Higher Spins without (Anti-)de Sitter
Abstract
:1. Introduction
2. Non-AdS through Boundary Conditions
2.1. The (Higher Spin) Chern–Simons Formulation of Gravity
- For , i.e., de Sitter spacetimes, this gauge algebra is .
- For , i.e., flat spacetimes, this gauge algebra is .
- For , i.e., anti-de Sitter spacetimes, this gauge algebra is .
2.2. Boundary Terms and Higher Spins
2.3. Examples of Non-AdS Spacetimes Realized with Higher Spin Symmetries
Identify Bulk Theory and Variational Principle:
Impose Suitable Boundary Conditions:
- denotes the (fixed) background that was chosen in the previous step.
- corresponds to state-dependent leading contributions in addition to the background that contains all the physical information about the field degrees of freedom at the boundary.
- are subleading contributions.
Perform Canonical Analysis and Check the Consistency of Boundary Conditions:
Determine Semiclassical Asymptotic Symmetry Algebra:
Determine the Quantum Asymptotic Symmetry Algebra:
Identify the Dual Field Theory:
2.3.1. Lobachevsky Spacetimes
2.3.2. Lifshitz Spacetimes
2.3.3. Null Warped, Schrödinger Spacetimes
3. Flat Space Higher Spin Theories as Specific Examples
3.1. Flat Space Spin-3 Gravity
3.2. Flat Space Cosmologies with Spin-3 Hair
3.3. Higher Spin Soft Hair in Flat Space
3.4. One Loop Higher Spin Partition Functions in Flat Space
3.5. Further Aspects of Higher Spins in 3D Flat Space
4. Non-AdS through the Choice of Gauge Group
4.1. Kinematical Algebras
- Space is isotropic.
- Parity and time-reversal are automorphisms of the kinematical groups.
- Inertial transformations in any given direction form a non-compact subgroup.
4.2. Carroll Gravity
4.3. Invariant Metrics and Double Extensions
- A simple Lie algebra.
- A one-dimensional Lie algebra.
- A double extended Lie algebra where:
- (a)
- has no factor for which the first and second cohomology group vanishes . This includes semisimple Lie algebra factors.
- (b)
- is either simple or one-dimensional.
- (c)
- acts on via outer derivations.
4.4. Kinematical Higher Spin Algebras
- The İnönü–Wigner contractions are restricted such that the contracted spin-2 Lie subalgebra of the contracted one coincides with the kinematical ones of Bacry and Levy-Leblond [183] (see Table 1 and Appendix A).
- The commutator of the spin-3 fields should be non-vanishing. This ensures that the spin-3 field also interacts with the spin-2 field.
5. Conclusions and Outlook
5.1. Boundary Conditions and Boundary Theories
5.2. Kinematical (Higher Spin) Algebras
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. Explicit Kinematical Algebra Relations
0 | 0 | 0 | 0 | |
0 | 0 | 0 | 0 | |
0 | 0 | |||
0 | ||||
0 | ||||
0 | ||||
0 | 0 |
0 | 0 | 0 | 0 | |
0 | 0 | 0 | 0 | |
0 | 0 | 0 | 0 | |
0 | 0 | 0 | ||
0 | 0 | 0 | ||
0 | 0 | 0 | ||
0 | 0 | 0 | 0 |
References
- Klebanov, I.; Polyakov, A. AdS dual of the critical O(N) vector model. Phys. Lett. B 2002, 550, 213–219. [Google Scholar] [CrossRef]
- Mikhailov, A. Notes on higher spin symmetries. arXiv, 2002; arXiv:hep-th/hep-th/0201019. [Google Scholar]
- Sezgin, E.; Sundell, P. Massless higher spins and holography. Nucl. Phys. B 2002, 644, 303–370. [Google Scholar] [CrossRef]
- Fradkin, E.; Vasiliev, M.A. On the gravitational interaction of massless higher spin fields. Phys. Lett. B 1987, 189, 89–95. [Google Scholar] [CrossRef]
- Fradkin, E.S.; Vasiliev, M.A. Cubic interaction in extended theories of massless higher spin fields. Nucl. Phys. B 1987, 291, 141–171. [Google Scholar] [CrossRef]
- Vasiliev, M.A. Consistent equation for interacting gauge fields of all spins in (3 + 1)-dimensions. Phys. Lett. B 1990, 243, 378–382. [Google Scholar] [CrossRef]
- Sagnotti, A.; Taronna, M. String lessons for higher spin interactions. Nucl. Phys. B 2011, 842, 299–361. [Google Scholar] [CrossRef] [Green Version]
- Vasiliev, M.A. Holography, Unfolding and Higher Spin Theory. J. Phys. A 2013, 46, 214013. [Google Scholar] [CrossRef]
- Didenko, V.; Skvortsov, E. Elements of Vasiliev theory. arXiv, 2014; arXiv:hep-th/1401.2975. [Google Scholar]
- Giombi, S.; Yin, X. Higher spin gauge theory and holography: The three-point functions. J. High Energy Phys. 2010, 2010, 115. [Google Scholar] [CrossRef]
- Giombi, S.; Yin, X. Higher Spins in AdS and Twistorial Holography. J. High Energy Phys. 2011, 2011, 86. [Google Scholar] [CrossRef]
- De Mello Koch, R.; Jevicki, A.; Jin, K.; Rodrigues, J.P. AdS4/CFT3 construction from collective fields. Phys. Rev. D 2011, 83, 025006. [Google Scholar] [CrossRef]
- Giombi, S.; Yin, X. On Higher Spin Gauge Theory and the Critical O(N) Model. Phys. Rev. D 2012, 85, 086005. [Google Scholar] [CrossRef]
- Douglas, M.R.; Mazzucato, L.; Razamat, S.S. Holographic dual of free field theory. Phys. Rev. D 2011, 83, 071701. [Google Scholar] [CrossRef]
