Constraining the Milky Way’s Dispersion Measure Using FRB and X-Ray Data
Abstract
:1. Introduction
2. Data and Methods
2.1. Localized FRB Sample
2.2. Derivation of
3. Analysis and Findings
3.1. O vii Absorption
3.2. O viii Absorption
3.3. O vii and O viii Emission
4. Discussion
4.1. Why O vii Absorption Shows the Strongest Correlation
4.2. Comparison with MW Electron Density Distribution Models
5. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lorimer, D.R.; Bailes, M.; McLaughlin, M.A.; Narkevic, D.J.; Crawford, F. A bright millisecond radio burst of extragalactic origin. Science 2007, 318, 777–780. [Google Scholar] [CrossRef] [PubMed]
- Shull, J.M.; Smith, B.D.; Danforth, C.W. The baryon census in a multiphase intergalactic medium: 30% of the baryons may still be missing. Astrophys. J. 2012, 759, 23. [Google Scholar] [CrossRef]
- Gupta, A.; Mathur, S.; Krongold, Y.; Nicastro, F.; Galeazzi, M. A huge reservoir of ionized gas around the Milky Way: Accounting for the missing mass? Astrophys. J. Lett. 2012, 756, L8. [Google Scholar] [CrossRef]
- Fang, T.; Bullock, J.; Boylan-Kolchin, M. On the hot gas content of the Milky Way halo. Astrophys. J. 2012, 762, 20. [Google Scholar] [CrossRef]
- Nicastro, F.; Krongold, Y.; Fang, T.; Fraternali, F.; Mathur, S.; Bianchi, S.; De Rosa, A.; Piconcelli, E.; Zappacosta, L.; Bischetti, M.; et al. X-Ray Detection of the Galaxy’s Missing Baryons in the Circumgalactic Medium of L* Galaxies. Astrophys. J. Lett. 2023, 955, L21. [Google Scholar] [CrossRef]
- Macquart, J.P.; Prochaska, J.; McQuinn, M.; Bannister, K.; Bhandari, S.; Day, C.; Deller, A.; Ekers, R.; James, C.; Marnoch, L.; et al. A census of baryons in the Universe from localized fast radio bursts. Nature 2020, 581, 391–395. [Google Scholar] [CrossRef]
- Cordes, J.M.; Lazio, T.J.W. NE2001. I. A new model for the galactic distribution of free electrons and its fluctuations. arXiv 2002, astro-ph/0207156. [Google Scholar] [CrossRef]
- Yao, J.; Manchester, R.; Wang, N. A new electron-density model for estimation of pulsar and FRB distances. Astrophys. J. 2017, 835, 29. [Google Scholar] [CrossRef]
- Price, D.C.; Flynn, C.; Deller, A. A comparison of Galactic electron density models using PyGEDM. Publ. Astron. Soc. Aust. 2021, 38, e038. [Google Scholar] [CrossRef]
- Gaensler, B.; Madsen, G.; Chatterjee, S.; Mao, S. The vertical structure of warm ionised gas in the Milky Way. Publ. Astron. Soc. Aust. 2008, 25, 184–200. [Google Scholar] [CrossRef]
- Jennings, R.J.; Kaplan, D.L.; Chatterjee, S.; Cordes, J.M.; Deller, A.T. Binary pulsar distances and velocities from gaia data release 2. Astrophys. J. 2018, 864, 26. [Google Scholar] [CrossRef]
- Platts, E.; Prochaska, J.X.; Law, C.J. A data-driven technique using millisecond transients to measure the milky way halo. Astrophys. J. Lett. 2020, 895, L49. [Google Scholar] [CrossRef]
