Primordial Axion Stars and Galaxy Halo Formation
Abstract
:1. Introduction
2. Cosmological Production of Axions
2.1. Non-Relativistic Limit of the Klein–Gordon Equation
2.2. Formation of Axion Stars
- Dilute Axion Stars (). These stars are less dense and more extended, and their size is determined by the axion mass and self-interaction strength.
- Dense Axion Stars (). These are more compact and can undergo complex dynamical processes, including potential collapse into black holes and phase transition to the dilute stars under certain conditions.
- The stability and structure of axion stars are determined by the balance between gravitational attraction and the quantum pressure arising from the Heisenberg uncertainty principle.
3. Model
- Energy-dominated era:
- Matter-dominated era:
- Radiation-dominated era:
4. Results and Discussion
- Dense stars
- Dilute stars
- DES (I): kpc (, )
- DES (II): kpc (, )
- DIS (I): kpc (, )
- DIS (II): kpc (, )
- DIS (III): kpc (, )
- Spiral Galaxies: 61.3 to 92 kpc in diameter
- Elliptical Galaxies: 92 to 306.6 kpc in diameter
- Dwarf Galaxies: up to 9.2 kpc in diameter
- Spiral Galaxies: .
- Elliptical Galaxies: .
- Dwarf Galaxies: .
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Preskill, J.; Wise, M.B.; Wilczek, F. Cosmology of the invisible axion. Phys. Lett. B 1983, 120, 127–132. [Google Scholar] [CrossRef]
- Abbott, L.; Sikivie, P. A cosmological bound on the invisible axion. Phys. Lett. B 1983, 120, 133–136. [Google Scholar] [CrossRef]
- Dine, M.; Fischler, W. The not-so-harmless axion. Phys. Lett. B 1983, 120, 137–141. [Google Scholar] [CrossRef]
- Kawasaki, M.; Nakayama, K. Axions: Theory and Cosmological Role. Annu. Rev. Nucl. Part. Sci. 2013, 63, 69–95. [Google Scholar] [CrossRef]
- Feng, J.L. Dark Matter Candidates from Particle Physics and Methods of Detection. Annu. Rev. Astron. Astrophys. 2010, 48, 495–545. [Google Scholar] [CrossRef]
- Bertone, G.; Hooper, D. History of dark matter. Rev. Mod. Phys. 2018, 90, 045002. [Google Scholar] [CrossRef]
- O’Hare, C.A.J. Cosmology of axion dark matter. In Proceedings of the 1st General Meeting and 1st Training School of the COST Action COSMIC WISPers—PoS (COSMICWISPers), Bari and Lecce, Italy, 5–14 September 2023; p. 040. [Google Scholar] [CrossRef]
- Di Luzio, L.; Giannotti, M.; Nardi, E.; Visinelli, L. The landscape of QCD axion models. Phys. Rep. 2020, 870, 1–117. [Google Scholar] [CrossRef]
- Chadha-Day, F.; Ellis, J.; Marsh, D.J.E. Axion dark matter: What is it and why now? Sci. Adv. 2022, 8, eabj3618. [Google Scholar] [CrossRef]
- Peccei, R.; Quinn, H. CP Conservation in the Presence of Pseudoparticles. Phys. Rev. Lett. 1977, 38, 1440–1443. [Google Scholar] [CrossRef]
- Peccei, R.D.; Quinn, H.R. Constraints imposed by CP conservation in the presence of pseudoparticles. Phys. Rev. D 1977, 16, 1791–1797. [Google Scholar] [CrossRef]
- Weinberg, S. A New Light Boson? Phys. Rev. Lett. 1978, 40, 223–226. [Google Scholar] [CrossRef]
- Wilczek, F. Problem of Strong P and T Invariance in the Presence of Instantons. Phys. Rev. Lett. 1978, 40, 279–282. [Google Scholar] [CrossRef]
- Rosenberg, L.J. Dark-matter QCD-axion searches. Proc. Natl. Acad. Sci. USA 2015, 112, 12278–12281. [Google Scholar] [CrossRef]
- Arvanitaki, A.; Huang, J.; Van Tilburg, K. Searching for dilaton dark matter with atomic clocks. Phys. Rev. D 2015, 91, 015015. [Google Scholar] [CrossRef]
- Arvanitaki, A.; Dimopoulos, S.; Van Tilburg, K. Sound of Dark Matter: Searching for Light Scalars with Resonant-Mass Detectors. Phys. Rev. Lett. 2016, 116, 031102. [Google Scholar] [CrossRef]
- Irastorza, I.G.; Redondo, J. New experimental approaches in the search for axion-like particles. Prog. Part. Nucl. Phys. 2018, 102, 89–159. [Google Scholar] [CrossRef]