- Giombi, S.; Yin, X. The Higher Spin/Vector Model Duality. J. Phys. A 2013, 46, 214003. [Google Scholar] [CrossRef]
- Sleight, C.; Taronna, M. Higher spin interactions from conformal field theory: The complete cubic couplings. Phys. Rev. Lett. 2016, 116, 181602. [Google Scholar] [CrossRef] [PubMed]
- Maldacena, J.; Zhiboedov, A. Constraining conformal field theories with a higher spin symmetry. J. Phys. A 2013, 46, 214011. [Google Scholar] [CrossRef]
- Maldacena, J.; Zhiboedov, A. Constraining conformal field theories with a slightly broken higher spin symmetry. Class. Quantum Gravity 2013, 30, 104003. [Google Scholar] [CrossRef]
- Maldacena, J.M. The Large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 1998, 2, 231–252. [Google Scholar] [CrossRef]
- Gubser, S.; Klebanov, I.R.; Polyakov, A.M. Gauge theory correlators from noncritical string theory. Phys. Lett. B 1998, 428, 105–114. [Google Scholar] [CrossRef]
- Witten, E. Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 1998, 2, 253–291. [Google Scholar] [CrossRef]
- Aragone, C.; Deser, S. Hypersymmetry in D = 3 of coupled gravity massless spin 5/2 system. Class. Quantum Gravity 1984, 1, L9. [Google Scholar] [CrossRef]
- Blencowe, M. A consistent interacting massless higher spin field theory in D = (2 + 1). Class. Quantum Gravity 1989, 6, 443–452. [Google Scholar] [CrossRef]
- Henneaux, M.; Rey, S.J. Nonlinear W∞ as asymptotic symmetry of three-dimensional higher spin anti-de sitter gravity. J. High Energy Phys. 2010, 2010, 7. [Google Scholar] [CrossRef]
- Campoleoni, A.; Fredenhagen, S.; Pfenninger, S.; Theisen, S. Asymptotic symmetries of three-dimensional gravity coupled to higher spin fields. J. High Energy Phys. 2010, 2010, 7. [Google Scholar] [CrossRef]
- Gaberdiel, M.R.; Hartman, T. Symmetries of Holographic Minimal Models. J. High Energy Phys. 2011, 2011, 31. [Google Scholar] [CrossRef]
- Campoleoni, A.; Fredenhagen, S.; Pfenninger, S. Asymptotic W-symmetries in three-dimensional higher spin gauge theories. J. High Energy Phys. 2011, 2011, 113. [Google Scholar] [CrossRef]
- Henneaux, M.; Perez, A.; Tempo, D.; Troncoso, R. Chemical potentials in three-dimensional higher spin anti-de Sitter gravity. J. High Energy Phys. 2013, 2013, 48. [Google Scholar] [CrossRef]
- Castro, A.; Lepage-Jutier, A.; Maloney, A. Higher spin theories in AdS3 and a gravitational exclusion principle. J. High Energy Phys. 2011, 2011, 142. [Google Scholar] [CrossRef]
- Ammon, M.; Gutperle, M.; Kraus, P.; Perlmutter, E. Spacetime geometry in higher spin gravity. J. High Energy Phys. 2011, 2011, 53. [Google Scholar] [CrossRef]
- Castro, A.; Hijano, E.; Lepage-Jutier, A.; Maloney, A. Black holes and singularity resolution in higher spin gravity. J. High Energy Phys. 2012, 2012, 31. [Google Scholar] [CrossRef]
- Ammon, M.; Kraus, P.; Perlmutter, E. Scalar fields and three-point functions in D = 3 higher spin gravity. J. High Energy Phys. 2012, 2012, 113. [Google Scholar] [CrossRef]
- Henneaux, M.; Lucena Gómez, G.; Park, J.; Rey, S.J. Super- W(infinity) Asymptotic Symmetry of Higher Spin AdS3 Supergravity. J. High Energy Phys. 2012, 2012, 37. [Google Scholar] [CrossRef]
- Campoleoni, A.; Fredenhagen, S.; Pfenninger, S.; Theisen, S. Towards metric-like higher spin gauge theories in three dimensions. J. Phys. A 2013, 46, 214017. [Google Scholar] [CrossRef]
- De Boer, J.; Jottar, J.I. Thermodynamics of higher spin black holes in AdS3. J. High Energy Phys. 2014, 2014, 23. [Google Scholar] [CrossRef]
- Compère, G.; Jottar, J.I.; Song, W. Observables and microscopic entropy of higher spin black holes. J. High Energy Phys. 2013, 2013, 54. [Google Scholar] [CrossRef]
- De Boer, J.; Jottar, J.I. Boundary conditions and partition functions in higher spin AdS3/CFT2. J. High Energy Phys. 2016, 2016, 107. [Google Scholar] [CrossRef]
- Campoleoni, A.; Fredenhagen, S. On the higher spin charges of conical defects. Phys. Lett. B 2013, 726, 387–389. [Google Scholar] [CrossRef]
- Campoleoni, A.; Henneaux, M. Asymptotic symmetries of three-dimensional higher spin gravity: The metric approach. J. High Energy Phys. 2015, 2015, 143. [Google Scholar] [CrossRef]
- Castro, A.; Gopakumar, R.; Gutperle, M.; Raeymaekers, J. Conical defects in higher spin theories. J. High Energy Phys. 2012, 2012, 96. [Google Scholar] [CrossRef]
- Castro, A.; Llabrés, E. Unravelling Holographic Entanglement Entropy in Higher Spin Theories. J. High Energy Phys. 2015, 2015, 124. [Google Scholar] [CrossRef]
- De Boer, J.; Castro, A.; Hijano, E.; Jottar, J.I.; Kraus, P. Higher spin entanglement and N conformal blocks. J. High Energy Phys. 2015, 2015, 168. [Google Scholar] [CrossRef]