- Cook, A.M.; Bhardwaj, M.; Gaensler, B.; Scholz, P.; Eadie, G.M.; Hill, A.S.; Kaspi, V.M.; Masui, K.W.; Curtin, A.P.; Dong, F.A.; et al. An FRB Sent Me a DM: Constraining the Electron Column of the Milky Way Halo with Fast Radio Burst Dispersion Measures from CHIME/FRB. Astrophys. J. 2023, 946, 58. [Google Scholar] [CrossRef]
- Wei, J.J.; Melia, F. Investigating Cosmological Models and the Hubble Tension Using Localized Fast Radio Bursts. Astrophys. J. 2023, 955, 101. [Google Scholar] [CrossRef]
- Huang, Y.; Lee, K.G.; Libeskind, N.I.; Simha, S.; Valade, A.; Prochaska, J.X. Modeling the Cosmic Dispersion Measure in the D< 120 Mpc Local Universe. arXiv 2024, arXiv:2410.22098. [Google Scholar] [CrossRef]
- Smith, R.K.; Bautz, M.W.; Edgar, R.J.; Fujimoto, R.; Hamaguchi, K.; Hughes, J.P.; Ishida, M.; Kelley, R.; Kilbourne, C.A.; Kuntz, K.; et al. Suzaku observations of the local and distant hot ISM. Publ. Astron. Soc. Jpn. 2007, 59, S141–S150. [Google Scholar] [CrossRef]
- Henley, D.B.; Shelton, R.L. An XMM-Newton survey of the soft X-ray background. III. The galactic halo X-ray emission. Astrophys. J. 2013, 773, 92. [Google Scholar] [CrossRef]
- Nicastro, F.; Kaastra, J.; Krongold, Y.; Borgani, S.; Branchini, E.; Cen, R.; Dadina, M.; Danforth, C.; Elvis, M.; Fiore, F.; et al. Observations of the missing baryons in the warm–hot intergalactic medium. Nature 2018, 558, 406–409. [Google Scholar] [CrossRef]
- Xu, J.; Feng, Y.; Li, D.; Wang, P.; Zhang, Y.; Xie, J.; Chen, H.; Wang, H.; Kang, Z.; Hu, J.; et al. Blinkverse: A database of fast radio bursts. Universe 2023, 9, 330. [Google Scholar] [CrossRef]
- Kurtz, M.J.; Eichhorn, G.; Accomazzi, A.; Grant, C.S.; Murray, S.S.; Watson, J.M. The NASA astrophysics data system: Overview. Astron. Astrophys. Suppl. Ser. 2000, 143, 41–59. [Google Scholar] [CrossRef]
- Tendulkar, S.P.; Bassa, C.; Cordes, J.M.; Bower, G.C.; Law, C.J.; Chatterjee, S.; Adams, E.A.; Bogdanov, S.; Burke-Spolaor, S.; Butler, B.J.; et al. The host galaxy and redshift of the repeating fast radio burst FRB 121102. Astrophys. J. Lett. 2017, 834, L7. [Google Scholar] [CrossRef]
- Lee-Waddell, K.; James, C.W.; Ryder, S.D.; Mahony, E.K.; Bahramian, A.; Koribalski, B.S.; Kumar, P.; Marnoch, L.; North-Hickey, F.O.; Sadler, E.M.; et al. The host galaxy of FRB 20171020A revisited. Publ. Astron. Soc. Aust. 2023, 40, e029. [Google Scholar] [CrossRef]
- Bhandari, S.; Heintz, K.E.; Aggarwal, K.; Marnoch, L.; Day, C.K.; Sydnor, J.; Burke-Spolaor, S.; Law, C.J.; Prochaska, J.X.; Tejos, N.; et al. Characterizing the fast radio burst host galaxy population and its connection to transients in the local and extragalactic universe. Astron. J. 2022, 163, 69. [Google Scholar] [CrossRef]
- Marcote, B.; Nimmo, K.; Hessels, J.; Tendulkar, S.; Bassa, C.; Paragi, Z.; Keimpema, A.; Bhardwaj, M.; Karuppusamy, R.; Kaspi, V.; et al. A repeating fast radio burst source localized to a nearby spiral galaxy. Nature 2020, 577, 190–194. [Google Scholar] [CrossRef]
