2015. [Google Scholar]
- Coc, A.; Petitjean, P.; Uzan, J.P.; Vangioni, E.; Descouvemont, P.; Iliadis, C.; Longland, R. New reaction rates for improved primordial D/H calculation and the cosmic evolution of deuterium. Phys. Rev. D 2015, 92, 123526. [Google Scholar] [CrossRef]
- Pitrou, C.; Coc, A.; Uzan, J.P.; Vangioni, E. Precision big bang nucleosynthesis with improved Helium-4 predictions. Phys. Rept. 2018, 754, 1–66. [Google Scholar] [CrossRef]
- Ma, L.; Karwowski, H.; Brune, C.; Ayer, Z.; Black, T.; Blackmon, J.; Ludwig, E.; Viviani, M.; Kievsky, A.; Schiavilla, R. Measurements of 1H(d, γ)3He and 2H(p, γ)3He at very low energies. Phys. Rev. C 1997, 55, 588–596. [Google Scholar] [CrossRef]
- Schmid, G.; Rice, B.; Chasteler, R.; Godwin, M.; Kiang, G.; Kiang, L.; Laymon, C.; Prior, R.; Tilley, D.; Weller, H. The 2H(p, γ)3He and 1H(d, γ)3He reactions below 80 keV. Phys. Rev. C 1997, 56, 2565–2581. [Google Scholar] [CrossRef]
- Griffiths, G.; Lal, M.; Scarfe, C. The reaction D(p, γ)3He below 50 keV. Can. J. Phys. 1963, 41, 724. [Google Scholar] [CrossRef]
- Tišma, I.; Lipoglavšek, M.; Mihovilovič, M.; Markelj, S.; Vencelj, M.; Vesić, J. Experimental cross section and angular distribution of the 2H(p, γ)3He reaction at Big-Bang nucleosynthesis energies. Eur. Phys. J. A 2019, 55, 137. [Google Scholar] [CrossRef]
- Marcucci, L.; Mangano, G.; Kievsky, A.; Viviani, M. Implication of the Proton-Deuteron Radiative Capture for Big Bang Nucleosynthesis. Phys. Rev. Lett. 2016, 116, 102501. [Google Scholar] [CrossRef] [PubMed]
- Iliadis, C.; Anderson, K.S.; Coc, A.; Timmes, F.X.; Starrfield, S. Bayesian Estimation of Thermonuclear Reaction Rates. Astrophys. J. 2016, 831, 107. [Google Scholar] [CrossRef]
- Mossa, V.; Stöckel, K.; Cavanna, F.; Ferraro, F.; Aliotta, M.; Barile, F.; Bemmerer, D.; Best, A.; Boeltzig, A.; Broggini, C.; et al. Setup commissioning for an improved measurement of the D(p, γ)3He cross section at Big Bang Nucleosynthesis energies. Eur. Phys. J. A 2020, 56, 144. [Google Scholar] [CrossRef]
- Skowronski, J.; Gesuè, R.M.; Boeltzig, A.; Ciani, G.F.; Piatti, D.; Rapagnani, D.; Aliotta, M.; Ananna, C.; Barile, F.; Bemmerer, D.; et al. Advances in radiative capture studies at LUNA with a segmented BGO detector. J. Phys. G 2023, 50, 045201. [Google Scholar] [CrossRef]
- Boeltzig, A.; Best, A.; Imbriani, G.; Junker, M.; Aliotta, M.; Bemmerer, D.; Broggini, C.; Bruno, C.G.; Buompane, R.; Caciolli, A.; et al. Improved background suppression for radiative capture reactions at LUNA with HPGe and BGO detectors. J. Phys. G 2018, 45, 025203. [Google Scholar] [CrossRef]
- Lebzelter, T.; Hinkle, K.H.; Straniero, O.; Lambert, D.L.; Pilachowski, C.A.; Nault, K.A. Carbon and Oxygen Isotopic Ratios. II. Semiregular Variable M Giants. Astrophys. J. 2019, 886, 117. [Google Scholar] [CrossRef]
- Lugaro, M.; Karakas, A.I.; Bruno, C.G.; Aliotta, M.; Nittler, L.R.; Bemmerer, D.; Best, A.; Boeltzig, A.; Broggini, C.; Caciolli, A.; et al. Origin of meteoritic stardust unveiled by a revised proton-capture rate of 17O. Nat. Astron. 2017, 1, 0027. [Google Scholar] [CrossRef]
