Constraints on Metastable Dark Energy Decaying into Dark Matter
Abstract
:1. Introduction
- Is MDE still a viable model considering the latest cosmological constraints?
- What is the mass of the DM resulting from this process?
- Would the bubble nucleation process in this model lead to inhomogeneities that could plague the model?
- Could this model leave observational imprints that could be searched for in future experiments?
2. A Model for Dark Energy Decay
3. Dark Matter from First-Order Phase Transition
4. Bubble Nucleation
5. Conclusions and Prospects
- Considering the recent cosmological data, the model proposed in [48] can still be considered, formally, a viable model for describing an unified dark sector.
- The recent constraints in the decay time of the metastable dark energy imply in a resulting DM with a mass of an axion-like particle, although this resulting DM would only appear in the far future.
- We do not expect this model to lead to observational imprints that could be searched for in future experiments, unless extra couplings are added to the Lagrangian of the model.
- The bubble nucleation process was analyzed and we showed that the model considered, apart from not leading to current observable inhomogeneities, would not drive a complete transition to a dark matter-dominated phase, even in the far future.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Gravitational Effects
1 | |
2 | There are examples in which this configuration can naturally appear as, for example, in the case of the Wess–Zumino model [60], which has a double degenerate bosonic vacuum due to super-symmetry, presumably broken only non perturbatively. |
3 | |
4 | We can think of any field theory in the context of cosmology as an effective field theory valid until some energy scale. The same is true for our model. We can think of our model as an effective model at low energies. Since this field in the metastable vacuum accounts for today’s dark energy, having an energy density of the order of GeV4, it has a negligible cosmological contribution at earlier times. Any quantum correction at early times would be associated with a field with totally negligible contribution to the total energy, having no impact on cosmology, which is the reason why we do not explore these issues in the present work. |
5 | Another interesting possibility is to consider the scalar field with the even self-interactions up to sixth order, as analyzed in the work of [44]. |
6 | Evolution of bubbles of new vacuum in de Sitter backgrounds has been studied in different context (see, for instance, [75,76,77,80,81,82]). In addition, first-order phase transitions have recently been considered as one of the possible explanations for the positive evidence of a low-frequency stochastic gravitational-wave background found in PTA experiments, see for example [83]. Another recent interesting application of first-order transitions is the New Early dark Energy models, see for instance [84]. |
7 | As discussed in [72], the exponentiation of corrects for some effects, like the fact that when calculating , regions in which bubbles overlap are counted twice. Furthermore, the virtual bubbles which would have nucleated and had their point of nucleation not already be in a true-vacuum region are also included. |
