Identifying a Point-Symmetrical Morphology in the Core-Collapse Supernova Remnant W44
Abstract
:1. Introduction
2. Previous S-Shape Classification
3. Identifying a Point-Symmetric Morphology in W44
4. Answering Possible Counterarguments
- Answer: As I indicated above, the point symmetry is not expected to be perfect because of several smearing processes. Considering these smearing processes, I crudely estimate the probability of chance alignment in a point symmetry.
5. Summary
Funding
Data Availability Statement
Conflicts of Interest
References
- Papish, O.; Soker, N. A planar jittering-jets pattern in core collapse supernova explosions. Mon. Not. R. Astron. Soc. 2014, 443, 664–670. [Google Scholar] [CrossRef]
- Gilkis, A.; Soker, N. Triggering jet-driven explosions of core-collapse supernovae by accretion from convective regions. Mon. Not. R. Astron. Soc. 2014, 439, 4011–4017. [Google Scholar] [CrossRef]
- Shishkin, D.; Soker, N. Supplying angular momentum to the jittering jets explosion mechanism using inner convection layers. Mon. Not. R. Astron. Soc. 2021, 508, L43–L47. [Google Scholar] [CrossRef]
- Shishkin, D. Supplying angular momentum to the jittering jets explosion mechanism using convection in inner star layers. In Proceedings of the IAU Symposium, IAU Symposium; Mackey, J., Vink, J.S., St-Louis, N., Eds.; Cambridge University Press: Cambridge, UK, 2024; Volume 361, pp. 607–609. [Google Scholar] [CrossRef]
- Wang, N.Y.N.; Shishkin, D.; Soker, N. The Jittering Jets Explosion Mechanism in Electron Capture Supernovae. Astrophys. J. 2024, 969, 163. [Google Scholar] [CrossRef]
- Soker, N. Learning from core-collapse supernova remnants on the explosion mechanism. arXiv 2024, arXiv:2409.13657. [Google Scholar] [CrossRef]
- Soker, N. The two alternative explosion mechanisms of core-collapse supernovae: 2024 status report. arXiv 2024, arXiv:2411.08555. [Google Scholar] [CrossRef]
- Soker, N.; Shishkin, D. The vela supernova remnant: The unique morphological features of jittering jets. arXiv 2024, arXiv:2409.02626. [Google Scholar] [CrossRef]
- Bisnovatyi-Kogan, G.S. The Explosion of a Rotating Star As a Supernova Mechanism. Soviet Ast. 1971, 14, 652. [Google Scholar]
- Bisnovatyi-Kogan, G.S.; Tutukov, A.V. Magnetorotational Supernova Explosions and the Formation of Neutron Stars in Close Binary Systems. Astron. Rep. 2004, 48, 724–732. [Google Scholar] [CrossRef]
- Burrows, A.; Dessart, L.; Livne, E.; Ott, C.D.; Murphy, J. Simulations of Magnetically Driven Supernova and Hypernova Explosions in the Context of Rapid Rotation. Astrophys. J. 2007, 664, 416–434. [Google Scholar] [CrossRef]
- Sawai, H.; Kotake, K.; Yamada, S. Numerical Simulations of Equatorially Asymmetric Magnetized Supernovae: Formation of Magnetars and Their Kicks. Astrophys. J. 2008, 672, 465–478. [Google Scholar] [CrossRef]
- Kuroda, T.; Arcones, A.; Takiwaki, T.; Kotake, K. Magnetorotational Explosion of a Massive Star Supported by Neutrino Heating in General Relativistic Three-dimensional Simulations. Astrophys. J. 2020, 896, 102. [Google Scholar] [CrossRef]
- Aloy, M.Á.; Obergaulinger, M. Magnetorotational core collapse of possible GRB progenitors - II. Formation of protomagnetars and collapsars. Mon. Not. R. Astron. Soc. 2021, 500, 4365–4397. [Google Scholar] [CrossRef]