- Bañados, M.; Castro, A.; Faraggi, A.; Jottar, J.I. Extremal Higher Spin Black Holes. J. High Energy Phys. 2016, 2016, 77. [Google Scholar] [CrossRef]
- Gaberdiel, M.R.; Gopakumar, R. An AdS3 Dual for Minimal Model CFTs. Phys. Rev. D 2011, 83, 066007. [Google Scholar] [CrossRef]
- Gaberdiel, M.R.; Gopakumar, R. Minimal Model Holography. J. Phys. A 2013, 46, 214002. [Google Scholar] [CrossRef]
- Candu, C.; Gaberdiel, M.R.; Kelm, M.; Vollenweider, C. Even spin minimal model holography. J. High Energy Phys. 2013, 2013, 185. [Google Scholar] [CrossRef]
- Gutperle, M.; Kraus, P. Higher Spin Black Holes. J. High Energy Phys. 2011, 2011, 22. [Google Scholar] [CrossRef]
- Ammon, M.; Gutperle, M.; Kraus, P.; Perlmutter, E. Black holes in three dimensional higher spin gravity: A review. J. Phys. A 2013, 46, 214001. [Google Scholar] [CrossRef]
- Bunster, C.; Henneaux, M.; Perez, A.; Tempo, D.; Troncoso, R. Generalized Black Holes in Three-dimensional Spacetime. J. High Energy Phys. 2014, 2014, 31. [Google Scholar] [CrossRef]
- Ammon, M.; Castro, A.; Iqbal, N. Wilson Lines and Entanglement Entropy in Higher Spin Gravity. J. High Energy Phys. 2013, 2013, 110. [Google Scholar] [CrossRef]
- De Boer, J.; Jottar, J.I. Entanglement Entropy and Higher Spin Holography in AdS3. J. High Energy Phys. 2014, 2014, 89. [Google Scholar] [CrossRef]
- Brown, J.D.; Henneaux, M. Central charges in the canonical realization of asymptotic symmetries: An example from three-dimensional gravity. Commun. Math. Phys. 1986, 104, 207–226. [Google Scholar] [CrossRef]
- Riegler, M. Asymptotic symmetry algebras in non-anti-de-sitter higher spin gauge theories. arXiv, 2012; arXiv:hep-th/1210.6500. [Google Scholar]
- Afshar, H.; Gary, M.; Grumiller, D.; Rashkov, R.; Riegler, M. Non-AdS holography in 3-dimensional higher spin gravity—General recipe and example. J. High Energy Phys. 2012, 2012, 99. [Google Scholar] [CrossRef]
- Afshar, H.; Gary, M.; Grumiller, D.; Rashkov, R.; Riegler, M. Semi-classical unitarity in 3-dimensional higher spin gravity for non-principal embeddings. Class. Quantum Gravity 2013, 30, 104004. [Google Scholar] [CrossRef]
- Son, D. Toward an AdS/cold atoms correspondence: A Geometric realization of the Schrodinger symmetry. Phys. Rev. D 2008, 78, 046003. [Google Scholar] [CrossRef]
- Balasubramanian, K.; McGreevy, J. Gravity duals for non-relativistic CFTs. Phys. Rev. Lett. 2008, 101, 061601. [Google Scholar] [CrossRef] [PubMed]
- Adams, A.; Balasubramanian, K.; McGreevy, J. Hot Spacetimes for Cold Atoms. J. High Energy Phys. 2008, 2008, 59. [Google Scholar] [CrossRef]
- Breunhölder, V.; Gary, M.; Grumiller, D.; Prohazka, S. Null warped AdS in higher spin gravity. J. High Energy Phys. 2015, 2015, 21. [Google Scholar] [CrossRef]
- Lei, Y.; Ross, S.F. Connection versus metric description for non-AdS solutions in higher spin theories. Class. Quantum Gravity 2015, 32, 185005. [Google Scholar] [CrossRef]
- Kachru, S.; Liu, X.; Mulligan, M. Gravity Duals of Lifshitz-like Fixed Points. Phys. Rev. D 2008, 78, 106005. [Google Scholar] [CrossRef]
- Gutperle, M.; Hijano, E.; Samani, J. Lifshitz black holes in higher spin gravity. J. High Energy Phys. 2014, 2014, 20. [Google Scholar] [CrossRef]
- Gary, M.; Grumiller, D.; Prohazka, S.; Rey, S.J. Lifshitz Holography with Isotropic Scale Invariance. J. High Energy Phys. 2014, 2014, 1. [Google Scholar] [CrossRef] [Green Version]
- Afshar, H.; Bagchi, A.; Fareghbal, R.; Grumiller, D.; Rosseel, J. Spin-3 Gravity in Three-Dimensional Flat Space. Phys. Rev. Lett. 2013, 111, 121603. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, H.A.; Matulich, J.; Pino, M.; Troncoso, R. Asymptotically flat spacetimes in three-dimensional higher spin gravity. J. High Energy Phys. 2013, 2013, 16. [Google Scholar] [CrossRef]
- Grumiller, D.; Riegler, M.; Rosseel, J. Unitarity in three-dimensional flat space higher spin theories. J. High Energy Phys. 2014, 2014, 15. [Google Scholar] [CrossRef]
- Gary, M.; Grumiller, D.; Riegler, M.; Rosseel, J. Flat space (higher spin) gravity with chemical potentials. J. High Energy Phys. 2015, 2015, 152. [Google Scholar] [CrossRef]
- Krishnan, C.; Raju, A.; Roy, S.; Thakur, S. Higher Spin Cosmology. Phys. Rev. D 2014, 89, 045007. [Google Scholar] [CrossRef]
- Krishnan, C.; Roy, S. Higher Spin Resolution of a Toy Big Bang. Phys. Rev. D 2013, 88, 044049. [Google Scholar] [CrossRef]
- Basu, R. Higher spin de sitter quantum gravity. J. High Energy Phys. 2015, 2015, 151. [Google Scholar] [CrossRef]
- Achucarro, A.; Townsend, P. A Chern–Simons action for three-dimensional anti-de sitter supergravity theories. Phys. Lett. B 1986, 180, 89–92. [Google Scholar] [CrossRef]
- Witten, E. (2 + 1)-Dimensional Gravity as an Exactly Soluble System. Nucl. Phys. B 1988, 311, 46–48. [Google Scholar] [CrossRef]