References
- Sahni, V. Dark matter and dark energy. Lect. Notes Phys. 2004, 653, 141–180. [Google Scholar] [CrossRef]
- Ferreira, E.G.M. Ultra-light dark matter. Astron. Astrophys. Rev. 2021, 29, 7. [Google Scholar] [CrossRef]
- Amin, M.A.; Mirbabayi, M. A lower bound on dark matter mass. arXiv 2022, arXiv:2211.09775. [Google Scholar] [CrossRef] [PubMed]
- Nadler, E.O.; Birrer, S.; Gilman, D.; Wechsler, R.H.; Du, X.; Benson, A.; Nierenberg, A.M.; Treu, T. Dark Matter Constraints from a Unified Analysis of Strong Gravitational Lenses and Milky Way Satellite Galaxies. Astrophys. J. 2021, 917, 7. [Google Scholar] [CrossRef]
- Iršič, V.; Viel, M.; Haehnelt, M.G.; Bolton, J.S.; Becker, G.D. First constraints on fuzzy dark matter from Lyman-α forest data and hydrodynamical simulations. Phys. Rev. Lett. 2017, 119, 031302. [Google Scholar] [CrossRef] [PubMed]
- Dalal, N.; Kravtsov, A. Excluding fuzzy dark matter with sizes and stellar kinematics of ultrafaint dwarf galaxies. Phys. Rev. D 2022, 106, 063517. [Google Scholar] [CrossRef]
- Powell, D.M.; Vegetti, S.; McKean, J.P.; White, S.D.M.; Ferreira, E.G.M.; May, S.; Spingola, C. A lensed radio jet at milli-arcsecond resolution II: Constraints on fuzzy dark matter from an extended gravitational arc. arXiv 2023, arXiv:2302.10941. [Google Scholar] [CrossRef]
- Semertzidis, Y.K.; Youn, S. Axion dark matter: How to see it? Sci. Adv. 2022, 8, abm9928. [Google Scholar] [CrossRef]
- Nakai, Y.; Namba, R.; Obata, I. Peaky Production of Light Dark Photon Dark Matter. arXiv 2022, arXiv:2212.11516. [Google Scholar] [CrossRef]
- Nakatsuka, H.; Morisaki, S.; Fujita, T.; Kume, J.; Michimura, Y.; Nagano, K.; Obata, I. Stochastic effects on observation of ultralight bosonic dark matter. arXiv 2022, arXiv:2205.02960. [Google Scholar] [CrossRef]
- Alesini, D.; Braggio, C.; Carugno, G.; Crescini, N.; D’Agostino, D.; Di Gioacchino, D.; Di Vora, R.; Falferi, P.; Gambardella, U.; Gatti, C.; et al. Realization of a high quality factor resonator with hollow dielectric cylinders for axion searches. Nucl. Instrum. Meth. A 2021, 985, 164641. [Google Scholar] [CrossRef]
- Carroll, S.; Press, W.; Turner, E. The cosmological constant. Annu. Rev. Astron. Astrophys. 1992, 30, 499–542. [Google Scholar] [CrossRef]
- Martin, J. Everything You Always Wanted To Know About The Cosmological Constant Problem (However, Were Afraid To Ask). Comptes Rendus Phys. 2012, 13, 566–665. [Google Scholar] [CrossRef]
- Palti, E. The Swampland: Introduction and Review. Fortsch. Phys. 2019, 67, 1900037. [Google Scholar] [CrossRef]
- Heisenberg, L.; Bartelmann, M.; Brandenberger, R.; Refregier, A. Dark Energy in the Swampland II. Sci. China Phys. Mech. Astron. 2019, 62, 990421. [Google Scholar] [CrossRef]
- Heisenberg, L.; Bartelmann, M.; Brandenberger, R.; Refregier, A. Dark Energy in the Swampland. Phys. Rev. D 2018, 98, 123502. [Google Scholar] [CrossRef]
- Polyakov, A.M. De Sitter space and eternity. Nucl. Phys. B 2008, 797, 199–217. [Google Scholar] [CrossRef]
- Polyakov, A.M. Infrared instability of the de Sitter space. arXiv 2012, arXiv:1209.4135. [Google Scholar]
- Valiviita, J.; Majerotto, E.; Maartens, R. Instability in interacting dark energy and dark matter fluids. JCAP 2008, 07, 020. [Google Scholar] [CrossRef]
