Scalar-Tensor Black Holes Embedded in an Expanding Universe
Abstract
:1. Introduction
- dark matter,
- dark energy,
- inflation.
2. Scalar-Tensor Gravity
2.1. Conformal Frame
3. Schwarzschild–Anti-De Sitter Solution
4. No-Hair Argument
5. Brans–Dicke Theory
5.1. Brans–Dicke Theory with the Non-Vanishing Cosmological Constant
5.2. Brans–Dicke Theory with the Scalar Field Potential
5.2.1. Cosmology via the Scalar Field Potential
5.2.2. Wormhole Solutions
6. Horndeski Theories
6.1. Shift-Symmetric Subclass
6.2. Scalar-Tensor Models with Gauss–Bonnet Term
6.3. Quartic Horndeski Square Root Lagrangian
6.4. Cubic Galileon
7. Theories with Auxiliary Fields
8. String Theory Framework
9. Conclusions
- the model, describing the de Sitter expansion of the universe, naturally contains the asymptotically de Sitter solution;
- the local phenomenology may be isolated from the cosmological expansion by means of the Vainshtein screening or the parameter fine tuning, which results in a flat asymptotic for the local solution.
- There are no wormhole solutions for the BD+ framework.
- Scalar-tensor models with the Gauss–Bonnet term should be explored in more detail to clarify the concordance between the local and the cosmological solution.
- Gauss–Bonnet–Horndeski theory describes the late-time cosmology and inflation, but no analytic black hole solutions embedded in an expanding Universe are known. Such a solution could give a major insight into the model properties.
- Quartic Horndeski square root Lagrangian is explored for black holes; however, we are lacking cosmological research.
- Horndeski models require additional research of black hole thermodynamics.
- It is not clear if most of the scalar-tensor black hole configurations actually take place during the matter collapse.
- The no-hair argument should be considered for the theories with the auxiliary fields.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Will, C.M. The Confrontation between General Relativity and Experiment. Living Rev. Relativ. 2014, 17, 4. [Google Scholar] [CrossRef] [PubMed]
- Hinshaw, G.; Larson, D.; Komatsu, E.; Spergel, D.N.; Bennett, C.; Dunkley, J.; Nolta, M.R.; Halpern, M.; Hill, R.S.; Odegard, N.; et al. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results. Astrophys. J. Suppl. 2013, 208, 19. [Google Scholar] [CrossRef]
- Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. A 2016, 594, A13. [Google Scholar]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Phys. Rev. Lett. 2016, 116, 241103. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Phys. Rev. Lett. 2017, 118, 221101. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Tests of general relativity with GW150914. Phys. Rev. Lett. 2016, 116, 221101. [Google Scholar] [CrossRef] [PubMed]
- Moffat, J.W. LIGO GW150914 and GW151226 gravitational wave detection and generalized gravitation theory (MOG). Phys. Lett. B 2016, 763, 427–433. [Google Scholar] [CrossRef]
- Cayuso, J.; Ortiz, N.; Lehner, L. Fixing extensions to General Relativity in the non-linear regime. Phys. Rev. D 2017, 96, 084043. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Phys. Rev. Lett. 2017, 119, 141101. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [PubMed]
- Fermi GBM; LIGO Scientific Collaboration; Virgo Collaboration; INTEGRAL, IceCube Collaboration; AstroSat Cadmium Zinc Telluride Imager Team; IPN Collaboration; The Insight-Hxmt Collaboration; ANTARES Collaboration; The Swift Collaboration; AGILE Team; et al. Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J. Lett. 2017, 848, L12. [Google Scholar]