- Riegler, M. How General Is Holography? Ph.D. Thesis, Technische Universität Wien, Vienna, Austria, 2016. [Google Scholar]
- Riegler, M.; Zwikel, C. Canonical Charges in Flatland. arXiv, 2017; arXiv:hep-th/1709.09871. [Google Scholar]
- Prohazka, S. Chern–Simons Holography: Boundary Conditions, Contractions and Double Extensions for a Journey Beyond Anti-de Sitter. Ph.D. Thesis, Technische Universität Wien, Vienna, Austria, 2017. [Google Scholar]
- Afshar, H.; Bagchi, A.; Detournay, S.; Grumiller, D.; Prohazka, S.; Riegler, M. Holographic Chern–Simons Theories. Lect. Notes Phys. 2015, 892, 311–329. [Google Scholar]
- Gary, M.; Grumiller, D.; Rashkov, R. Towards non-AdS holography in 3-dimensional higher spin gravity. J. High Energy Phys. 2012, 2012, 22. [Google Scholar] [CrossRef]
- Henneaux, M.; Teitelboim, C. Quantization of Gauge Systems; Princeton University Press: Princeton, NJ, USA, 1992. [Google Scholar]
- Blagojevic, M. Gravitation and Gauge Symmetries; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Regge, T.; Teitelboim, C. Role of Surface Integrals in the Hamiltonian Formulation of General Relativity. Ann. Phys. 1974, 88, 286–318. [Google Scholar] [CrossRef]
- Barnich, G.; Troessaert, C. BMS charge algebra. J. High Energy Phys. 2011, 2011, 105. [Google Scholar] [CrossRef]
- Gaberdiel, M.R.; Gopakumar, R. Triality in Minimal Model Holography. J. High Energy Phys. 2012, 2012, 127. [Google Scholar] [CrossRef]
- Polyakov, A.M. Gauge Transformations and Diffeomorphisms. Int. J. Mod. Phys. A 1990, 5, 833. [Google Scholar] [CrossRef]
- Bershadsky, M. Conformal field theories via Hamiltonian reduction. Commun. Math. Phys. 1991, 139, 71–82. [Google Scholar] [CrossRef]
- Afshar, H.; Creutzig, T.; Grumiller, D.; Hikida, Y.; Ronne, P.B. Unitary W-algebras and three-dimensional higher spin gravities with spin one symmetry. J. High Energy Phys. 2014, 2014, 63. [Google Scholar] [CrossRef]
- Feigin, B.L.; Semikhatov, A.M. W(2)(n) algebras. Nucl. Phys. B 2004, 698, 409–449. [Google Scholar] [CrossRef]
- Castro, A.; Hijano, E.; Lepage-Jutier, A. Unitarity Bounds in AdS3 Higher Spin Gravity. J. High Energy Phys. 2012, 2012, 1. [Google Scholar] [CrossRef]
- Gutperle, M.; Li, Y. Higher spin lifshitz theory and integrable systems. Phys. Rev. D 2015, 91, 046012. [Google Scholar] [CrossRef]
- Beccaria, M.; Gutperle, M.; Li, Y.; Macorini, G. Higher spin Lifshitz theories and the Korteweg-de Vries hierarchy. Phys. Rev. D 2015, 92, 085005. [Google Scholar] [CrossRef]
- Gutperle, M.; Li, Y. Higher Spin Chern–Simons Theory and the Super Boussinesq hierarchy. arXiv, 2017; arXiv:hep-th/1709.02345. [Google Scholar]
- Lei, Y.; Peng, C. Higher spin holography with Galilean symmetry in general dimensions. Class. Quantum Gravity 2016, 33, 135008. [Google Scholar] [CrossRef]
- Lei, Y. Singularities in Holographic Non-Relativistic Spacetimes. Ph.D. Thesis, Durham University, Durham, UK, 2016. [Google Scholar]
- Grumiller, D.; Riegler, M. Most general AdS3 boundary conditions. J. High Energy Phys. 2016, 2016, 23. [Google Scholar] [CrossRef]
- Krishnan, C.; Raju, A. Chiral Higher Spin Gravity. Phys. Rev. D 2017, 95, 126004. [Google Scholar] [CrossRef]
- Polchinski, J. S matrices from AdS space-time. arXiv, 1999; arXiv:hep-th/hep-th/9901076. [Google Scholar]
- Susskind, L. Holography in the flat space limit. AIP Conf. Proc. 1998, 493, 98–112. [Google Scholar]
- Giddings, S.B. Flat space scattering and bulk locality in the AdS/CFT correspondence. Phys. Rev. D 2000, 61, 106008. [Google Scholar] [CrossRef]
- Barnich, G.; Compere, G. Classical central extension for asymptotic symmetries at null infinity in three spacetime dimensions. Class. Quantum Gravity 2007, 24, F15–F23. [Google Scholar] [CrossRef]
- Strominger, A. On BMS Invariance of Gravitational Scattering. J. High Energy Phys. 2014, 2014, 152. [Google Scholar] [CrossRef] [Green Version]
- Kapec, D.; Lysov, V.; Pasterski, S.; Strominger, A. Higher-dimensional supertranslations and weinberg’s soft graviton theorem. Ann. Math. Sci. Appl. 2017, 2, 69–94. [Google Scholar] [CrossRef]
- Prohazka, S.; Salzer, J.; Schöller, F. Linking Past and Future Null Infinity in Three Dimensions. Phys. Rev. D 2017, 95, 086011. [Google Scholar] [CrossRef]
- Ashtekar, A.; Bicak, J.; Schmidt, B.G. Asymptotic structure of symmetry reduced general relativity. Phys. Rev. D 1997, 55, 669–686. [Google Scholar] [CrossRef]
- Bondi, H.; van der Burg, M.G.J.; Metzner, A.W.K. Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems. Proc. R. Soc. Lond. A 1962, 269, 21–52. [Google Scholar] [CrossRef]
- Sachs, R. Asymptotic symmetries in gravitational theory. Phys. Rev. 1962, 128, 2851–2864. [Google Scholar] [CrossRef]
