Loop Quantum Cosmology, Modified Gravity and Extra Dimensions
Abstract
:1. Introduction
2. Loop Quantum Cosmology
2.1. Classical Connection Dynamics
2.2. Quantum Theory
3. Loop Quantum Cosmology of Modified Gravity
3.1. Classical Theory
3.2. Effective Equation
4. Loop Quantum Cosmology in Higher Dimensions
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Rovelli, C. Quantum Gravity; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Thiemann, T. Modern Canonical Quantum General Relativity; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Ashtekar, A.; Lewandowski, J. Background independent quantum gravity: A status report. Class. Quantum Gravity 2004, 21, R53. [Google Scholar] [CrossRef]
- Han, M.; Huang, W.; Ma, Y. Fundamental structure of loop quantum gravity. Int. J. Mod. Phys. D 2007, 16, 1397–1474. [Google Scholar] [CrossRef]
- Ashtekar, A.; Bojowald, M.; Lewandowski, J. Mathematical structure of loop quantum cosmology. Adv. Theor. Math. Phys. 2003, 7, 233–268. [Google Scholar] [CrossRef]
- Bojowald, M. Loop quantum cosmology. Living Rev. Relat. 2005, 8, 11. [Google Scholar] [CrossRef]
- Ashtekar, A. Loop quantum cosmology: An overview. Gen. Relat. Gravity 2009, 41, 707–741. [Google Scholar] [CrossRef]
- Ashtekar, A.; Singh, P. Loop quantum cosmology: A status report. Class. Quantum Gravity 2011, 28, 213001. [Google Scholar] [CrossRef]
- Banerjee, K.; Calcagni, G.; Martin-Benito, M. Introduction to loop quantum cosmology. Symmetry Integr. Geom. Methods Appl. 2012, 8, 016. [Google Scholar] [CrossRef]
- Ashtekar, A.; Pawlowski, T.; Singh, P. Quantum nature of the big bang: Improved dynamics. Phys. Rev. D 2006, 74, 084003. [Google Scholar] [CrossRef]
- Ashtekar, A.; Corichi, A.; Singh, P. Robustness of key features of loop quantum cosmology. Phys. Rev. D 2008, 77, 024046. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, Y. Extension of loop quantum gravity to f(R) theories. Phys. Rev. Lett. 2011, 106, 171301. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ma, Y. Loop quantum f(R) theories. Phys. Rev. D 2011, 84, 064040. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, Y. Loop quantum Brans-Dicke theory. J. Phys. Conf. Ser. 2012, 360, 012055. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, Y. Nonperturbative loop quantization of scalar-tensor theories of gravity. Phys. Rev. D 2011, 84, 104045. [Google Scholar] [CrossRef]
- Ma, Y. Extension of loop quantum gravity to metric theories beyond general relativity. J. Phys. Conf. Ser. 2012, 360, 012006. [Google Scholar] [CrossRef]
- Brans, C.; Dicke, R.H. Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 1961, 124, 925. [Google Scholar] [CrossRef]
- Greenstein, G.S. Brans–Dicke cosmology, I. Astrophys. Lett. 1968, 1, 139–141. [Google Scholar] [CrossRef]
- Greenstein, G.S. Brans–Dicke cosmology, II. Astrophys. Space Sci. 1968, 2, 155–165. [Google Scholar] [CrossRef]
- Anderson, J.D.; Morris, J.R. Brans–Dicke theory and the Pioneer anomaly. Phys. Rev. D 2012, 86, 064023. [Google Scholar] [CrossRef]
- Benerjee, N.; Pavon, D. Cosmic acceleration without quintessence. Phys. Rev. D 2001, 63, 043504. [Google Scholar] [CrossRef]
- Sen, S.; Sen, A.A. Late time acceleration in Brans–Dicke cosmology. Phys. Rev. D 2001, 63, 124006. [Google Scholar] [CrossRef]
- Qiang, L.; Ma, Y.; Han, M.; Yu, D. 5-dimensional Brans–Dicke theory and cosmic acceleration. Phys. Rev. D 2005, 71, 061501. [Google Scholar] [CrossRef]