- Bannister, K.W.; Deller, A.T.; Phillips, C.; Macquart, J.P.; Prochaska, J.X.; Tejos, N.; Ryder, S.D.; Sadler, E.M.; Shannon, R.M.; Simha, S.; et al. A single fast radio burst localized to a massive galaxy at cosmological distance. Science 2019, 365, 565–570. [Google Scholar] [CrossRef]
- Bhardwaj, M.; Kirichenko, A.Y.; Michilli, D.; Mayya, Y.; Kaspi, V.; Gaensler, B.; Rahman, M.; Tendulkar, S.; Fonseca, E.; Josephy, A.; et al. A local universe host for the repeating fast radio burst FRB 20181030A. Astrophys. J. Lett. 2021, 919, L24. [Google Scholar] [CrossRef]
- Prochaska, J.X.; Macquart, J.P.; McQuinn, M.; Simha, S.; Shannon, R.M.; Day, C.K.; Marnoch, L.; Ryder, S.; Deller, A.; Bannister, K.W.; et al. The low density and magnetization of a massive galaxy halo exposed by a fast radio burst. Science 2019, 366, 231–234. [Google Scholar] [CrossRef]
- Bhardwaj, M.; Michilli, D.; Kirichenko, A.Y.; Modilim, O.; Shin, K.; Kaspi, V.M.; Andersen, B.C.; Cassanelli, T.; Brar, C.; Chatterjee, S.; et al. Host galaxies for four nearby CHIME/FRB sources and the local universe FRB host galaxy population. Astrophys. J. Lett. 2024, 971, L51. [Google Scholar] [CrossRef]
- Niu, C.H.; Aggarwal, K.; Li, D.; Zhang, X.; Chatterjee, S.; Tsai, C.W.; Yu, W.; Law, C.J.; Burke-Spolaor, S.; Cordes, J.M.; et al. A repeating fast radio burst associated with a persistent radio source. Nature 2022, 606, 873–877. [Google Scholar] [CrossRef]
- Ravi, V.; Catha, M.; D’addario, L.; Djorgovski, S.; Hallinan, G.; Hobbs, R.; Kocz, J.; Kulkarni, S.; Shi, J.; Vedantham, H.; et al. A fast radio burst localized to a massive galaxy. Nature 2019, 572, 352–354. [Google Scholar] [CrossRef]
- Heintz, K.E.; Prochaska, J.X.; Simha, S.; Platts, E.; Fong, W.F.; Tejos, N.; Ryder, S.D.; Aggerwal, K.; Bhandari, S.; Day, C.K.; et al. Host galaxy properties and offset distributions of fast radio bursts: Implications for their progenitors. Astrophys. J. 2020, 903, 152. [Google Scholar] [CrossRef]
- Kirsten, F.; Marcote, B.; Nimmo, K.; Hessels, J.; Bhardwaj, M.; Tendulkar, S.; Keimpema, A.; Yang, J.; Snelders, M.; Scholz, P.; et al. A repeating fast radio burst source in a globular cluster. Nature 2022, 602, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Rajwade, K.; Bezuidenhout, M.C.; Caleb, M.; Driessen, L.; Jankowski, F.; Malenta, M.; Morello, V.; Sanidas, S.; Stappers, B.; Surnis, M.; et al. First discoveries and localizations of Fast Radio Bursts with MeerTRAP: Real-time, commensal MeerKAT survey. Mon. Not. R. Astron. Soc. 2022, 514, 1961–1974. [Google Scholar] [CrossRef]
- Fong, W.f.; Dong, Y.; Leja, J.; Bhandari, S.; Day, C.K.; Deller, A.T.; Kumar, P.; Prochaska, J.X.; Scott, D.R.; Bannister, K.W.; et al. Chronicling the host galaxy properties of the remarkable repeating FRB 20201124A. Astrophys. J. Lett. 2021, 919, L23. [Google Scholar] [CrossRef]
- Bhandari, S.; Gordon, A.C.; Scott, D.R.; Marnoch, L.; Sridhar, N.; Kumar, P.; James, C.W.; Qiu, H.; Bannister, K.W.; Deller, A.T.; et al. A Nonrepeating Fast Radio Burst in a Dwarf Host Galaxy. Astrophys. J. 2023, 948, 67. [Google Scholar] [CrossRef]