- Buckner, M.Q.; Iliadis, C.; Kelly, K.J.; Downen, L.N.; Champagne, A.E.; Cesaratto, J.M.; Howard, C.; Longland, R. High-intensity-beam study of 17O(p, γ)18F and thermonuclear reaction rates for 17O+p. Phys. Rev. C 2015, 91, 015812. [Google Scholar] [CrossRef]
- Sergi, M.L.; Spitaleri, C.; La Cognata, M.; Lamia, L.; Pizzone, R.G.; Rapisarda, G.G.; Tang, X.D.; Bucher, B.; Couder, M.; Davies, P.; et al. Improvement of the high-accuracy 17O(p, α)14N reaction-rate measurement via the Trojan Horse method for application to 17O nucleosynthesis. Phys. Rev. C 2015, 91, 065803. [Google Scholar] [CrossRef]
- Piatti, D.; Masha, E.; Aliotta, M.; Balibrea-Correa, J.; Barile, F.; Bemmerer, D.; Best, A.; Boeltzig, A.; Broggini, C.; Bruno, C.G.; et al. First direct limit on the 334 keV resonance strength in 22Ne(α, γ)26Mg reaction. Eur. Phys. J. A 2022, 58, 194. [Google Scholar] [CrossRef]
- Iliadis, C.; Angulo, C.; Descouvemont, P.; Lugaro, M.; Mohr, P. New reaction rate for 16O(p, γ)17F and its influence on the oxygen isotopic ratios in massive AGB stars. Phys. Rev. C 2008, 77, 045802. [Google Scholar] [CrossRef]
- Bravo, E.; Piersanti, L.; Domínguez, I.; Straniero, O.; Isern, J.; Escartin, J. Type Ia supernovae and the 12C+ 12C reaction rate. Astron. Astrophys. 2011, 535, A114. [Google Scholar] [CrossRef]
- Becker, H.W.; Kettner, K.U.; Rolfs, C.; Trautvetter, H.P. The 12C+12C reaction at subcoulomb energies (II). Z. Phys. A Atoms. Nucl. 1981, 303, 305–312. [Google Scholar] [CrossRef]
- Barrón-Palos, L.; Aguilera, E.F.; Aspiazu, J.; Huerta, A.; Martínez-Quiroz, E.; Monroy, R.; Moreno, E.; Murillo, G.; Ortiz, M.E.; Policroniades, R.; et al. Absolute cross sections measurement for the 12C + 12C system at astrophysically relevant energies. Nucl. Phys. A 2006, 779, 318–332. [Google Scholar] [CrossRef]
- Spillane, T.; Raiola, F.; Rolfs, C.; Schürmann, D.; Strieder, F.; Zeng, S.; Becker, H.-W.; Bordeanu, C.; Gialanella, L.; Romano, M.; et al. 12C + 12C Fusion Reactions near the Gamow Peak. Phys. Rev. Lett. 2007, 98, 122501. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.L.; Santiago-Gonzalez, D.; Almaraz-Calderon, S.; Rehm, K.E.; Back, B.B.; Auranen, K.; Avila, M.L.; Ayangeakaa, A.D.; Bottoni, S.; Carpenter, M.P.; et al. Reaction rate for carbon burning in massive stars. Phys. Rev. C 2018, 97, 012801. [Google Scholar] [CrossRef]
- Zickefoose, J.; Di Leva, A.; Strieder, F.; Gialanella, L.; Imbriani, G.; De Cesare, N.; Rolfs, C.; Schweitzer, J.; Spillane, T.; Straniero, O.; et al. Measurement of the 12C(12C, p)23Na cross section near the Gamow energy. Phys. Rev. C 2018, 97, 065806. [Google Scholar] [CrossRef]
- Fruet, G.; Courtin, S.; Heine, M.; Jenkins, D.G.; Adsley, P.; Brown, A.; Canavan, R.; Catford, W.N.; Charon, E.; Curien, D.; et al. Advances in the Direct Study of Carbon Burning in Massive Stars. Phys. Rev. Lett. 2020, 124, 192701. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.P.; Boeltzig, A.; Dulal, C.; DeBoer, R.J.; Frentz, B.; Henderson, S.; Howard, K.B.; Kelmar, R.; Kolata, J.J.; Long, J.; et al. New Measurement of 12C + 12C Fusion Reaction at Astrophysical Energies. Phys. Rev. Lett. 2020, 124, 192702. [Google Scholar] [CrossRef] [PubMed]