- Das, S.; Banerjee, N. Brans–Dicke scalar field as a chameleon. Phys. Rev. D 2008, 78, 043512. [Google Scholar] [CrossRef]
- Felice, A.D.; Tsujikawa, S. Generalized Brans–Dicke theories. J. Cosmol. Astropart. Phys. 2010, 2010, 024. [Google Scholar] [CrossRef]
- Bisabr, Y. Cosmic acceleration in Brans–Dicke cosmology. Gen. Relat. Gravity 2012, 44, 427–435. [Google Scholar] [CrossRef]
- Friemann, J.; Turner, M.; Huterer, D. Dark energy and the accelerating Universe. Ann. Rev. Astron. Astrophys. 2008, 46, 385–432. [Google Scholar] [CrossRef]
- Will, C.M. The confrontation between general relativity and experiment. Living Rev. Relativ. 2006, 9, 3. [Google Scholar] [CrossRef]
- Will, C.M. Theory and Experiment in Gravitational Physics; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Zhang, X.; Ma, Y. Loop quantum Brans–Dicke cosmology. Phys. Rev. D 2013, 87, 084024. [Google Scholar] [CrossRef]
- Appelquist, T.; Chodos, A.; Freund, P.G.O. Modern Kaluza-Klein Theories (Frontiers in Physics); Addison-Wesley: Reading, MA, USA, 1986. [Google Scholar]
- Polchinski, J. String Theory; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Maldacena, J.M. TASI 2003 Lectures on AdS/CFT. In Proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2003): Recent Trends in String Theory, Boulder, CO, USA, 1–27 June 2003.
- Randall, L.; Sundrum, R. A Large Mass Hierarchy from a Small Extra Dimension. Phys. Rev. Lett. 1999, 83, 3370–3373. [Google Scholar] [CrossRef]
- Randall, L.; Sundrum, R. An Alternative to Compactification. Phys. Rev. Lett. 1999, 83, 4690–4693. [Google Scholar] [CrossRef]
- Mohammedi, N. Dynamical compactification, standard cosmology, and the accelerating universe. Phys. Rev. D 2002, 65, 104018. [Google Scholar] [CrossRef]
- Zhang, X. Loop quantum cosmology in 2 + 1 dimension. Phys. Rev. D 2014, 90, 124018. [Google Scholar] [CrossRef]
- Bodendorfer, N.; Thiemann, T.; Thurn, A. New variables for classical and quantum gravity in all dimensions I. Hamiltonian analysis. Class. Quantum Gravity 2013, 30, 045001. [Google Scholar] [CrossRef]
- Bodendorfer, N.; Thiemann, T.; Thurn, A. New variables for classical and quantum gravity in all dimensions II. Lagrangian analysis. Class. Quantum Gravity 2013, 30, 045002. [Google Scholar] [CrossRef]
- Bodendorfer, N.; Thiemann, T.; Thurn, A. New variables for classical and quantum gravity in all dimensions III. Quantum theory. Class. Quantum Gravity 2013, 30, 045003. [Google Scholar] [CrossRef]
- Bodendorfer, N.; Thiemann, T.; Thurn, A. New variables for classical and quantum gravity in all dimensions IV. Matter Coupling. Class. Quantum Gravity 2013, 30, 045004. [Google Scholar] [CrossRef]
- Zhang, X. Higher dimensional loop quantum cosmology. Eur. Phys. J. C 2016, 76, 395. [Google Scholar] [CrossRef]
- Taveras, V. Corrections to the Friedmann equations from loop quantum gravity for a universe with a free scalar field. Phys. Rev. D 2008, 78, 064072. [Google Scholar] [CrossRef]
- Ding, Y.; Ma, Y.; Yang, J. Effective scenario of loop quantum cosmology. Phys. Rev. Lett. 2009, 102, 051301. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Ding, Y.; Ma, Y. Alternative quantization of the Hamiltonian in loop quantum cosmology. Phys. Lett. B 2009, 682, 1–7. [Google Scholar] [CrossRef]
- Bojowald, M.; Brizuela, D.; Hernandez, H.H.; Koop, M.J.; Morales-Tecotl, H.A. High-order quantum back-reaction and quantum cosmology with a positive cosmological constant. Phys. Rev. D 2011, 84, 043514. [Google Scholar] [CrossRef]