- Gordon, A.C.; Fong, W.F.; Kilpatrick, C.D.; Eftekhari, T.; Leja, J.; Prochaska, J.X.; Nugent, A.E.; Bhandari, S.; Blanchard, P.K.; Caleb, M.; et al. The Demographics, Stellar Populations, and Star Formation Histories of Fast Radio Burst Host Galaxies: Implications for the Progenitors. Astrophys. J. 2023, 954, 80. [Google Scholar] [CrossRef]
- Driessen, L.N.; Barr, E.; Buckley, D.; Caleb, M.; Chen, H.; Chen, W.; Gromadzki, M.; Jankowski, F.; Kraan-Korteweg, R.; Palmerio, J.; et al. FRB 20210405I: A nearby Fast Radio Burst localized to sub-arcsecond precision with MeerKAT. Mon. Not. R. Astron. Soc. 2024, 527, 3659–3673. [Google Scholar] [CrossRef]
- Caleb, M.; Driessen, L.; Gordon, A.; Tejos, N.; Bernales, L.; Qiu, H.; Chibueze, J.; Stappers, B.; Rajwade, K.; Cavallaro, F.; et al. A subarcsec localized fast radio burst with a significant host galaxy dispersion measure contribution. Mon. Not. R. Astron. Soc. 2023, 524, 2064–2077. [Google Scholar] [CrossRef]
- Glowacki, M.; Lee-Waddell, K.; Deller, A.; Deg, N.; Gordon, A.; Grundy, J.; Marnoch, L.; Shen, A.; Ryder, S.; Shannon, R.; et al. WALLABY Pilot Survey: H i in the Host Galaxy of a Fast Radio Burst. Astrophys. J. 2023, 949, 25. [Google Scholar] [CrossRef]
- Law, C.J.; Sharma, K.; Ravi, V.; Chen, G.; Catha, M.; Connor, L.; Faber, J.T.; Hallinan, G.; Harnach, C.; Hellbourg, G.; et al. Deep Synoptic Array Science: First FRB and Host Galaxy Catalog. arXiv 2023, arXiv:2307.03344. [Google Scholar] [CrossRef]
- Ravi, V.; Catha, M.; Chen, G.; Connor, L.; Cordes, J.M.; Faber, J.T.; Lamb, J.W.; Hallinan, G.; Harnach, C.; Hellbourg, G.; et al. Deep Synoptic Array science: A 50 Mpc fast radio burst constrains the mass of the Milky Way circumgalactic medium. arXiv 2023, arXiv:2301.01000. [Google Scholar] [CrossRef]
- Connor, L.; Ravi, V.; Catha, M.; Chen, G.; Faber, J.T.; Lamb, J.W.; Hallinan, G.; Harnach, C.; Hellbourg, G.; Hobbs, R.; et al. Deep Synoptic Array science: Two fast radio burst sources in massive galaxy clusters. Astrophys. J. Lett. 2023, 949, L26. [Google Scholar] [CrossRef]
- Ryder, S.D.; Bannister, K.W.; Bhandari, S.; Deller, A.; Ekers, R.; Glowacki, M.; Gordon, A.C.; Gourdji, K.; James, C.; Kilpatrick, C.D.; et al. A luminous fast radio burst that probes the Universe at redshift 1. Science 2023, 382, 294–299. [Google Scholar] [CrossRef]
- Ravi, V.; Catha, M.; Chen, G.; Connor, L.; Faber, J.T.; Lamb, J.W.; Hallinan, G.; Harnach, C.; Hellbourg, G.; Hobbs, R.; et al. Deep Synoptic Array Science: Discovery of the Host Galaxy of FRB 20220912A. Astrophys. J. Lett. 2023, 949, L3. [Google Scholar] [CrossRef]
- Glowacki, M.; Bera, A.; Lee-Waddell, K.; Deller, A.; Dial, T.; Gourdji, K.; Simha, S.; Caleb, M.; Marnoch, L.; Prochaska, J.X.; et al. H i, FRB, What’s Your z: The First FRB Host Galaxy Redshift from Radio Observations. Astrophys. J. Lett. 2024, 962, L13. [Google Scholar] [CrossRef]