- Tumino, A.; Spitaleri, C.; Cognata, M.L.; Cherubini, S.; Guardo, G.L.; Gulino, M.; Hayakawa, S.; Indelicato, I.; Lamia, L.; Petrascu, H.; et al. An increase in the 12C+12C fusion rate from resonances at astrophysical energies. Nature 2018, 557, 687–690. [Google Scholar] [CrossRef] [PubMed]
- Mukhamedzhanov, A.M.; Kadyrov, A.S.; Pang, D.Y. Trojan horse method as an indirect approach to study resonant reactions in nuclear astrophysics. Eur. Phys. J. A 2020, 56, 233. [Google Scholar] [CrossRef]
- Arpesella, C.; Bellotti, E.; Broggini, C.; Corvisiero, P.; Fiorentini, G.; Fubini, A.; Gervino, G.; Greife, U.; Gustavino, C.; Junker, M.; et al. Measurement of the 3He(3He, 2p)4He cross section within the solar Gamow peak. Phys. Lett. B 1996, 389, 452–456. [Google Scholar] [CrossRef]
- Bonetti, R.; Broggini, C.; Campajola, L.; Corvisiero, P.; D’Alessandro, A.; Dessalvi, M.; D’Onofrio, A.; Fubini, A.; Gervino, G.; Gialanella, L.; et al. First Measurement of the 3He(3He, 2p)4He Cross Section down to the Lower Edge of the Solar Gamow Peak. Phys. Rev. Lett. 1999, 82, 5205–5208. [Google Scholar] [CrossRef]
- Bruno, C.G.; Scott, D.A.; Aliotta, M.; Formicola, A.; Best, A.; Boeltzig, A.; Bemmerer, D.; Broggini, C.; Caciolli, A.; Cavanna, F.; et al. Improved Direct Measurement of the 64.5 keV Resonance Strength in the 17O(p, α)14N Reaction at LUNA. Phys. Rev. Lett. 2016, 117, 142502. [Google Scholar] [CrossRef] [PubMed]
- Straniero, O.; Bruno, C.G.; Aliotta, M.; Best, A.; Boeltzig, A.; Bemmerer, D.; Broggini, C.; Caciolli, A.; Cavanna, F.; Ciani, G.F.; et al. The impact of the revised 17O(p, α)14N reaction rate on 17O stellar abundances and yields. Astron. Astrophys. 2017, 598, A128. [Google Scholar] [CrossRef]
- D’Ercole, A.; Vesperini, E.; D’Antona, F.; McMillan, S.L.W.; Recchi, S. Formation and dynamical evolution of multiple stellar generations in globular clusters. Mon. Not. R. Astron. Soc. 2008, 391, 825–843. [Google Scholar] [CrossRef]
- D’Antona, F.; Vesperini, E.; D’Ercole, A.; Ventura, P.; Milone, A.P.; Marino, A.F.; Tailo, M. A single model for the variety of multiple-population formation(s) in globular clusters: A temporal sequence. Mon. Not. R. Astron. Soc. 2016, 458, 2122–2139. [Google Scholar] [CrossRef]
- Ventura, P.; D’Antona, F. Does the oxygen-sodium anticorrelation in globular clusters require a lowering of the 23Na(p, α)24Mg reaction rate? Astron. Astrophys. 2006, 457, 995–1001. [Google Scholar] [CrossRef]
- Renzini, A.; D’Antona, F.; Cassisi, S.; King, I.R.; Milone, A.P.; Ventura, P.; Anderson, J.; Bedin, L.R.; Bellini, A.; Brown, T.M.; et al. The Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters—V. Constraints on formation scenarios. Mon. Not. R. Astron. Soc. 2015, 454, 4197–4207. [Google Scholar] [CrossRef]
- Angulo, C.; Arnould, M.; Rayet, M.; Descouvemont, P.; Baye, D.; Leclercq-Willain, C.; Coc, A.; Barhoumi, S.; Aguer, P.; Rolfs, C.; et al. A compilation of charged-particle induced thermonuclear reaction rates. Nucl. Phys. A 1999, 656, 3–183. [Google Scholar] [CrossRef]
- Straniero, O.; Gallino, R.; Cristallo, S. s process in low-mass asymptotic giant branch stars. Nucl. Phys. A 2006, 777, 311. [Google Scholar] [CrossRef]