- Mazur, P.; Mottola, E. Spontaneous Breaking of De Sitter Symmetry by Radiative Effects. Nucl. Phys. B 1986, 278, 694–720. [Google Scholar] [CrossRef]
- Mottola, E. A Quantum Fluctuation Dissipation Theorem for General Relativity. Phys. Rev. D 1986, 33, 2136. [Google Scholar] [CrossRef] [PubMed]
- Brandenberger, R.; Graef, L.L.; Marozzi, G.; Vacca, G.P. Backreaction of super-Hubble cosmological perturbations beyond perturbation theory. Phys. Rev. D 2018, 98, 103523. [Google Scholar] [CrossRef]
- Abramo, L.R.W.; Brandenberger, R.H.; Mukhanov, V.F. The Energy-momentum tensor for cosmological perturbations. Phys. Rev. D 1997, 56, 3248–3257. [Google Scholar] [CrossRef]
- Mukhanov, V.F.; Abramo, L.R.W.; Brandenberger, R.H. On the Back reaction problem for gravitational perturbations. Phys. Rev. Lett. 1997, 78, 1624–1627. [Google Scholar] [CrossRef]
- Finelli, F.; Marozzi, G.; Vacca, G.P.; Venturi, G. Energy momentum tensor of field fluctuations in massive chaotic inflation. Phys. Rev. D 2002, 65, 103521. [Google Scholar] [CrossRef]
- Finelli, F.; Marozzi, G.; Vacca, G.P.; Venturi, G. Energy momentum tensor of cosmological fluctuations during inflation. Phys. Rev. D 2004, 69, 123508. [Google Scholar] [CrossRef]
- Marozzi, G. Back-reaction of Cosmological Fluctuations during Power-Law Inflation. Phys. Rev. D 2007, 76, 043504. [Google Scholar] [CrossRef]
- Brandenberger, R.H. Back reaction of cosmological perturbations. In Proceedings of the 3rd International Conference on Particle Physics and the Early Universe; World Scientific: Singapore, 2000; pp. 198–206. [Google Scholar] [CrossRef]
- de Sá, R.; Benetti, M.; Graef, L.L. An empirical investigation into cosmological tensions. Eur. Phys. J. Plus 2022, 137, 1129. [Google Scholar] [CrossRef]
- Di Valentino, E.; Ferreira, R.Z.; Visinelli, L.; Danielsson, U. Late time transitions in the quintessence field and the H0 tension. Phys. Dark Univ. 2019, 26, 100385. [Google Scholar] [CrossRef]
- Di Valentino, E.; Melchiorri, A.; Mena, O.; Vagnozzi, S. Interacting dark energy in the early 2020s: A promising solution to the H0 and cosmic shear tensions. Phys. Dark Univ. 2020, 30, 100666. [Google Scholar] [CrossRef]
- Zhao, G.B.; Raveri, M.; Pogosian, L.; Wang, Y.; Crittenden, R.G.; Handley, W.J.; Percival, W.J.; Beutler, F.; Brinkmann, J.; Chuang, C.H.; et al. Dynamical dark energy in light of the latest observations. Nat. Astron. 2017, 1, 627–632. [Google Scholar] [CrossRef]
- Weinberg, S. The Cosmological constant problems. In Proceedings of the 4th International Symposium on Sources and Detection of Dark Matter in the Universe (DM 2000), Marina del Rey, CA, USA, 23–25 February 2000; pp. 18–26. [Google Scholar]
- Ferreira, E.G.M.; Quintin, J.; Costa, A.A.; Abdalla, E.; Wang, B. Evidence for interacting dark energy from BOSS. Phys. Rev. D 2017, 95, 043520. [Google Scholar] [CrossRef]
- Amendola, L. Coupled quintessence. Phys. Rev. D 2000, 62, 043511. [Google Scholar] [CrossRef]
- Abdalla, E.; Abramo, L.R.; de Souza, J.C.C. Signature of the interaction between dark energy and dark matter in observations. Phys. Rev. D 2010, 82, 023508. [Google Scholar] [CrossRef]
- Faraoni, V.; Dent, J.B.; Saridakis, E.N. Covariantizing the interaction between dark energy and dark matter. Phys. Rev. D 2014, 90, 063510. [Google Scholar] [CrossRef]