- Fish, V.; Akiyama, K.; Bouman, K.; Chael, A.; Johnson, M.; Doeleman, S.; Blackburn, L.; Wardle, J.; Freeman, W. Observing—and Imaging—Active Galactic Nuclei with the Event Horizon Telescope. Galaxies 2016, 4, 54. [Google Scholar] [CrossRef]
- Ortiz-León, G.N.; Johnson, M.D.; Doeleman, S.S.; Blackburn, L.; Fish, V.L.; Loinard, L.; Reid, M.J.; Castillo, E.; Chael, A.A.; Hernández-Gómez, A.; et al. The Intrinsic Shape of Sagittarius A* at 3.5-mm Wavelength. Astrophys. J. 2016, 824, 10. [Google Scholar] [CrossRef]
- Berti, E.; Barausse, E.; Cardoso, V.; Gualtieri, L.; Pani, P.; Sperhake, U.; Stein, L.C.; Wex, N.; Yagi, K.; Baker, T.; et al. Testing General Relativity with Present and Future Astrophysical Observations. Class. Quantum Gravity 2015, 32, 243001. [Google Scholar] [CrossRef]
- Capozziello, S.; De Laurentis, M. Extended Theories of Gravity. Phys. Rep. 2011, 509, 167–321. [Google Scholar] [CrossRef]
- Bertotti, B.; Iess, L.; Tortora, P. A test of general relativity using radio links with the Cassini spacecraft. Nature 2003, 425, 374–376. [Google Scholar] [CrossRef] [PubMed]
- Clowe, D.; Bradac, M.; Gonzalez, A.H.; Markevitch, M.; Randall, S.W.; Jones, C.; Zaritsky, D. A direct empirical proof of the existence of dark matter. Astrophys. J. Lett. 2006, 648, L109. [Google Scholar] [CrossRef]
- Boran, S.; Desai, S.; Kahya, E.; Woodard, R. GW170817 Falsifies Dark Matter Emulators. arXiv, 2017. [Google Scholar]
- Blumenthal, G.R.; Faber, S.M.; Primack, J.R.; Rees, M.J. Formation of Galaxies and Large Scale Structure with Cold Dark Matter. Nature 1984, 311, 517–525. [Google Scholar] [CrossRef]
- Davis, M.; Efstathiou, G.; Frenk, C.S.; White, S.D.M. The Evolution of Large Scale Structure in a Universe Dominated by Cold Dark Matter. Astrophys. J. 1985, 292, 371–394. [Google Scholar] [CrossRef]
- Capozziello, S.; Cardone, V.F.; Carloni, S.; Troisi, A. Can higher order curvature theories explain rotation curves of galaxies? Phys. Lett. A 2004, 326, 292–296. [Google Scholar] [CrossRef]
- Capozziello, S.; Cardone, V.F.; Troisi, A. Dark energy and dark matter as curvature effects. J. Cosmol. Astropart. Phys. 2006, 2006, 1. [Google Scholar] [CrossRef]
- Capozziello, S.; Cardone, V.F.; Troisi, A. Low surface brightness galaxies rotation curves in the low energy limit of Rn gravity: no need for dark matter? Mon. Not. R. Astron. Soc. 2007, 375, 1423–1440. [Google Scholar] [CrossRef]
- Zel’dovich, Y.B.; Krasinski, A.; Zeldovich, Y.B. The Cosmological constant and the theory of elementary particles. Sov. Phys. Usp. 1968, 11, 381–393. [Google Scholar] [CrossRef]
- Weinberg, S. The Cosmological Constant Problem. Rev. Mod. Phys. 1989, 61, 1–23. [Google Scholar] [CrossRef]
- Linde, A.D. Inflationary Cosmology; Springer: Berlin, Germany, 2008. [Google Scholar]
- Senatore, L. Lectures on Inflation. In Proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI 2015), Boulder, CO, USA, 1–26 June 2015; pp. 447–543. [Google Scholar]
- Starobinsky, A.A. A New Type of Isotropic Cosmological Models Without Singularity. Phys. Lett. B 1980, 91, 99–102. [Google Scholar] [CrossRef]
- Linde, A.D. Chaotic Inflation. Phys. Lett. B 1983, 129, 177–181. [Google Scholar] [CrossRef]
- De Felice, A.; Tsujikawa, S. f(R) theories. Living Rev. Relativ. 2010, 13, 3. [Google Scholar] [CrossRef] [PubMed]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution. Phys. Rep. 2017, 692, 1–104. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rept. 2011, 505, 59–144. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Meth. Mod. Phys. 2007, 4, 115. [Google Scholar] [CrossRef]