- Barnich, G.; Donnay, L.; Matulich, J.; Troncoso, R. Asymptotic symmetries and dynamics of three-dimensional flat supergravity. J. High Energy Phys. 2014, 2014, 71. [Google Scholar] [CrossRef]
- Barnich, G.; Lambert, P.H.; Mao, P.J. Three-dimensional asymptotically flat Einstein–Maxwell theory. Class. Quantum Gravity 2015, 32, 245001. [Google Scholar] [CrossRef]
- Detournay, S.; Riegler, M. Enhanced Asymptotic Symmetry Algebra of 2 + 1 Dimensional Flat Space. Phys. Rev. D 2017, 95, 046008. [Google Scholar] [CrossRef]
- Setare, M.R.; Adami, H. Enhanced asymptotic BMS3 algebra of the flat spacetime solutions of generalized minimal massive gravity. arXiv, 2017; arXiv:hep-th/1703.00936. [Google Scholar]
- Basu, R.; Detournay, S.; Riegler, M. Spectral Flow in 3D Flat Spacetimes. arXiv, 2017; arXiv:hep-th/1706.07438. [Google Scholar]
- Fuentealba, O.; Matulich, J.; Troncoso, R. Asymptotic structure of = 2 supergravity in 3D: Extended super-BMS3 and nonlinear energy bounds. J. High Energy Phys. 2017, 2017, 30. [Google Scholar] [CrossRef]
- Afshar, H.; Detournay, S.; Grumiller, D.; Oblak, B. Near-Horizon Geometry and Warped Conformal Symmetry. J. High Energy Phys. 2016, 2016, 187. [Google Scholar] [CrossRef]
- Afshar, H.; Grumiller, D.; Merbis, W.; Perez, A.; Tempo, D.; Troncoso, R. Soft hairy horizons in three spacetime dimensions. arXiv, 2016; arXiv:hep-th/1611.09783. [Google Scholar]
- Grumiller, D.; Merbis, W.; Riegler, M. Most general flat space boundary conditions in three-dimensional Einstein gravity. Class. Quantum Gravity 2017, 34, 184001. [Google Scholar] [CrossRef]
- Bagchi, A.; Detournay, S.; Fareghbal, R.; Simón, J. Holography of 3D Flat Cosmological Horizons. Phys. Rev. Lett. 2013, 110, 141302. [Google Scholar] [CrossRef] [PubMed]
- Barnich, G. Entropy of three-dimensional asymptotically flat cosmological solutions. J. High Energy Phys. 2012, 2012, 95. [Google Scholar] [CrossRef]
- Barnich, G.; Gomberoff, A.; Gonzalez, H.A. The Flat limit of three dimensional asymptotically anti-de Sitter spacetimes. Phys. Rev. D 2012, 86, 024020. [Google Scholar] [CrossRef]
- Bagchi, A.; Fareghbal, R. BMS/GCA Redux: Towards Flatspace Holography from Non-Relativistic Symmetries. J. High Energy Phys. 2012, 2012, 92. [Google Scholar] [CrossRef]
- Bagchi, A.; Detournay, S.; Grumiller, D.; Simon, J. Cosmic evolution from phase transition of 3-dimensional flat space. Phys. Rev. Lett. 2013, 111, 181301. [Google Scholar] [CrossRef] [PubMed]
- Fareghbal, R.; Naseh, A. Flat-Space Energy-Momentum Tensor from BMS/GCA Correspondence. J. High Energy Phys. 2014, 2014, 5. [Google Scholar] [CrossRef]
- Krishnan, C.; Raju, A.; Roy, S. A Grassmann path from AdS3 to flat space. J. High Energy Phys. 2014, 2014, 36. [Google Scholar] [CrossRef]
- Bagchi, A.; Basu, R. 3D Flat Holography: Entropy and Logarithmic Corrections. J. High Energy Phys. 2014, 2014, 20. [Google Scholar] [CrossRef]
- Detournay, S.; Grumiller, D.; Schöller, F.; Simón, J. Variational principle and one-point functions in three-dimensional flat space Einstein gravity. Phys. Rev. D 2014, 89, 084061. [Google Scholar] [CrossRef]
- Barnich, G.; Oblak, B. Notes on the BMS group in three dimensions: I. Induced representations. J. High Energy Phys. 2014, 2014, 129. [Google Scholar] [CrossRef]
- Bagchi, A.; Basu, R.; Grumiller, D.; Riegler, M. Entanglement entropy in Galilean conformal field theories and flat holography. Phys. Rev. Lett. 2015, 114, 111602. [Google Scholar] [CrossRef] [PubMed]
- Fareghbal, R.; Naseh, A. Aspects of Flat/CCFT Correspondence. Class. Quantum Gravity 2015, 32, 135013. [Google Scholar] [CrossRef]
- Fareghbal, R.; Hosseini, S.M. Holography of 3D Asymptotically Flat Black Holes. Phys. Rev. D 2015, 91, 084025. [Google Scholar] [CrossRef]
- Barnich, G.; Gonzalez, H.A.; Maloney, A.; Oblak, B. One-loop partition function of three-dimensional flat gravity. J. High Energy Phys. 2015, 2015, 178. [Google Scholar] [CrossRef]
- Barnich, G.; Oblak, B. Notes on the BMS group in three dimensions: II. Coadjoint representation. J. High Energy Phys. 2015, 2015, 033. [Google Scholar] [CrossRef]
- Bagchi, A.; Grumiller, D.; Merbis, W. Stress tensor correlators in three-dimensional gravity. Phys. Rev. D 2016, 93, 061502. [Google Scholar] [CrossRef]
- Asadi, M.; Baghchesaraei, O.; Fareghbal, R. Stress Tensor Correlators of CCFT2 using Flat-Space Holography. arXiv, 2016; arXiv:hep-th/1701.00063. [Google Scholar]
- Barnich, G.; Gonzalez, H.A.; Salgado-Rebolledo, P. Geometric actions for three-dimensional gravity. arXiv, 2017; arXiv:hep-th/1707.08887. [Google Scholar]
- Fareghbal, R.; Karimi, P. Logarithmic Correction to BMSFT Entanglement Entropy. arXiv, 2017; arXiv:hep-th/1709.01804. [Google Scholar]
- Coleman, S.R.; Mandula, J. All Possible Symmetries of the S Matrix. Phys. Rev. 1967, 159, 1251–1256. [Google Scholar] [CrossRef]