- Ashtekar, A.; Campiglia, M.; Henderson, A. Loop quantum cosmology and spin foams. Phys. Lett. B 2009, 681, 347. [Google Scholar] [CrossRef]
- Ashtekar, A.; Campiglia, M.; Henderson, A. Casting loop quantum cosmology in the spin foam paradigm. Class. Quantum Gravity 2010, 27, 135020. [Google Scholar] [CrossRef]
- Ashtekar, A.; Campiglia, M.; Henderson, A. Path integrals and the WKB approximation in loop quantum cosmolog. Phys. Rev. D 2010, 82, 124043. [Google Scholar] [CrossRef]
- Qin, L.; Huang, H.; Ma, Y. Path integral and effective Hamiltonian in loop quantum cosmology. Gen. Relativ. Gravit. 2013, 45, 1191–1210. [Google Scholar] [CrossRef]
- Qin, L.; Deng, G.; Ma, Y. Path Integrals and Alternative Effective Dynamics in Loop Quantum Cosmology. Commun. Theor. Phys. 2012, 57, 326–332. [Google Scholar] [CrossRef]
- Qin, L.; Ma, Y. Coherent state functional integrals in quantum cosmology. Phys. Rev. D 2012, 85, 063515. [Google Scholar] [CrossRef]
- Qin, L.; Ma, Y. Coherent state functional integral in loop quantum cosmology: Alternative dynamics. Mod. Phys. Lett. 2012, 27, 1250078. [Google Scholar] [CrossRef]
- Singh, P. Are loop quantum cosmos never singular? Class. Quantum Gravity 2009, 26, 125005. [Google Scholar] [CrossRef]
- Gomar, L.; Martin-Benito, M.; Marugan, G. Quantum corrections to the Mukhanov-Sasaki equations. Phys. Rev. D. 2016, 93, 104025. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Wilson-Ewing, E. A ΛCDM bounce scenario. J. Cosmol. Astropart. Phys. 2015, 2015, 006. [Google Scholar] [CrossRef] [PubMed]
- Agullo, I.; Ashtekar, A.; Nelson, W. A quantum gravity extension of the inflationary scenario. Phys. Rev. Lett. 2012, 109, 251301. [Google Scholar] [CrossRef] [PubMed]
- Amorós, J.; Haro, J.; Odintsov, S.D. R + αR2 loop quantum cosmology. Phys. Rev. D 2014, 89, 104010. [Google Scholar] [CrossRef]
- Bonga, B.; Gupt, B. Phenomenological investigation of a quantum gravity extension of inflation with the Starobinsky potential. Phys. Rev. D 2016, 93, 063513. [Google Scholar] [CrossRef]
- Zhang, X. Immirzi parameter and quasinormal modes in four and higher spacetime dimensions. Front. Phys. 2016, 11, 110401. [Google Scholar] [CrossRef]
- Alesci, E.; Cianfrani, F. A new perspective on cosmology in Loop Quantum Gravity. Europhys. Lett. 2013, 104, 10001. [Google Scholar] [CrossRef]
- Alesci, E.; Cianfrani, F. Quantum-reduced loop gravity: Cosmology. Phys. Rev. D 2013, 87, 083521. [Google Scholar] [CrossRef]
- Diener, P.; Gupt, B.; Singh, P. Chimera: A hybrid approach to numerical loop quantum cosmology. Class. Quantum Gravity 2014, 31, 025013. [Google Scholar] [CrossRef]
- Diener, P.; Gupt, B.; Singh, P. Numerical simulations of a loop quantum cosmos: robustness of the quantum bounce and the validity of effective dynamics. Class. Quantum Gravity 2014, 31, 105015. [Google Scholar] [CrossRef]
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X. Loop Quantum Cosmology, Modified Gravity and Extra Dimensions. Universe 2016, 2, 15. https://doi.org/10.3390/universe2030015
Zhang X. Loop Quantum Cosmology, Modified Gravity and Extra Dimensions. Universe. 2016; 2(3):15. https://doi.org/10.3390/universe2030015
Chicago/Turabian StyleZhang, Xiangdong. 2016. "Loop Quantum Cosmology, Modified Gravity and Extra Dimensions" Universe 2, no. 3: 15. https://doi.org/10.3390/universe2030015
APA StyleZhang, X. (2016). Loop Quantum Cosmology, Modified Gravity and Extra Dimensions. Universe, 2(3), 15. https://doi.org/10.3390/universe2030015