- Mo, J.F.; Zhu, W.; Wang, Y.; Tang, L.; Feng, L.L. The dispersion measure of Fast Radio Bursts host galaxies: Estimation from cosmological simulations. Mon. Not. R. Astron. Soc. 2023, 518, 539–561. [Google Scholar] [CrossRef]
- Zhang, B. Fast radio burst energetics and detectability from high redshifts. Astrophys. J. Lett. 2018, 867, L21. [Google Scholar] [CrossRef]
- Cordes, J.M.; Ocker, S.K.; Chatterjee, S. Redshift estimation and constraints on intergalactic and interstellar media from dispersion and scattering of fast radio bursts. Astrophys. J. 2022, 931, 88. [Google Scholar] [CrossRef]
- Fang, T.; Buote, D.; Bullock, J.; Ma, R. XMM-NEWTON Survey of Local Absorption Lines in The Spectra of Active Galactic Nuclei. Astrophys. J. Suppl. Ser. 2015, 217, 21. [Google Scholar] [CrossRef]
- Longinotti, A.; Costantini, E.; Petrucci, P.; Boisson, C.; Mouchet, M.; Santos-Lleo, M.; Matt, G.; Ponti, G.; Gonçalves, A. High-resolution X-ray spectroscopy of the Seyfert 1 Mrk 841: Insights into the warm absorber and warm emitter. Astron. Astrophys. 2010, 510, A92. [Google Scholar] [CrossRef]
- Das, S.; Mathur, S.; Gupta, A.; Nicastro, F.; Krongold, Y. Empirical estimates of the Galactic halo contribution to the dispersion measures of extragalactic fast radio bursts using X-ray absorption. Mon. Not. R. Astron. Soc. 2021, 500, 655–662. [Google Scholar] [CrossRef]
- Zappacosta, L.; Nicastro, F.; Maiolino, R.; Tagliaferri, G.; Buote, D.; Fang, T.; Humphrey, P.; Gastaldello, F. Studying the WHIM content of large-scale structures along the line of sight to H 2356-309. Astrophys. J. 2010, 717, 74. [Google Scholar] [CrossRef]
- Fang, T.; Jiang, X. High resolution X-ray spectroscopy of the local hot gas along the 3C 273 sightline. Astrophys. J. Lett. 2014, 785, L24. [Google Scholar] [CrossRef]
- Bonamente, M.; Nevalainen, J.; Tilton, E.; Liivamägi, J.; Tempel, E.; Heinämäki, P.; Fang, T. A possible Chandra and Hubble Space Telescope detection of extragalactic WHIM towards PG 1116+ 215. Mon. Not. R. Astron. Soc. 2016, 457, 4236–4247. [Google Scholar] [CrossRef]
- Das, S.; Mathur, S.; Nicastro, F.; Krongold, Y. Discovery of a very hot phase of the Milky Way circumgalactic medium with non-solar abundance ratios. Astrophys. J. Lett. 2019, 882, L23. [Google Scholar] [CrossRef]
- Pan, Z.; Qu, Z.; Bregman, J.N.; Liu, J. The XMM-Newton Line Emission Analysis Program (X-LEAP). I. Emission-line Survey of O vii, O viii, and Fe L-shell Transitions. Astrophys. J. Suppl. Ser. 2024, 271, 62. [Google Scholar] [CrossRef]
- Kaaret, P.; Koutroumpa, D.; Kuntz, K.; Jahoda, K.; Bluem, J.; Gulick, H.; Hodges-Kluck, E.; LaRocca, D.; Ringuette, R.; Zajczyk, A. A disk-dominated and clumpy circumgalactic medium of the Milky Way seen in X-ray emission. Nat. Astron. 2020, 4, 1072–1077. [Google Scholar] [CrossRef]
- Nicastro, F.; Mathur, S.; Elvis, M.; Drake, J.; Fang, T.; Fruscione, A.; Krongold, Y.; Marshall, H.; Williams, R.; Zezas, A. The mass of the missing baryons in the X-ray forest of the warm–hot intergalactic medium. Nature 2005, 433, 495–498. [Google Scholar] [CrossRef]