- Pelc, O.; Horwitz, L.P. Generalization of the Coleman-Mandula theorem to higher dimension. J. Math. Phys. 1997, 38, 139–172. [Google Scholar] [CrossRef]
- Aragone, C.; Deser, S. Consistency Problems of Hypergravity. Phys. Lett. B 1979, 86, 161–163. [Google Scholar] [CrossRef]
- Weinberg, S.; Witten, E. Limits on Massless Particles. Phys. Lett. B 1980, 96, 59–62. [Google Scholar] [CrossRef]
- Bekaert, X.; Boulanger, N.; Sundell, P. How higher spin gravity surpasses the spin two barrier: No-go theorems versus yes-go examples. Rev. Mod. Phys. 2012, 84, 987–1009. [Google Scholar] [CrossRef]
- Sleight, C.; Taronna, M. Higher Spin Algebras, Holography and Flat Space. J. High Energy Phys. 2017, 2017, 95. [Google Scholar] [CrossRef]
- Ponomarev, D.; Tseytlin, A.A. On quantum corrections in higher spin theory in flat space. J. High Energy Phys. 2016, 2016, 184. [Google Scholar] [CrossRef]
- Ponomarev, D.; Skvortsov, E.D. Light-Front Higher Spin Theories in Flat Space. J. Phys. A 2017, 50, 095401. [Google Scholar] [CrossRef]
- Campoleoni, A.; Francia, D.; Heissenberg, C. On higher spin supertranslations and superrotations. J. High Energy Phys. 2017, 2017, 120. [Google Scholar] [CrossRef]
- Inonu, E.; Wigner, E.P. On the Contraction of groups and their represenations. Proc. Natl. Acad. Sci. USA 1953, 39, 510–524. [Google Scholar] [CrossRef] [PubMed]
- Bagchi, A.; Gopakumar, R. Galilean Conformal Algebras and AdS/CFT. J. High Energy Phys. 2009, 2009, 37. [Google Scholar] [CrossRef]
- Bagchi, A.; Mandal, I. On representations and correlation functions of galilean conformal algebras. Phys. Lett. B 2009, 675, 393–397. [Google Scholar] [CrossRef]
- Bagchi, A.; Gopakumar, R.; Mandal, I.; Miwa, A. GCA in 2d. J. High Energy Phys. 2010, 2010, 4. [Google Scholar] [CrossRef]
- Bagchi, A. Correspondence between asymptotically flat spacetimes and nonrelativistic conformal field theories. Phys. Rev. Lett. 2010, 105, 171601. [Google Scholar] [CrossRef] [PubMed]
- Campoleoni, A.; Gonzalez, H.A.; Oblak, B.; Riegler, M. BMS modules in three dimensions. Int. J. Mod. Phys. A 2016, 31, 1650068. [Google Scholar] [CrossRef]
- Riegler, M. Flat space limit of higher spin Cardy formula. Phys. Rev. D 2015, 91, 024044. [Google Scholar] [CrossRef]
- Zamolodchikov, A. Infinite additional symmetries in two-dimensional conformal quantum field theory. Theor. Math. Phys. 1985, 65, 1205–1213. [Google Scholar] [CrossRef]
- Cornalba, L.; Costa, M.S. A New cosmological scenario in string theory. Phys. Rev. D 2002, 66, 066001. [Google Scholar] [CrossRef]
- Cornalba, L.; Costa, M.S. Time dependent orbifolds and string cosmology. Fortschr. Phys. 2004, 52, 145–199. [Google Scholar] [CrossRef]
- Matulich, J.; Perez, A.; Tempo, D.; Troncoso, R. Higher spin extension of cosmological spacetimes in 3D: Asymptotically flat behaviour with chemical potentials and thermodynamics. J. High Energy Phys. 2015, 2015, 25. [Google Scholar] [CrossRef] [Green Version]
- Basu, R.; Riegler, M. Wilson lines and holographic entanglement entropy in galilean conformal field theories. Phys. Rev. D 2016, 93, 045003. [Google Scholar] [CrossRef]
- David, J.R.; Ferlaino, M.; Kumar, S.P. Thermodynamics of higher spin black holes in 3D. J. High Energy Phys. 2012, 2012, 135. [Google Scholar] [CrossRef]
- Bousso, R.; Porrati, M. Soft Hair as a Soft Wig. Class. Quantum Gravity 2017, 34, 204001. [Google Scholar] [CrossRef]
- Bousso, R.; Porrati, M. Observable Supertranslations. Phys. Rev. D 2017, 96, 086016. [Google Scholar] [CrossRef]
- Hawking, S.W.; Perry, M.J.; Strominger, A. Soft Hair on Black Holes. Phys. Rev. Lett. 2016, 116, 231301. [Google Scholar] [CrossRef] [PubMed]
- Hawking, S.W.; Perry, M.J.; Strominger, A. Superrotation charge and supertranslation hair on black holes. J. High Energy Phys. 2017, 2017, 161. [Google Scholar] [CrossRef]
- Afshar, H.; Detournay, S.; Grumiller, D.; Merbis, W.; Perez, A.; Tempo, D.; Troncoso, R. Soft Heisenberg hair on black holes in three dimensions. Phys. Rev. D 2016, 93, 101503. [Google Scholar] [CrossRef]
- Afshar, H.; Grumiller, D.; Sheikh-Jabbari, M.M. Black hole horizon fluffs: Near horizon soft hairs as microstates of three dimensional black holes. Phys. Rev. D 2017, 96, 084032. [Google Scholar] [CrossRef]
- Grumiller, D.; Perez, A.; Prohazka, S.; Tempo, D.; Troncoso, R. Higher Spin Black Holes with Soft Hair. J. High Energy Phys. 2016, 2016, 119. [Google Scholar] [CrossRef]
- Grumiller, D.; Perez, A.; Tempo, D.; Troncoso, R. Log corrections to entropy of three dimensional black holes with soft hair. J. High Energy Phys. 2017, 2017, 107. [Google Scholar] [CrossRef]
- Setare, M.R.; Adami, H. The Heisenberg algebra as near horizon symmetry of the black flower solutions of Chern–Simons-like theories of gravity. Nucl. Phys. B 2017, 914, 220–233. [Google Scholar] [CrossRef]