- Sneden, C.; Cowan, J.J.; Gallino, R. Neutron-Capture Elements in the Early Galaxy. Annu. Rev. Astron. Astrophys. 2008, 46, 241–288. [Google Scholar] [CrossRef]
- Lugaro, M.; Pignatari, M.; Reifarth, R.; Wiescher, M. The s Process and Beyond. Annu. Rev. Nucl. Part. Sci. 2023, 73, 315–340. [Google Scholar] [CrossRef]
- Talwar, R.; Adachi, T.; Berg, G.P.A.; Bin, L.; Bisterzo, S.; Couder, M.; deBoer, R.J.; Fang, X.; Fujita, H.; Fujita, Y.; et al. Probing astrophysically important states in the Mg 26 nucleus to study neutron sources for the s process. Phys. Rev. C 2016, 93, 055803. [Google Scholar] [CrossRef]
- Ciani, G.F.; Csedreki, L.; Rapagnani, D.; Aliotta, M.; Balibrea-Correa, J.; Barile, F.; Bemmerer, D.; Best, A.; Boeltzig, A.; Broggini, C.; et al. Direct Measurement of the 13C(α, n)16O Cross Section into the s-Process Gamow Peak. Phys. Rev. Lett. 2021, 127, 152701. [Google Scholar] [CrossRef] [PubMed]
- Ciani, G.F.; Csedreki, L.; Balibrea-Correa, J.; Best, A.; Aliotta, M.; Barile, F.; Bemmerer, D.; Boeltzig, A.; Broggini, C.; Bruno, C.G.; et al. A new approach to monitor 13C-targets degradation in situ for 13C(α, n)16O cross-section measurements at LUNA. Eur. Phys. J. A 2020, 56, 75. [Google Scholar] [CrossRef]
- Csedreki, L.; Ciani, G.F.; Balibrea-Correa, J.; Best, A.; Aliotta, M.; Barile, F.; Bemmerer, D.; Boeltzig, A.; Broggini, C.; Bruno, C.G.; et al. Characterization of the LUNA neutron detector array for the measurement of the 13C(α, n)16O reaction. Nucl. Instrum. Methods Phys. Res. A 2021, 994, 165081. [Google Scholar] [CrossRef]
- Drotleff, H.W.; Denker, A.; Knee, H.; Soine, M.; Wolf, G.; Hammer, J.W.; Greife, U.; Rolfs, C.; Trautvetter, H.P. Reaction rates of the s-process neutron sources 22Ne(α, n)25Mg and 13C(α, n)16O. Astrophys. J. 1993, 414, 735. [Google Scholar] [CrossRef]
- Brune, C.R.; Licot, I.; Kavanagh, R.W. Low-energy resonances in 13C(α, n). Phys. Rev. C 1993, 48, 3119–3121. [Google Scholar] [CrossRef] [PubMed]
- Harissopulos, S.; Becker, H.W.; Hammer, J.W.; Lagoyannis, A.; Rolfs, C.; Strieder, F. Cross section of the 13C(α, n)16O reaction: A background for the measurement of geo-neutrinos. Phys. Rev. C 2005, 72, 062801(R). [Google Scholar] [CrossRef]
- Gao, B.; Jiao, T.Y.; Li, Y.T.; Chen, H.; Lin, W.P.; An, Z.; Ru, L.H.; Zhang, Z.C.; Tang, X.D.; Wang, X.Y.; et al. Deep Underground Laboratory Measurement of 13C(α, n)16O in the Gamow Windows of the s and i Processes. Phys. Rev. Lett. 2022, 129, 132701. [Google Scholar] [CrossRef] [PubMed]
- Bair, J.K.; Haas, F.X. Total Neutron Yield from the Reactions 13C(α,n)16O and 17,18O(α,n)20,21Ne. Phys. Rev. C 1973, 7, 1356–1364. [Google Scholar] [CrossRef]
- Ramström, E.; Wiedling, T. The excitation function of the 13C(α,n)16O reaction and its astrophysical application. Nucl. Phys. A 1976, 272, 259–268. [Google Scholar] [CrossRef]
- Davids, C.N. A study of (α, n) reactions on 9Be and 13C at low energies. Nucl. Phys. A 1968, 110, 619–636. [Google Scholar] [CrossRef]
- Febbraro, M.; deBoer, R.J.; Pain, S.D.; Toomey, R.; Becchetti, F.D.; Boeltzig, A.; Chen, Y.; Chipps, K.A.; Couder, M.; Jones, K.L.; et al. New 13C(α,n)16O Cross Section with Implications for Neutrino Mixing and Geoneutrino Measurements. Phys. Rev. Lett. 2020, 125, 062501. [Google Scholar] [CrossRef] [PubMed]