- Bregman, J.N.; Lloyd-Davies, E.J. X-Ray absorption from the Milky Way halo and the local group. Astrophys. J. 2007, 669, 990. [Google Scholar] [CrossRef]
- Shull, J.M.; Danforth, C.W. The Dispersion of Fast Radio Bursts from a Structured Intergalactic Medium at Redshifts z < 1.5. Astrophys. J. Lett. 2018, 852, L11. [Google Scholar] [CrossRef]
- Prochaska, J.X.; Zheng, Y. Probing Galactic haloes with fast radio bursts. Mon. Not. R. Astron. Soc. 2019, 485, 648–665. [Google Scholar] [CrossRef]
- Yamasaki, S.; Totani, T. The galactic halo contribution to the dispersion measure of extragalactic fast radio bursts. Astrophys. J. 2020, 888, 105. [Google Scholar] [CrossRef]
- Mathur, S.; Weinberg, D.H.; Chen, X. Tracing the warm-hot intergalactic medium at low redshift: X-ray forest observations toward H1821+ 643. Astrophys. J. 2003, 582, 82. [Google Scholar] [CrossRef]
- Williams, R.J.; Mathur, S.; Nicastro, F.; Elvis, M.; Drake, J.J.; Fang, T.; Fiore, F.; Krongold, Y.; Wang, Q.D.; Yao, Y. Probing the local group medium toward Markarian 421 with Chandra and the far ultraviolet spectroscopic explorer. Astrophys. J. 2005, 631, 856. [Google Scholar] [CrossRef]
- Henley, D.B.; Shelton, R.L. An XMM-Newton survey of the soft X-ray background. II. An all-sky catalog of diffuse O VII and O VIII emission intensities. Astrophys. J. Suppl. Ser. 2012, 202, 14. [Google Scholar] [CrossRef]
- Amiri, M.; Bandura, K.; Berger, P.; Bhardwaj, M.; Boyce, M.; Boyle, P.; Brar, C.; Burhanpurkar, M.; Chawla, P.; Chowdhury, J.; et al. The CHIME fast radio burst project: System overview. Astrophys. J. 2018, 863, 48. [Google Scholar] [CrossRef]
- Troitsky, S. Density and metallicity of the Milky Way circumgalactic gas. Mon. Not. R. Astron. Soc. Lett. 2017, 468, L36–L40. [Google Scholar] [CrossRef]
- Martynenko, N. Constraining density and metallicity of the Milky Way’s hot gas halo from O vii spectra and ram-pressure stripping. Mon. Not. R. Astron. Soc. 2022, 511, 843–858. [Google Scholar] [CrossRef]
- Ocker, S.K.; Cordes, J.M.; Chatterjee, S. Electron density structure of the local galactic disk. Astrophys. J. 2020, 897, 124. [Google Scholar] [CrossRef]
- Nakashima, S.; Inoue, Y.; Yamasaki, N.; Sofue, Y.; Kataoka, J.; Sakai, K. Spatial distribution of the Milky Way hot gaseous halo constrained by Suzaku X-ray observations. Astrophys. J. 2018, 862, 34. [Google Scholar] [CrossRef]
- Deng, W.; Zhang, B. Cosmological implications of fast radio burst/gamma-ray burst associations. Astrophys. J. Lett. 2014, 783, L35. [Google Scholar] [CrossRef]
No. | FRB | Telescope | l (deg) | b (deg) | DM (cm−3 pc) | z (redshift) | 1 (cm−3 pc) | Repeater? (y/n) | Ref |
---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
1 | FRB121102A | Arecibo | 174.95 | −0.223 | 570 | 0.1927 | 366.370 | n | Tendulkar et al. [21] |
2 | FRB171020A | ASKAP | 29.3 | −51.3 | 114.1 | 0.0087 | 77.196 | n | Lee-Waddell et al. [22] |