- Ammon, M.; Grumiller, D.; Prohazka, S.; Riegler, M.; Wutte, R. Higher Spin Flat Space Cosmologies with Soft Hair. J. High Energy Phys. 2017, 2017, 031. [Google Scholar] [CrossRef]
- Gaberdiel, M.R.; Gopakumar, R.; Saha, A. Quantum W-symmetry in AdS3. J. High Energy Phys. 2011, 2011, 4. [Google Scholar] [CrossRef]
- Gaberdiel, M.R.; Gopakumar, R.; Hartman, T.; Raju, S. Partition functions of holographic minimal models. J. High Energy Phys. 2011, 2011, 77. [Google Scholar] [CrossRef]
- Creutzig, T.; Hikida, Y.; Ronne, P.B. Higher spin AdS3 supergravity and its dual CFT. J. High Energy Phys. 2012, 2012, 109. [Google Scholar] [CrossRef]
- Giombi, S.; Klebanov, I.R. One Loop Tests of Higher Spin AdS/CFT. J. High Energy Phys. 2013, 2013, 68. [Google Scholar] [CrossRef]
- Giombi, S.; Klebanov, I.R.; Safdi, B.R. Higher Spin AdSd+1/CFTd at One Loop. Phys. Rev. D 2014, 89, 084004. [Google Scholar] [CrossRef]
- Giombi, S.; Klebanov, I.R.; Tseytlin, A.A. Partition functions and casimir energies in higher spin AdSd+1/CFTd. Phys. Rev. D 2014, 90, 024048. [Google Scholar] [CrossRef]
- Beccaria, M.; Tseytlin, A.A. Higher spins in AdS5 at one loop: vacuum energy, boundary conformal anomalies and AdS/CFT. J. High Energy Phys. 2014, 2014, 114. [Google Scholar] [CrossRef]
- Beccaria, M.; Tseytlin, A.A. On higher spin partition functions. J. Phys. A 2015, 48, 275401. [Google Scholar] [CrossRef]
- Campoleoni, A.; Gonzalez, H.A.; Oblak, B.; Riegler, M. Rotating Higher Spin Partition Functions and Extended BMS Symmetries. J. High Energy Phys. 2016, 2016, 34. [Google Scholar] [CrossRef]
- Krishnan, C.; Roy, S. Desingularization of the Milne Universe. Phys. Lett. B 2014, 734, 92–95. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, H.A.; Pino, M. Boundary dynamics of asymptotically flat 3D gravity coupled to higher spin fields. J. High Energy Phys. 2014, 2014, 127. [Google Scholar] [CrossRef]
- Kiran, K.S.; Krishnan, C.; Saurabh, A.; Simón, J. Strings vs. Spins on the Null Orbifold. J. High Energy Phys. 2014, 2014, 2. [Google Scholar] [CrossRef]
- Horowitz, G.T.; Steif, A.R. Singular string solutions with nonsingular initial data. Phys. Lett. B 1991, 258, 91–96. [Google Scholar] [CrossRef]
- Figueroa-O’Farrill, J.M.; Simon, J. Generalized supersymmetric fluxbranes. J. High Energy Phys. 2001, 2001, 11. [Google Scholar] [CrossRef]
- Liu, H.; Moore, G.W.; Seiberg, N. Strings in time dependent orbifolds. J. High Energy Phys. 2002, 2002, 31. [Google Scholar] [CrossRef]
- Simon, J. The Geometry of null rotation identifications. J. High Energy Phys. 2002, 2002, 1. [Google Scholar] [CrossRef]
- Barnich, G.; Gomberoff, A.; González, H.A. Three-dimensional Bondi-Metzner-Sachs invariant two-dimensional field theories as the flat limit of Liouville theory. Phys. Rev. D 2013, 87, 124032. [Google Scholar]
- Taylor, M. Lifshitz holography. Class. Quantum Gravity 2016, 33, 033001. [Google Scholar] [CrossRef]
- Bacry, H.; Levy-Leblond, J. Possible kinematics. J. Math. Phys. 1968, 9, 1605–1614. [Google Scholar] [CrossRef]
- Saletan, E.J. Contraction of Lie Groups. J. Math. Phys. 1961, 2, 1–21. [Google Scholar] [CrossRef]
- Bergshoeff, E.; Grumiller, D.; Prohazka, S.; Rosseel, J. Three-dimensional Spin-3 Theories Based on General Kinematical Algebras. J. High Energy Phys. 2017, 2017, 114. [Google Scholar] [CrossRef]
- Duval, C.; Gibbons, G.W.; Horvathy, P.A. Conformal Carroll groups and BMS symmetry. Class. Quantum Gravity 2014, 31, 092001. [Google Scholar] [CrossRef]
- Hartong, J. Gauging the Carroll Algebra and Ultra-Relativistic Gravity. J. High Energy Phys. 2015, 2015, 69. [Google Scholar] [CrossRef]
- Medina, A.; Revoy, P. Algèbres de Lie et produit scalaire invariant. Ann. Sci. l’École Norm. Supér. 1985, 18, 553–561. [Google Scholar] [CrossRef]
- Figueroa-O’Farrill, J.M.; Stanciu, S. On the structure of symmetric selfdual Lie algebras. J. Math. Phys. 1996, 37, 4121–4134. [Google Scholar] [CrossRef]
- Papageorgiou, G.; Schroers, B.J. A Chern–Simons approach to Galilean quantum gravity in 2 + 1 dimensions. J. High Energy Phys. 2009, 2009, 9. [Google Scholar] [CrossRef]
- Levy-Léblond, J.M. Galilei group and galilean invariance. In Group Theory and Its Applications; Loebl, E.M., Ed.; Academic Press: Cambridge, MA, USA, 1971; pp. 221–299. [Google Scholar]
- Rasmussen, J.; Raymond, C. Galilean contractions of W-algebras. Nucl. Phys. B 2017, 922, 435–479. [Google Scholar] [CrossRef]
- Witten, E. Quantum Field Theory and the Jones Polynomial. Commun. Math. Phys. 1989, 121, 351–399. [Google Scholar] [CrossRef]
- Elitzur, S.; Moore, G.W.; Schwimmer, A.; Seiberg, N. Remarks on the Canonical Quantization of the Chern–Simons-Witten Theory. Nucl. Phys. B 1989, 326, 108–134. [Google Scholar] [CrossRef]