- He, J.H.; Wang, B. Effects of the interaction between dark energy and dark matter on cosmological parameters. JCAP 2008, 06, 010. [Google Scholar] [CrossRef]
- Costa, A.A.; Xu, X.D.; Wang, B.; Ferreira, E.G.M.; Abdalla, E. Testing the Interaction between Dark Energy and Dark Matter with Planck Data. Phys. Rev. D 2014, 89, 103531. [Google Scholar] [CrossRef]
- Benetti, M.; Borges, H.; Pigozzo, C.; Carneiro, S.; Alcaniz, J. Dark sector interactions and the curvature of the universe in light of Planck’s 2018 data. JCAP 2021, 8, 14. [Google Scholar] [CrossRef]
- Li, X.; Shafieloo, A.; Sahni, V.; Starobinsky, A.A. Revisiting Metastable Dark Energy and Tensions in the Estimation of Cosmological Parameters. Astrophys. J. 2019, 887, 153. [Google Scholar] [CrossRef]
- Urbanowski, K. Cosmological “constant” in a universe born in the metastable false vacuum state. Eur. Phys. J. C 2022, 82, 242. [Google Scholar] [CrossRef]
- Urbanowski, K. A universe born in a metastable false vacuum state needs not die. Eur. Phys. J. C 2023, 83, 55. [Google Scholar] [CrossRef]
- Landim, R.G.; Abdalla, E. Metastable dark energy. Phys. Lett. B 2017, 764, 271–276. [Google Scholar] [CrossRef]
- Landim, R.G.; Marcondes, R.J.F.; Bernardi, F.F.; Abdalla, E. Interacting Dark Energy in the Dark SU(2)R Model. Braz. J. Phys. 2018, 48, 364–369. [Google Scholar] [CrossRef]
- Stojkovic, D.; Starkman, G.D.; Matsuo, R. Dark energy, the colored anti-de Sitter vacuum, and LHC phenomenology. Phys. Rev. D 2008, 77, 063006. [Google Scholar] [CrossRef]
- Greenwood, E.; Halstead, E.; Poltis, R.; Stojkovic, D. Dark energy, the electroweak vacua and collider phenomenology. Phys. Rev. D 2009, 79, 103003. [Google Scholar] [CrossRef]
- Abdalla, E.; Graef, L.L.; Wang, B. A Model for Dark Energy decay. Phys. Lett. B 2013, 726, 786–790. [Google Scholar] [CrossRef]
- Casey, R.; Ilie, C. Dark Sector Tunneling Field Potentials for a Dark Big Bang. arXiv 2024, arXiv:2407.05752. [Google Scholar]
- Freese, K.; Winkler, M.W. Dark matter and gravitational waves from a dark big bang. Phys. Rev. D 2023, 107, 083522. [Google Scholar] [CrossRef]
- Shafieloo, A.; Hazra, D.K.; Sahni, V.; Starobinsky, A.A. Metastable Dark Energy with Radioactive-like Decay. Mon. Not. Roy. Astron. Soc. 2018, 473, 2760–2770. [Google Scholar] [CrossRef]
- Scolnic, D.M.; Jones, D.O.; Rest, A.; Pan, Y.C.; Chornock, R.; Foley, R.J.; Huber, M.E.; Kessler, R.; Narayan, G.; Riess, A.G.; et al. The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample. Astrophys. J. 2018, 859, 101. [Google Scholar] [CrossRef]
- Beutler, F.; Blake, C.; Colless, M.; Jones, D.H.; Staveley-Smith, L.; Campbell, L.; Parker, Q.; Saunders, W.; Watson, F. The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant. Mon. Not. Roy. Astron. Soc. 2011, 416, 3017–3032. [Google Scholar] [CrossRef]
- Ross, A.J.; Samushia, L.; Howlett, C.; Percival, W.J.; Burden, A.; Manera, M. The clustering of the SDSS DR7 main Galaxy sample – I. A 4 per cent distance measure at z = 0.15. Mon. Not. R. Astron. Soc. 2015, 449, 835–847. [Google Scholar] [CrossRef]
- Alam, S.; Ata, M.; Bailey, S.; Beutler, F.; Bizyaev, D.; Blazek, J.A.; Bolton, A.S.; Brownstein, J.R.; Burden, A.; Chuang, C.-H.; et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological analysis of the DR12 galaxy sample. Mon. Not. Roy. Astron. Soc. 2017, 470, 2617–2652. [Google Scholar] [CrossRef]