3 | FRB180301A | Parkes | 204.412 | −6.481 | 522 | 0.3304 | 208.734 | y | Bhandari et al. [23] |
4 | FRB180916B | CHIME | 129.71 | 3.73 | 350.2 | 0.0337 | 291.964 | n | Marcote et al. [24] |
5 | FRB180924B | ASKAP | 0.74247 | −49.415 | 361.42 | 0.3214 | 56.274 | n | Bannister et al. [25] |
6 | FRB181030A | CHIME | 133.4 | 40.9 | 103.5 | 0.0038 | 70.480 | y | Bhardwaj et al. [26] |
7 | FRB181112A | ASKAP | 342.6 | −47.7 | 589.27 | 0.4755 | 143.298 | n | Prochaska et al. [27] |
8 | FRB181220A | CHIME | 105.24 | −10.73 | 209.4 | 0.02746 | 157.412 | n | Bhardwaj et al. [28] |
9 | FRB181223C | CHIME | 207.75 | 79.51 | 112.51 | 0.03024 | 58.275 | n | Bhardwaj et al. [28] |
10 | FRB190102C | ASKAP | 312.65 | −33.49 | 363.6 | 0.2910 | 85.762 | n | Macquart et al. [6] |
11 | FRB190418A | CHIME | 179.3 | −22.93 | 184.5 | 0.07132 | 96.660 | n | Bhardwaj et al. [28] |
12 | FRB190520B * | FAST | 359.67 | 29.91 | 1204 | 0.2410 | 91.810 | n | Niu et al. [29] |
13 | FRB190523A | DSA-10 | 117.03 | 44 | 760.8 | 0.6600 | 142.884 | n | Ravi et al. [30] |
14 | FRB190608B | ASKAP | 53.21 | −48.53 | 338.7 | 0.1178 | 211.982 | n | Macquart et al. [6] |
15 | FRB190611B | ASKAP | 312.94 | −33.28 | 321.4 | 0.3780 | −35.053 | n | Macquart et al. [6] |
16 | FRB190711A | ASKAP | 310.91 | −33.9 | 593.1 | 0.5220 | 104.044 | y | Macquart et al. [6] |
17 | FRB190714A | ASKAP | 289.7 | 49 | 504 | 0.2365 | 274.609 | n | Heintz et al. [31] |
18 | FRB191001A | ASKAP | 341.3 | −44.8 | 506.92 | 0.2340 | 279.734 | n | Heintz et al. [31] |
19 | FRB191228A | ASKAP | 20.8 | −64.9 | 297.5 | 0.2430 | 62.368 | n | Bhandari et al. [23] |
20 | FRB200120E | CHIME | 142.19 | 41.22 | 87.82 | −0.0001 | 57.817 | y | Kirsten et al. [32] |
21 | FRB200430A | ASKAP | 17.06 | 52.52 | 380.1 | 0.1600 | 217.390 | n | Heintz et al. [31] |
22 | FRB200906A | ASKAP | 202.4 | −49.77 | 577.8 | 0.3688 | 229.724 | n | Bhandari et al. [23] |
23 | FRB201123A | MeerKAT | 340.23 | −9.68 | 433.9 | 0.0507 | 363.022 | n | Rajwade et al. [33] |
24 | FRB201124A | CHIME | 177.6 | −8.5 | 410.83 | 0.0979 | 300.862 | y | Fong et al. [34] |
25 | FRB210117A * | ASKAP | 45.79 | −57.59 | 730 | 0.2140 | 54.991 | n | Bhandari et al. [35] |
26 | FRB210320C | ASKAP | 318.88 | 45.31 | 384.593 | 0.2797 | 116.857 | n | Gordon et al. [36] |
27 | FRB210405I | MeerKAT | 338.19 | −4.59 | 566.43 | 0.0660 | 482.984 | n | Driessen et al. [37] |
28 | FRB210410D | MeerKAT | 312.32 | −34.13 | 578.78 | 0.1415 | 431.925 | n | Caleb et al. [38] |
29 | FRB210807D | ASKAP | 39.81 | −14.89 | 251.9 | 0.1293 | 115.436 | n | Gordon et al. [36] |
30 | FRB211127I | ASKAP | 311.99 | 43.56 | 234.83 | 0.0469 | 167.058 | n | Glowacki et al. [39] |
31 | FRB211203C | ASKAP | 314.43 | 30.47 | 636.2 | 0.3439 | 310.726 | n | Gordon et al. [36] |
32 | FRB211212A | ASKAP | 243.95 | 47.76 | 206 | 0.0707 | 118.672 | n | Gordon et al. [36] |
33 | FRB220105A | ASKAP | 18.84 | 74.68 | 583 | 0.2785 | 316.335 | n | Gordon et al. [36] |