- Mei, D.M.; Hime, A. Muon-induced background study for underground laboratories. Phys. Rev. D 2006, 73, 053004. [Google Scholar] [CrossRef]
- Balibrea-Correa, J.; Ciani, G.; Buompane, R.; Cavanna, F.; Csedreki, L.; Depalo, R.; Ferraro, F.; Best, A. Improved pulse shape discrimination for high pressure 3He counters. Nucl. Instrum. Methods Phys. Res. A 2018, 906, 103. [Google Scholar] [CrossRef]
- Badalà, A.; La Cognata, M.; Nania, R.; Osipenko, M.; Piantelli, S.; Turrisi, R.; Barion, L.; Capra, S.; Carbone, D.; Carnesecchi, F.; et al. Trends in particle and nuclei identification techniques in nuclear physics experiments. Riv. Nuovo C. 2022, 45, 189–276. [Google Scholar] [CrossRef]
- Pereira, J.; Hosmer, P.; Lorusso, G.; Santi, P.; Couture, A.; Daly, J.; Del Santo, M.; Elliot, T.; Görres, J.; Herlitzius, C.; et al. The neutron long counter NERO for studies of β-delayed neutron emission in the r-process. Nucl. Instrum. Methods Phys. Res. A 2010, 618, 275–283. [Google Scholar] [CrossRef]
- Allison, J.; Amako, K.; Apostolakis, J.; Arce, P.; Asai, M.; Aso, T.; Bagli, E.; Bagulya, A.; Banerjee, S.; Barrand, G.; et al. Recent developments in Geant4. Nucl. Instrum. Methods Phys. Res. A 2016, 835, 186–225. [Google Scholar] [CrossRef]
- Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. Geant4 a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 2003, 506, 250–303. [Google Scholar] [CrossRef]
- Ananna, C.; Rapagnani, D.; Best, A.; Di Leva, A.; Imbriani, G. The SHADES neutron detection array. EPJ Web Conf. EDP Sci. 2022, 260, 11043. [Google Scholar] [CrossRef]
- Ananna, C.; Rapagnani, D.; Dell’Aquila, D.; Di Leva, A.; Imbriani, G.; Junker, M.; Mercogliano, D.; Best, A. Intrinsic background of EJ-309 liquid scintillator detectors. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2024, 1060, 169036. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ananna, C.; Barbieri, L.; Boeltzig, A.; Campostrini, M.; Casaburo, F.; Compagnucci, A.; Csedreki, L.; Gesue, R.M.; Marsh, J.; Mercogliano, D.; et al. Detectors and Shieldings: Past and Future at LUNA. Universe 2024, 10, 228. https://doi.org/10.3390/universe10050228
Ananna C, Barbieri L, Boeltzig A, Campostrini M, Casaburo F, Compagnucci A, Csedreki L, Gesue RM, Marsh J, Mercogliano D, et al. Detectors and Shieldings: Past and Future at LUNA. Universe. 2024; 10(5):228. https://doi.org/10.3390/universe10050228
Chicago/Turabian StyleAnanna, Chemseddine, Lucia Barbieri, Axel Boeltzig, Matteo Campostrini, Fausto Casaburo, Alessandro Compagnucci, Laszlo Csedreki, Riccardo Maria Gesue, Jordan Marsh, Daniela Mercogliano, and et al. 2024. "Detectors and Shieldings: Past and Future at LUNA" Universe 10, no. 5: 228. https://doi.org/10.3390/universe10050228
APA StyleAnanna, C., Barbieri, L., Boeltzig, A., Campostrini, M., Casaburo, F., Compagnucci, A., Csedreki, L., Gesue, R. M., Marsh, J., Mercogliano, D., Piatti, D., Robb, D., Sidhu, R. S., & Skowronski, J. (2024). Detectors and Shieldings: Past and Future at LUNA. Universe, 10(5), 228. https://doi.org/10.3390/universe10050228