- Kondratyev, I.A.; Moiseenko, S.G.; Bisnovatyi-Kogan, G.S. Magnetorotational neutron star kicks. arXiv 2024, arXiv:2410.09521. [Google Scholar] [CrossRef]
- Shibagaki, S.; Kuroda, T.; Kotake, K.; Takiwaki, T.; Fischer, T. Three-dimensional GRMHD simulations of rapidly rotating stellar core collapse. Mon. Not. R. Astron. Soc. 2024, 531, 3732–3743. [Google Scholar] [CrossRef]
- Zha, S.; Müller, B.; Powell, J. Nucleosynthesis in the Innermost Ejecta of Magnetorotational Supernova Explosions in 3-dimensions. arXiv 2024, arXiv:2403.02072. [Google Scholar] [CrossRef]
- Gilkis, A. Asymmetric Core-collapse of a Rapidly-rotating Massive Star. In Proceedings of the The Lives and Death-Throes of Massive Stars, IAU Symposium, Auckland, NZ, USA, 28 November–2 December 2017; Eldridge, J.J., Bray, J.C., McClelland, L.A.S., Xiao, L., Eds.; Cambridge University Press: Cambridge, UK, 2017; Volume 329, p. 400. [Google Scholar] [CrossRef]
- Müller, B. Supernova Simulations. arXiv 2024, arXiv:2403.18952. [Google Scholar] [CrossRef]
- Smirnova, T.V.; Shishov, V.I.; Malofeev, V.M. The Spatial Structure of Pulsar Emission Sources Determined Using Interstellar Scintillation. Astrophys. J. 1996, 462, 289. [Google Scholar] [CrossRef]
- Johnston, S.; Hobbs, G.; Vigeland, S.; Kramer, M.; Weisberg, J.M.; Lyne, A.G. Evidence for alignment of the rotation and velocity vectors in pulsars. Mon. Not. R. Astron. Soc. 2005, 364, 1397–1412. [Google Scholar] [CrossRef]
- Noutsos, A.; Kramer, M.; Carr, P.; Johnston, S. Pulsar spin-velocity alignment: Further results and discussion. Mon. Not. R. Astron. Soc. 2012, 423, 2736–2752. [Google Scholar] [CrossRef]
- Bear, E.; Shishkin, D.; Soker, N. The Puppis A supernova remnant: An early jet-driven neutron star kick followed by jittering jets. arXiv 2024, arXiv:2409.11453. [Google Scholar] [CrossRef]
- Winteler, C.; Käppeli, R.; Perego, A.; Arcones, A.; Vasset, N.; Nishimura, N.; Liebendörfer, M.; Thielemann, F.K. Magnetorotationally Driven Supernovae as the Origin of Early Galaxy r-process Elements? Astrophys. J. 2012, 750, L22. [Google Scholar] [CrossRef]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; et al. Gamma-Ray Emission from the Shell of Supernova Remnant W44 Revealed by the Fermi LAT. Science 2010, 327, 1103. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.R.; Smith, A.; Angelini, L. A detailed X-ray and radio study of the supernova remnant W 44. Mon. Not. R. Astron. Soc. 1993, 265, 631–640. [Google Scholar] [CrossRef]
- Shelton, R.L.; Kuntz, K.D.; Petre, R. Chandra Observations and Models of the Mixed-Morphology Supernova Remnant W44: Global Trends. Astrophys. J. 2004, 611, 906–918. [Google Scholar] [CrossRef]
- Kawasaki, M.; Ozaki, M.; Nagase, F.; Inoue, H.; Petre, R. Ionization States and Plasma Structures of Mixed-Morphology Supernova Remnants Observed with ASCA. Astrophys. J. 2005, 631, 935–946. [Google Scholar] [CrossRef]
- Uchida, H.; Koyama, K.; Yamaguchi, H.; Sawada, M.; Ohnishi, T.; Tsuru, T.G.; Tanaka, T.; Yoshiike, S.; Fukui, Y. Recombining Plasma and Hard X-Ray Filament in the Mixed-Morphology Supernova Remnant W 44. Publ. Astron. Soc. Jpn. 2012, 64, 141. [Google Scholar] [CrossRef]