- Mohammedi, N. On bosonic and supersymmetric current algebras for non-semisimple groups. Phys. Lett. B 1994, 325, 371–376. [Google Scholar] [CrossRef]
- Figueroa-O’Farrill, J.M.; Stanciu, S. Nonsemisimple Sugawara constructions. Phys. Lett. B 1994, 327, 40–46. [Google Scholar] [CrossRef]
- Benamor, H.; Benayadi, S. Double extension of quadratic lie superalgebras. Commun. Algebra 1999, 27, 67–88. [Google Scholar] [CrossRef]
- Bajo, I.; Benayadi, S.; Bordemann, M. Generalized double extension and descriptions of qadratic Lie superalgebras. arXiv, 2007; arXiv:math-ph/0712.0228. [Google Scholar]
- Bergshoeff, E.A.; Rosseel, J. Three-dimensional extended bargmann supergravity. Phys. Rev. Lett. 2016, 116, 251601. [Google Scholar] [CrossRef] [PubMed]
- Hartong, J.; Lei, Y.; Obers, N.A. Nonrelativistic Chern–Simons theories and three-dimensional Hořava-Lifshitz gravity. Phys. Rev. D 2016, 94, 065027. [Google Scholar] [CrossRef]
1. | |
2. | |
3. | We raise and lower indices with and . |
4. | For a nice and explicit calculation, see Appendix A in [51]. |
5. | To be more precise: the spectrum of the higher spin gravity theory depends on the specific embedding of . A very popular choice in the literature on AdS higher spin holography is the principal embedding of . This is due to the fact that all generators in that particular embedding have a conformal weight greater or equal to two and thus can be interpreted as describing fields with spin . |
6. | Or the metric in a second order formulation. |
7. | |
8. | This usually boils down to choosing an appropriate embedding of and then fixing the Chern–Simons connections A and in such a way that they correctly reproduce the desired gravitational background. |
9. | In [87], it has been shown that any embedding of that contains a singlet contains negative norm states for . |
10. | The boundary conditions in this work can be seen as the spin-3 extension of the boundary conditions found in [93]. |
11. | |
12. | |
13. | |
14. | To be more precise, it is the principal embedding of . |
15. | The commutation relations are identical to the ones in (42) after restricting the mode numbers as already mentioned and in addition dropping all non-linear terms. |
16. | The spin-3 field can be determined in analogy by using the cubic Casimir of the subalgebra. |
17. | That means that all non-linear terms are normal ordered with respect to some highest-weight representation and the central terms have corrections that are necessary to satisfy the Jacobi identities when the non-linear terms are normal ordered. |
18. | Alternatively, one can also use a closed Wilson loop wrapped around the horizon [153] in order to determine the thermal entropy. |
19. | |
20. | Please note that instead of the retarded time coordinate u it is more natural to use the advanced time coordinate v. |
21. | |
22. | It should be noted that there is still the possibility that a possible spin-3 generalization of the Ricci scalar is singular. However, there is at the moment no full geometric interpretation of higher spin symmetries that would be necessary in order to check this. |
23. | See also [131] for a more group theoretic approach to the problem. |
24. | The indices take now the values . |
25. | We will use the term İnönü–Wigner contractions here to denote contractions of the form originally defined in [142], sometimes called simple İnönü–Wigner contractions. In contrast to some generalizations like generalized İnönü–Wigner contraction, they are linear in the contraction parameter. |
26. | These Lie algebras are sometimes called symmetric self-dual or quadratic. |
27. | Semisimple Lie algebras are a natural starting point for these kinds of considerations since no (nontrivial) contraction can lead to a semisimple Lie algebra. |
28. | We ignore the traceless contractions in this review. |
29. | See also Section 9.2 in [75]. |
Contraction | ||
---|---|---|
Space-time | ||
Speed-space | ||
Speed-time | ||
General |
Contraction | # | i | |
---|---|---|---|
Space-time | 1 | ||
2 | |||
Speed-space | 3 | ||
4 | |||
Speed-time | 5 | ||
6 | |||
General | 7 | ||
8 | |||
9 | |||
10 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prohazka, S.; Riegler, M. Higher Spins without (Anti-)de Sitter. Universe 2018, 4, 20. https://doi.org/10.3390/universe4010020
Prohazka S, Riegler M. Higher Spins without (Anti-)de Sitter. Universe. 2018; 4(1):20. https://doi.org/10.3390/universe4010020
Chicago/Turabian StyleProhazka, Stefan, and Max Riegler. 2018. "Higher Spins without (Anti-)de Sitter" Universe 4, no. 1: 20. https://doi.org/10.3390/universe4010020
APA StyleProhazka, S., & Riegler, M. (2018). Higher Spins without (Anti-)de Sitter. Universe, 4(1), 20. https://doi.org/10.3390/universe4010020