- Turner, M.S. Windows on the axion. Phys. Rep. 1990, 197, 67–97. [Google Scholar] [CrossRef]
- Sikivie, P. Axion Cosmology. In Axions: Theory, Cosmology, and Experimental Searches; Kuster, M., Raffelt, G., Beltrán, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 19–50. [Google Scholar]
- Chang, S.; Hagmann, C.; Sikivie, P. Studies of the motion and decay of axion walls bounded by strings. Phys. Rev. D 1998, 59, 023505. [Google Scholar] [CrossRef]
- di Cortona, G.G.; Hardy, E.; Vega, J.P.; Villadoro, G. The QCD axion, precisely. J. High Energy Phys. 2016, 2016, 34. [Google Scholar] [CrossRef]
- Kim, J.E.; Carosi, G. Axions and the strong CP problem. Rev. Mod. Phys. 2010, 82, 557–601. [Google Scholar] [CrossRef]
- Sikivie, P. Invisible axion search methods. Rev. Mod. Phys. 2021, 93, 015004. [Google Scholar] [CrossRef]
- Borsanyi, S.; Fodor, Z.; Guenther, J.; Kampert, K.H.; Katz, S.D.; Kawanai, T.; Kovacs, T.G.; Mages, S.W.; Pasztor, A.; Pittler, F.; et al. Calculation of the axion mass based on high-temperature lattice quantum chromodynamics. Nature 2016, 539, 69–71. [Google Scholar] [CrossRef] [PubMed]
- Gorghetto, M.; Hardy, E.; Villadoro, G. More axions from strings. SciPost Phys. 2021, 10, 050. [Google Scholar] [CrossRef]
- Buschmann, M.; Foster, J.W.; Hook, A.; Peterson, A.; Willcox, D.E.; Zhang, W.; Safdi, B.R. Dark matter from axion strings with adaptive mesh refinement. Nat. Commun. 2022, 13, 1049. [Google Scholar] [CrossRef] [PubMed]
- Hindmarsh, M.; Lizarraga, J.; Lopez-Eiguren, A.; Urrestilla, J. Approach to scaling in axion string networks. Phys. Rev. D 2021, 103, 103534. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Kawasaki, M.; Yokoyama, J. Evolution of Axionic Strings and Spectrum of Axions Radiated from Them. Phys. Rev. Lett. 1999, 82, 4578–4581. [Google Scholar] [CrossRef]
- Braaten, E.; Mohapatra, A.; Zhang, H. Dense Axion Stars. Phys. Rev. Lett. 2016, 117, 121801. [Google Scholar] [CrossRef]
- Braaten, E.; Zhang, H. Colloquium: The physics of axion stars. Rev. Mod. Phys. 2019, 91, 041002. [Google Scholar] [CrossRef]
- Schiappacasse, E.D.; Hertzberg, M.P. Analysis of dark matter axion clumps with spherical symmetry. J. Cosmol. Astropart. Phys. 2018, 2018, 037. [Google Scholar] [CrossRef]
- Visinelli, L.; Baum, S.; Redondo, J.; Freese, K.; Wilczek, F. Dilute and dense axion stars. Phys. Lett. B 2017, 777. [Google Scholar] [CrossRef]
- Jetzer, P. Boson stars. Phys. Rep. 1992, 220, 163–227. [Google Scholar] [CrossRef]
- Eby, J.; Leembruggen, M.; Street, L.; Suranyi, P.; Wijewardhana, L.C.R. Global view of QCD axion stars. Phys. Rev. D 2019, 100, 063002. [Google Scholar] [CrossRef]
- Bautista, B.; Degollado, J.C. Static axion stars revisited. Front. Astron. Space Sci. 2024, 11, 1346820. [Google Scholar] [CrossRef]
- Diez-Tejedor, A.; Marsh, D.J. Cosmological production of ultralight dark matter axions. arXiv 2017, arXiv:1702.02116. [Google Scholar] [CrossRef]
- Lee, J.-W. Brief History of Ultra-light Scalar Dark Matter Models. EPJ Web Conf. 2018, 168, 06005. [Google Scholar] [CrossRef]
- Hui, L.; Ostriker, J.P.; Tremaine, S.; Witten, E. Ultralight scalars as cosmological dark matter. Phys. Rev. D 2017, 95, 043541. [Google Scholar] [CrossRef]
- Visinelli, L. Light axion-like dark matter must be present during inflation. Phys. Rev. D 2017, 96, 023013. [Google Scholar] [CrossRef]
- Marsh, D.J.E. Axion cosmology. Phys. Rep. 2016, 643, 1–79. [Google Scholar] [CrossRef]
- Kim, J.E.; Marsh, D.J.E. An ultralight pseudoscalar boson. Phys. Rev. D 2016, 93, 025027. [Google Scholar] [CrossRef]
- Iršič, V.; Viel, M.; Haehnelt, M.G.; Bolton, J.S.; Becker, G.D. First Constraints on Fuzzy Dark Matter from Lyman-α Forest Data and Hydrodynamical Simulations. Phys. Rev. Lett. 2017, 119, 031302. [Google Scholar] [CrossRef]