- Zhao, G.B.; Wang, Y.; Saito, S.; Gil-Marín, H.; Percival, W.J.; Wang, D.; Chuang, C.-H.; Ruggeri, R.; Mueller, E.-M.; Zhu, F.; et al. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: A tomographic measurement of cosmic structure growth and expansion rate based on optimal redshift weights. Mon. Not. Roy. Astron. Soc. 2019, 482, 3497–3513. [Google Scholar] [CrossRef]
- Des Bourboux, H.D.M.; Le Goff, J.M.; Blomqvist, M.; Guy, J.; Rich, J.; Yèche, C.; Bautista, J.E.; Bertin, É.; Dawson, K.S.; Eisenstein, D.J.; et al. Baryon acoustic oscillations from the complete SDSS-III Lyα-quasar cross-correlation function at z= 2.4. Astron. Astrophys. 2017, 608, A130. [Google Scholar] [CrossRef]
- Chen, L.; Huang, Q.G.; Wang, K. Distance Priors from Planck Final Release. JCAP 2019, 2, 028. [Google Scholar] [CrossRef]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6, Erratum in Astron. Astrophys. 2021, 652, C4. [Google Scholar] [CrossRef]
- Wess, J.; Zumino, B. Supergauge transformations in four dimensions. Nucl. Phys. B 1974, 70, 39. [Google Scholar] [CrossRef]
- Brandenberger, R.; Fröhlich, J.; Namba, R. Unified Dark Matter, Dark Energy and baryogenesis via a “cosmological wetting transition”. JCAP 2019, 9, 69. [Google Scholar] [CrossRef]
- Brandenberger, R.; Cuzinatto, R.R.; Fröhlich, J.; Namba, R. New Scalar Field Quartessence. JCAP 2019, 2, 43. [Google Scholar] [CrossRef]
- Bertacca, D.; Bartolo, N.; Matarrese, S. Unified Dark Matter Scalar Field Models. Adv. Astron. 2010, 2010, 904379. [Google Scholar] [CrossRef]
- Frion, E.; Camarena, D.; Giani, L.; Miranda, T.; Bertacca, D.; Marra, V.; Piattella, O. Bayesian analysis of Unified Dark Matter models with fast transition: Can they alleviate the H0 tension? arXiv 2023, arXiv:2307.06320. [Google Scholar]
- Callan, C.G., Jr.; Coleman, S.R. The Fate of the False Vacuum. 2. First Quantum Corrections. Phys. Rev. D 1977, 16, 1762–1768. [Google Scholar] [CrossRef]
- Coleman, S.R. The Fate of the False Vacuum. 1. Semiclassical Theory. Phys. Rev. D 1977, 15, 2929–2936, Erratum in Phys. Rev. D 1977, 16, 1248. [Google Scholar] [CrossRef]
- Marsh, D.J.E. Axion Cosmology. Phys. Rept. 2016, 643, 1–79. [Google Scholar] [CrossRef]
- Magana, J.; Matos, T. A brief Review of the Scalar Field Dark Matter model. J. Phys. Conf. Ser. 2012, 378, 012012. [Google Scholar] [CrossRef]
- Cicoli, M.; Guidetti, V.; Righi, N.; Westphal, A. Fuzzy Dark Matter candidates from string theory. JHEP 2022, 5, 107. [Google Scholar] [CrossRef]
- Harigaya, K.; Leedom, J.M. QCD Axion Dark Matter from a Late Time Phase Transition. JHEP 2020, 06, 034. [Google Scholar] [CrossRef]
- Guth, A.H.; Weinberg, E.J. Could the universe have recovered from a slow first-order phase transition? Nucl. Phys. B 1983, 212, 321. [Google Scholar] [CrossRef]
- Turner, M.S.; Weinberg, E.J.; Widrow, L.M. Bubble nucleation in first-order inflation and other cosmological phase transitions. Phys. Rev. D 1992, 46, 2384–2403. [Google Scholar] [CrossRef]
- Adame, A.G.; Aguilar, J.; Ahlen, S.; Alam, S.; Alexander, D.M.; Alvarez, M.; Alves, O.; Anand, A.; Andrade, U.; Armengaud, E.; et al. DESI 2024 III: Baryon Acoustic Oscillations from Galaxies and Quasars. arXiv 2024, arXiv:2404.03000. [Google Scholar]