- Charmousis, C.; Copeland, E.J.; Padilla, A.; Saffin, P.M. General second order scalar-tensor theory, self tuning, and the Fab Four. Phys. Rev. Lett. 2012, 108, 051101. [Google Scholar] [CrossRef] [PubMed]
- Momeni, D.; Houndjo, M.J.S.; Güdekli, E.; Rodrigues, M.E.; Alvarenga, F.G.; Myrzakulov, R. Spherically symmetric solutions of light Galileon. Int. J. Theor. Phys. 2016, 55, 1211–1221. [Google Scholar] [CrossRef]
- Brans, C.; Dicke, R.H. Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 1961, 124, 925–935. [Google Scholar] [CrossRef]
- De la Cruz-Dombriz, A.; Saez-Gomez, D. Black holes, cosmological solutions, future singularities, and their thermodynamical properties in modified gravity theories. Entropy 2012, 14, 1717–1770. [Google Scholar] [CrossRef] [Green Version]
- Bergmann, P.G. Comments on the scalar tensor theory. Int. J. Theor. Phys. 1968, 1, 25–36. [Google Scholar] [CrossRef]
- Wagoner, R.V. Scalar tensor theory and gravitational waves. Phys. Rev. D 1970, 1, 3209–3216. [Google Scholar] [CrossRef]
- Nordtvedt, K., Jr. PostNewtonian metric for a general class of scalar tensor gravitational theories and observational consequences. Astrophys. J. 1970, 161, 1059–1067. [Google Scholar] [CrossRef]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified Gravity and Cosmology. Phys. Rep. 2012, 513, 1–189. [Google Scholar] [CrossRef]
- Hohmann, M.; Jarv, L.; Kuusk, P.; Randla, E. Post-Newtonian parameters γ and β of scalar-tensor gravity with a general potential. Phys. Rev. D 2013, 88, 084054. [Google Scholar] [CrossRef]
- Deng, X.M.; Xie, Y. Solar System tests of a scalar-tensor gravity with a general potential: Insensitivity of light deflection and Cassini tracking. Phys. Rev. D 2016, 93, 044013. [Google Scholar] [CrossRef]
- Tretyakova, D.; Shatskiy, A.A.; Novikov, I.; Alexeyev, S. Non-singular Brans–Dicke cosmology with cosmological constant. Phys. Rev. D 2012, 85, 124059. [Google Scholar] [CrossRef]
- Damour, T.; Esposito-Farese, G. Nonperturbative strong field effects in tensor-scalar theories of gravitation. Phys. Rev. Lett. 1993, 70, 2220–2223. [Google Scholar] [CrossRef] [PubMed]
- Damour, T.; Esposito-Farese, G. Tensor-scalar gravity and binary pulsar experiments. Phys. Rev. D 1996, 54, 1474–1491. [Google Scholar] [CrossRef] [Green Version]
- Shibata, M.; Nakao, K.i.; Nakamura, T. Scalar type gravitational wave emission from gravitational collapse in Brans–Dicke theory: Detectability by a laser interferometer. Phys. Rev. D 1994, 50, 7304–7317. [Google Scholar] [CrossRef]
- Harada, T.; Chiba, T.; Nakao, K.i.; Nakamura, T. Scalar gravitational wave from Oppenheimer-Snyder collapse in scalar-tensor theories of gravity. Phys. Rev. D 1997, 55, 2024–2037. [Google Scholar] [CrossRef]
- Novak, J. Spherical neutron star collapse in tensor - scalar theory of gravity. Phys. Rev. D 1998, 57, 4789–4801. [Google Scholar] [CrossRef]
- Faraoni, V.; Lapierre-Léonard, M.; Prain, A. Turnaround radius in an accelerated universe with quasi-local mass. J. Cosmol. Astropart. Phys. 2015, 2015, 013. [Google Scholar] [CrossRef]
- Faraoni, V. Turnaround radius in modified gravity. Phys. Dark Universe 2016, 11, 11–15. [Google Scholar] [CrossRef]
- Pavlidou, V.; Tomaras, T.N. Where the world stands still: turnaround as a strong test of ΛCDM cosmology. J. Cosmol. Astropart. Phys. 2014, 2014, 020. [Google Scholar] [CrossRef]
- Pavlidou, V.; Tetradis, N.; Tomaras, T.N. Constraining Dark Energy through the Stability of Cosmic Structures. J. Cosmol. Astropart. Phys. 2014, 1405, 017. [Google Scholar] [CrossRef]