- Okon, H.; Tanaka, T.; Uchida, H.; Yamaguchi, H.; Tsuru, T.G.; Seta, M.; Smith, R.K.; Yoshiike, S.; Orlando, S.; Bocchino, F.; et al. Deep XMM-Newton Observations Reveal the Origin of Recombining Plasma in the Supernova Remnant W44. Astrophys. J. 2020, 890, 62. [Google Scholar] [CrossRef]
- Rho, J.; Petre, R.; Schlegel, E.M.; Hester, J.J. An X-Ray and Optical Study of the Supernova Remnant W44. Astrophys. J. 1994, 430, 757. [Google Scholar] [CrossRef]
- Giacani, E.B.; Dubner, G.M.; Kassim, N.E.; Frail, D.A.; Goss, W.M.; Winkler, P.F.; Williams, B.F. New Radio and Optical Study of the Supernova Remnant W44. Astron. J. 1997, 113, 1379. [Google Scholar] [CrossRef]
- Mavromatakis, F.; Boumis, P.; Goudis, C.D. The faint supernova remnant G 34.7-0.4 (W44). Astron. Astrophys. 2003, 405, 591–596. [Google Scholar] [CrossRef]
- Reach, W.T.; Rho, J.; Jarrett, T.H. Shocked Molecular Gas in the Supernova Remnants W28 and W44: Near-Infrared and Millimeter-Wave Observations. Astrophys. J. 2005, 618, 297–320. [Google Scholar] [CrossRef]
- Reach, W.T.; Rho, J.; Tappe, A.; Pannuti, T.G.; Brogan, C.L.; Churchwell, E.B.; Meade, M.R.; Babler, B.; Indebetouw, R.; Whitney, B.A. A Spitzer Space Telescope Infrared Survey of Supernova Remnants in the Inner Galaxy. Astron. J. 2006, 131, 1479–1500. [Google Scholar] [CrossRef]
- Seta, M.; Hasegawa, T.; Sakamoto, S.; Oka, T.; Sawada, T.; Inutsuka, S.i.; Koyama, H.; Hayashi, M. Detection of Shocked Molecular Gas by Full-Extent Mapping of the Supernova Remnant W44. Astron. J. 2004, 127, 1098–1116. [Google Scholar] [CrossRef]
- Hoffman, I.M.; Goss, W.M.; Brogan, C.L.; Claussen, M.J. The OH (1720 MHz) Supernova Remnant Masers in W44: MERLIN and VLBA Polarization Observations. Astrophys. J. 2005, 627, 803–812. [Google Scholar] [CrossRef]
- Castelletti, G.; Dubner, G.; Brogan, C.; Kassim, N.E. The low-frequency radio emission and spectrum of the extended SNR W44: New VLA observations at 74 and 324 MHz. Astron. Astrophys. 2007, 471, 537–549. [Google Scholar] [CrossRef]
- Anderl, S.; Gusdorf, A.; Güsten, R. APEX observations of supernova remnants. I. Non-stationary magnetohydrodynamic shocks in W44. Astron. Astrophys. 2014, 569, A81. [Google Scholar] [CrossRef]
- Egron, E.; Pellizzoni, A.; Iacolina, M.N.; Loru, S.; Marongiu, M.; Righini, S.; Cardillo, M.; Giuliani, A.; Mulas, S.; Murtas, G.; et al. Imaging of SNR IC443 and W44 with the Sardinia Radio Telescope at 1.5 and 7 GHz. Mon. Not. R. Astron. Soc. 2017, 470, 1329–1341. [Google Scholar] [CrossRef]
- Loru, S.; Pellizzoni, A.; Egron, E.; Righini, S.; Iacolina, M.N.; Mulas, S.; Cardillo, M.; Marongiu, M.; Ricci, R.; Bachetti, M.; et al. Investigating the high-frequency spectral features of SNRs Tycho, W44, and IC443 with the Sardinia Radio Telescope. Mon. Not. R. Astron. Soc. 2019, 482, 3857–3867. [Google Scholar] [CrossRef]
- Seta, M.; Hasegawa, T.; Dame, T.M.; Sakamoto, S.; Oka, T.; Handa, T.; Hayashi, M.; Morino, J.I.; Sorai, K.; Usuda, K.S. Enhanced CO J = 2-1/J = 1-0 Ratio as a Marker of Supernova Remnant-Molecular Cloud Interactions: The Cases of W44 and IC 443. Astrophys. J. 1998, 505, 286–298. [Google Scholar] [CrossRef]
- Nobukawa, K.K.; Nobukawa, M.; Koyama, K.; Yamauchi, S.; Uchiyama, H.; Okon, H.; Tanaka, T.; Uchida, H.; Tsuru, T.G. Evidence for a Neutral Iron Line Generated by MeV Protons from Supernova Remnants Interacting with Molecular Clouds. Astrophys. J. 2018, 854, 87. [Google Scholar] [CrossRef]