- Lodha, K.; Shafieloo, A.; Calderon, R.; Linder, E.; Sohn, W.; Cervantes-Cota, J.L.; de Mattia, A.; García-Bellido, J.; Ishak, M.; Matthewson, W.; et al. DESI 2024: Constraints on Physics-Focused Aspects of Dark Energy using DESI DR1 BAO Data. arXiv 2024, arXiv:2405.13588. [Google Scholar]
- Teppa Pannia, F.A.; Perez Bergliaffa, S.E. Evolution of Vacuum Bubbles Embeded in Inhomogeneous Spacetimes. JCAP 2017, 3, 26. [Google Scholar] [CrossRef]
- Simon, D.; Adamek, J.; Rakic, A.; Niemeyer, J.C. Tunneling and propagation of vacuum bubbles on dynamical backgrounds. JCAP 2009, 11, 008. [Google Scholar] [CrossRef]
- Fischler, W.; Paban, S.; Zanic, M.; Krishnan, C. Vacuum bubble in an inhomogeneous cosmology: A Toy model. JHEP 2008, 5, 41. [Google Scholar] [CrossRef]
- Hawking, S.W.; Moss, I.; Stewart, J. Bubble collisions in the very early universe. Phys. Rev. D 1982, 26, 2681. [Google Scholar] [CrossRef]
- Kosowsky, A.; Turner, M.S.; Watkins, R. Gravitational radiation from colliding vacuum bubbles. Phys. Rev. D 1992, 45, 4514. [Google Scholar] [CrossRef]
- Casadio, R.; Orlandi, A. Bubble dynamics: (Nucleating) radiation inside dust. Phys. Rev. D 2011, 84, 024006. [Google Scholar] [CrossRef]
- Pannia, F.A.T.; Bergliaffa, S.E.P.; Pinto-Neto, N. Particle production in accelerated thin bubbles. JCAP 2022, 4, 15. [Google Scholar] [CrossRef]
- Aguirre, A.; Johnson, M.C. A Status report on the observability of cosmic bubble collisions. Rept. Prog. Phys. 2011, 74, 074901. [Google Scholar] [CrossRef]
- Afzal, A.; Agazie, G.; Anumarlapudi, A.; Archibald, A.M.; Arzoumanian, Z.; Baker, P.T.; Bécsy, B.; Blanco-Pillado, J.J.; Blecha, L.; Boddy, K.K.; et al. The NANOGrav 15 yr Data Set: Search for Signals from New Physics. Astrophys. J. Lett. 2023, 951, L11. [Google Scholar] [CrossRef]
- Niedermann, F.; Sloth, M.S. New early dark energy. Phys. Rev. D 2021, 103, L041303. [Google Scholar] [CrossRef]
- Guth, A.H.; Tye, S.H.H. Phase Transitions and Magnetic Monopole Production in the Very Early Universe. Phys. Rev. Lett. 1980, 44, 631, Erratum in Phys. Rev. Lett. 1980, 44, 963. [Google Scholar] [CrossRef]
- Guth, A.H.; Weinberg, E.J. Cosmological Consequences of a First Order Phase Transition in the SU(5) Grand Unified Model. Phys. Rev. D 1981, 23, 876. [Google Scholar] [CrossRef]
- Guth, A.H. The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems. Phys. Rev. D 1981, 23, 347–356. [Google Scholar] [CrossRef]
- Coleman, S.R.; De Luccia, F. Gravitational Effects on and of Vacuum Decay. Phys. Rev. D 1980, 21, 3305. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Souza, J.S.T.; Vicente, G.S.; Graef, L.L. Constraints on Metastable Dark Energy Decaying into Dark Matter. Universe 2024, 10, 371. https://doi.org/10.3390/universe10090371
de Souza JST, Vicente GS, Graef LL. Constraints on Metastable Dark Energy Decaying into Dark Matter. Universe. 2024; 10(9):371. https://doi.org/10.3390/universe10090371
Chicago/Turabian Stylede Souza, Jônathas S. T., Gustavo S. Vicente, and Leila L. Graef. 2024. "Constraints on Metastable Dark Energy Decaying into Dark Matter" Universe 10, no. 9: 371. https://doi.org/10.3390/universe10090371
APA Stylede Souza, J. S. T., Vicente, G. S., & Graef, L. L. (2024). Constraints on Metastable Dark Energy Decaying into Dark Matter. Universe, 10(9), 371. https://doi.org/10.3390/universe10090371