34 | FRB220207C | DSA-110 | 106.94 | 18.39 | 263 | 0.0430 | 198.376 | n | Law et al. [40] |
35 | FRB220307B | DSA-110 | 116.24 | 10.47 | 499.328 | 0.2481 | 259.665 | n | Law et al. [40] |
36 | FRB220310F | DSA-110 | 140.02 | 34.8 | 462.657 | 0.4780 | 14.413 | n | Law et al. [40] |
37 | FRB220319D | DSA-110 | 129.18 | 9.11 | 110.95 | 0.0110 | 72.187 | n | Ravi et al. [41] |
38 | FRB220418A | DSA-110 | 110.75 | 44.47 | 624.124 | 0.6220 | 41.809 | n | Law et al. [40] |
39 | FRB220506D | DSA-110 | 108.35 | 16.51 | 396.651 | 0.3004 | 110.398 | n | Law et al. [40] |
40 | FRB220509G | DSA-110 | 100.94 | 25.48 | 270.26 | 0.0894 | 167.399 | n | Connor et al. [42] |
41 | FRB220610A * | ASKAP | 8.87 | −70.13 | 1458.1 | 1.0160 | 6.275 | n | Ryder et al. [43] |
42 | FRB220825A | DSA-110 | 106.99 | 17.79 | 649.893 | 0.2414 | 416.178 | n | Law et al. [40] |
43 | FRB220912A | CHIME | 347.27 | 48.7 | 221.8 | 0.0771 | 126.832 | y | Ravi et al. [44] |
44 | FRB220914A * | DSA-110 | 104.31 | 26.13 | 630.703 | 0.1125 | 159.697 | n | Connor et al. [42] |
45 | FRB220920A | DSA-110 | 104.92 | 38.89 | 314.98 | 0.1582 | 153.784 | n | Law et al. [40] |
46 | FRB221012A | DSA-110 | 101.14 | 26.14 | 440.36 | 0.2847 | 168.185 | n | Law et al. [40] |
47 | FRB230718A | ASKAP | 259.66 | −1.03 | 477 | 0.0357 | 418.343 | n | Glowacki et al. [45] |
Analysis | Angular Region (Degree) | (pc cm−3) | R-Value | p-Value | |
---|---|---|---|---|---|
0°–10° | Macquart-relation | 0.8636 | |||
0°–20° | Macquart-relation | 0.3436 | 0.0584 | ||
0°–30° | Macquart-relation | 0.1029 | 0.5061 | ||
0°–10° | Macquart-relation | −0.2255 | 0.8552 | ||
0°–20° | Macquart-relation | 0.2422 | 0.4041 | ||
0°–30° | Macquart-relation | −0.1328 | 0.5178 | ||
0°–5° | Macquart-relation | 0.4849 | |||
0°–10° | Macquart-relation | 0.5396 | |||
0°–5° | Macquart-relation | 0.5319 | |||
0°–10° | Macquart-relation | 0.4546 | 0.0013 | ||
* Alternative 1 | 0°–10° | Macquart-relation | 0.8512 | ||
* Alternative 2 | 0°–10° | Macquart-relation | 0.8144 | ||
* Alternative 3 | 0°–10° | Macquart-relation | Localization papers 1 | 0.8122 | |
* Alternative 4 2 | 0°–10° | Macquart-relation | 0.8395 | ||
* Alternative 5 | 0°–10° | Zhang [47] | 0.8630 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zhou, Z.; Jiang, X.; Fang, T. Constraining the Milky Way’s Dispersion Measure Using FRB and X-Ray Data. Universe 2025, 11, 41. https://doi.org/10.3390/universe11020041
Wang J, Zhou Z, Jiang X, Fang T. Constraining the Milky Way’s Dispersion Measure Using FRB and X-Ray Data. Universe. 2025; 11(2):41. https://doi.org/10.3390/universe11020041
Chicago/Turabian StyleWang, Jiale, Zheng Zhou, Xiaochuan Jiang, and Taotao Fang. 2025. "Constraining the Milky Way’s Dispersion Measure Using FRB and X-Ray Data" Universe 11, no. 2: 41. https://doi.org/10.3390/universe11020041
APA StyleWang, J., Zhou, Z., Jiang, X., & Fang, T. (2025). Constraining the Milky Way’s Dispersion Measure Using FRB and X-Ray Data. Universe, 11(2), 41. https://doi.org/10.3390/universe11020041