- Armengaud, E.; Palanque-Delabrouille, N.; Yèche, C.; Marsh, D.J.E.; Baur, J. Constraining the mass of light bosonic dark matter using SDSS Lyman-α forest. Mon. Not. R. Astron. Soc. 2017, 471, 4606–4614. [Google Scholar] [CrossRef]
- Kobayashi, T.; Murgia, R.; De Simone, A.; Iršič, V.; Viel, M. Lyman-α constraints on ultralight scalar dark matter: Implications for the early and late universe. Phys. Rev. D 2017, 96, 123514. [Google Scholar] [CrossRef]
- Wechsler, R.H.; Tinker, J.L. The Connection Between Galaxies and Their Dark Matter Halos. Annu. Rev. Astron. Astrophys. 2018, 56, 435–487. [Google Scholar] [CrossRef]
- Frieman, J.A.; Turner, M.S.; Huterer, D. Dark Energy and the Accelerating Universe. Annu. Rev. Astron. Astrophys. 2008, 46, 385–432. [Google Scholar] [CrossRef]
- Ryden, B. Introduction to Cosmology; Cambridge University Press: New York, NY, USA, 2017. [Google Scholar]
- Braaten, E.; Mohapatra, A.; Zhang, H. Nonrelativistic Effective Field Theory for Axions. Phys. Rev. 2016, D94, 076004. [Google Scholar] [CrossRef]
- Davidson, S.; Schwetz, T. Rotating drops of axion dark matter. Phys. Rev. D 2016, 93, 123509. [Google Scholar] [CrossRef]
- Eby, J.; Mukaida, K.; Takimoto, M.; Wijewardhana, L.C.R.; Yamada, M. Classical nonrelativistic effective field theory and the role of gravitational interactions. Phys. Rev. D 2019, 99, 123503. [Google Scholar] [CrossRef]
- Eby, J.; Suranyi, P.; Vaz, C.; Wijewardhana, L.C.R. Axion Stars in the Infrared Limit. J. High Energy Phys. 2015, 3, 080, Erratum J. High Energy Phys. 2016, 11, 134. [Google Scholar] [CrossRef]
- Miniati, F.; Gregori, G.; Reville, B.; Sarkar, S. Axion-Driven Cosmic Magnetogenesis during the QCD Crossover. Phys. Rev. Lett. 2018, 121, 021301. [Google Scholar] [CrossRef]
- Planck Collaboration; Aghanim, N.; Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; et al. Planck 2018 results—I. Overview and the cosmological legacy of Planck. Astron. Astrophys. 2020, 641, A1. [Google Scholar] [CrossRef]
- Binney, J.; Tremaine, S. Galactic Dynamics; Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
- Schive, H.Y.; Chiueh, T.; Broadhurst, T. Cosmic structure as the quantum interference of a coherent dark wave. Nat. Phys. 2014, 10, 496–499. [Google Scholar] [CrossRef]
- Schive, H.Y.; Liao, M.H.; Woo, T.P.; Wong, S.K.; Chiueh, T.; Broadhurst, T.; Hwang, W.Y.P. Understanding the Core-Halo Relation of Quantum Wave Dark Matter from 3D Simulations. Phys. Rev. Lett. 2014, 113, 261302. [Google Scholar] [CrossRef] [PubMed]
Axion Mass [eV] | [GeV] | [pc] | [] | [] | |
---|---|---|---|---|---|
Star Type | Angular Momentum | Axion Mass eV | |||
---|---|---|---|---|---|
Star Radius, | Star Mass, | Density, | Redshift, | ||
DES (I) | , | 55 [0.796 pc] | 43.8 [] | ||
DES (II) | , | 2.9 [0.042 pc] | 5.56 [] | ||
DIS (I) | , | 100 [1.448 pc] | 2.66 [] | ||
DIS (II) | , | 410 [5.94 pc] | 0.11 [] | 2572 | |
DIS (III) | , | 550 [7.96 pc] | 109.5 [] | 6291 |
Star Type | Star Core Radius, | Star Mass | ||
---|---|---|---|---|
Initial | Current | Core Mass, | Total Mass, | |
DES (I) | pc | 0.65 kpc | ||
DES (II) | pc | 8.81 kpc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nesterov, A.I. Primordial Axion Stars and Galaxy Halo Formation. Universe 2024, 10, 369. https://doi.org/10.3390/universe10090369
Nesterov AI. Primordial Axion Stars and Galaxy Halo Formation. Universe. 2024; 10(9):369. https://doi.org/10.3390/universe10090369
Chicago/Turabian StyleNesterov, Alexander I. 2024. "Primordial Axion Stars and Galaxy Halo Formation" Universe 10, no. 9: 369. https://doi.org/10.3390/universe10090369
APA StyleNesterov, A. I. (2024). Primordial Axion Stars and Galaxy Halo Formation. Universe, 10(9), 369. https://doi.org/10.3390/universe10090369