- Koo, B.C.; Kim, C.G.; Park, S.; Ostriker, E.C. Radiative Supernova Remnants and Supernova Feedback. Astrophys. J. 2020, 905, 35. [Google Scholar] [CrossRef]
- Liu, M.; Hu, Y.; Lazarian, A. Velocity gradients: Magnetic field tomography towards the supernova remnant W44. Mon. Not. R. Astron. Soc. 2022, 510, 4952–4961. [Google Scholar] [CrossRef]
- Cosentino, G.; Tan, J.C.; Jiménez-Serra, I.; Fontani, F.; Caselli, P.; Henshaw, J.D.; Barnes, A.T.; Law, C.Y.; Viti, S.; Fedriani, R.; et al. Deuterium fractionation across the infrared-dark cloud G034.77-00.55 interacting with the supernova remnant W44. Astron. Astrophys. 2023, 675, A190. [Google Scholar] [CrossRef]
- Wolszczan, A.; Cordes, J.M.; Dewey, R.J. Discovery of a Young, 267 Millisecond Pulsar in the Supernova Remnant W44. Astrophys. J. 1991, 372, L99. [Google Scholar] [CrossRef]
- Grichener, A.; Soker, N. Core collapse supernova remnants with ears. Mon. Not. R. Astron. Soc. 2017, 468, 1226–1235. [Google Scholar] [CrossRef]
- Claussen, M.J.; Frail, D.A.; Goss, W.M.; Gaume, R.A. Polarization Observations of 1720 MHz OH Masers toward the Three Supernova Remnants W28, W44, and IC 443. Astrophys. J. 1997, 489, 143–159. [Google Scholar] [CrossRef]
- Frail, D.A.; Giacani, E.B.; Goss, W.M.; Dubner, G. The Pulsar Wind Nebula around PSR B1853+01 in the Supernova Remnant W44. Astrophys. J. 1996, 464, L165. [Google Scholar] [CrossRef]
- Petre, R.; Kuntz, K.D.; Shelton, R.L. The X-Ray Structure and Spectrum of the Pulsar Wind Nebula Surrounding PSR B1853+01 in W44. Astrophys. J. 2002, 579, 404–410. [Google Scholar] [CrossRef]
- Ubertosi, F.; Gitti, M.; Brighenti, F.; Brunetti, G.; McDonald, M.; Nulsen, P.; McNamara, B.; Randall, S.; Forman, W.; Donahue, M.; et al. The Deepest Chandra View of RBS 797: Evidence for Two Pairs of Equidistant X-ray Cavities. Astrophys. J. 2021, 923, L25. [Google Scholar] [CrossRef]
- Gitti, M.; Giroletti, M.; Giovannini, G.; Feretti, L.; Liuzzo, E. A candidate supermassive binary black hole system in the brightest cluster galaxy of RBS 797. Astron. Astrophys. 2013, 557, L14. [Google Scholar] [CrossRef]
- Bear, E.; Soker, N. Identifying a point-symmetric morphology in supernova remnant Cassiopeia A: Explosion by jittering jets. New Astron. 2025, 114, 102307. [Google Scholar] [CrossRef]
- Kumar, A. Insights from Modeling Magnetar-driven Light Curves of Stripped-envelope Supernovae. arXiv 2024, arXiv:2412.09357. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soker, N. Identifying a Point-Symmetrical Morphology in the Core-Collapse Supernova Remnant W44. Universe 2025, 11, 4. https://doi.org/10.3390/universe11010004
Soker N. Identifying a Point-Symmetrical Morphology in the Core-Collapse Supernova Remnant W44. Universe. 2025; 11(1):4. https://doi.org/10.3390/universe11010004
Chicago/Turabian StyleSoker, Noam. 2025. "Identifying a Point-Symmetrical Morphology in the Core-Collapse Supernova Remnant W44" Universe 11, no. 1: 4. https://doi.org/10.3390/universe11010004
APA StyleSoker, N. (2025). Identifying a Point-Symmetrical Morphology in the Core-Collapse Supernova Remnant W44. Universe, 11(1), 4. https://doi.org/10.3390/universe11010004