- Tanoglidis, D.; Pavlidou, V.; Tomaras, T. Testing LambdaCDM cosmology at turnaround: Where to look for violations of the bound? J. Cosmol. Astropart. Phys. 2015, 2015, 060. [Google Scholar] [CrossRef]
- Damour, T.; Nordtvedt, K. General relativity as a cosmological attractor of tensor scalar theories. Phys. Rev. Lett. 1993, 70, 2217–2219. [Google Scholar] [CrossRef] [PubMed]
- Elizalde, E.; Nojiri, S.; Odintsov, S.D. Late-time cosmology in (phantom) scalar-tensor theory: Dark energy and the cosmic speed-up. Phys. Rev. D 2004, 70, 043539. [Google Scholar] [CrossRef]
- Ratra, B.; Peebles, P.J.E. Cosmological Consequences of a Rolling Homogeneous Scalar Field. Phys. Rev. D 1988, 37, 3406. [Google Scholar] [CrossRef]
- Demianski, M.; Piedipalumbo, E.; Rubano, C.; Scudellaro, P. Cosmological models in scalar tensor theories of gravity and observations: A class of general solutions. Astron. Astrophys. 2008, 481, 279–294. [Google Scholar] [CrossRef]
- Nagata, R. Constraints on Scalar-Tensor Cosmology From Wmap Data. Int. J. Mod. Phys. 2011, 1, 183–188. [Google Scholar] [CrossRef]
- Alonso, D.; Bellini, E.; Ferreira, P.G.; Zumalacárregui, M. Observational future of cosmological scalar-tensor theories. Phys. Rev. D 2017, 95, 063502. [Google Scholar] [CrossRef]
- Babichev, E.; Deffayet, C. An introduction to the Vainshtein mechanism. Class. Quantum Gravity 2013, 30, 184001. [Google Scholar] [CrossRef]
- Bellini, E.; Sawicki, I. Maximal freedom at minimum cost: linear large-scale structure in general modifications of gravity. J. Cosmol. Astropart. Phys. 2014, 2014, 050. [Google Scholar] [CrossRef]
- Magnano, G.; Sokolowski, L.M. On physical equivalence between nonlinear gravity theories and a general relativistic selfgravitating scalar field. Phys. Rev. D 1994, 50, 5039–5059. [Google Scholar] [CrossRef]
- Faraoni, V.; Gunzig, E. Einstein frame or Jordan frame? Int. J. Theor. Phys. 1999, 38, 217–225. [Google Scholar] [CrossRef]
- Postma, M.; Volponi, M. Equivalence of the Einstein and Jordan frames. Phys. Rev. D 2014, 90, 103516. [Google Scholar] [CrossRef]
- Catena, R.; Pietroni, M.; Scarabello, L. Einstein and Jordan reconciled: a frame-invariant approach to scalar-tensor cosmology. Phys. Rev. D 2007, 76, 084039. [Google Scholar] [CrossRef]
- Faraoni, V.; Nadeau, S. The (pseudo)issue of the conformal frame revisited. Phys. Rev. D 2007, 75, 023501. [Google Scholar] [CrossRef]
- Salgado, M. The Cauchy problem of scalar tensor theories of gravity. Class. Quantum Gravity 2006, 23, 4719–4742. [Google Scholar] [CrossRef]
- Bahamonde, S.; Odintsov, S.D.; Oikonomou, V.K.; Wright, M. Correspondence of F(R) Gravity Singularities in Jordan and Einstein Frames. Annals Phys. 2016, 373, 96–114. [Google Scholar] [CrossRef]
- Bahamonde, S.; Odintsov, S.D.; Oikonomou, V.K.; Tretyakov, P.V. Deceleration versus acceleration universe in different frames of F(R) gravity. Phys. Lett. B 2017, 766, 225–230. [Google Scholar] [CrossRef]
- Calmet, X.; Yang, T.C. Frame Transformations of Gravitational Theories. Int. J. Mod. Phys. A 2013, 28, 1350042. [Google Scholar] [CrossRef]
- Pandey, S.; Banerjee, N. Equivalence of Jordan and Einstein frames at the quantum level. Eur. Phys. J. Plus 2017, 132, 107. [Google Scholar] [CrossRef]
- Kamenshchik, A.Yu.; Steinwachs, C.F. Question of quantum equivalence between Jordan frame and Einstein frame. Phys. Rev. D 2015, 91, 084033. [Google Scholar] [CrossRef]
- Kottler, F. The physical basis of Einstein’s theory of gravitation. Ann. Phys. 1918, 56, 401. [Google Scholar] [CrossRef]
- Ashtekar, A.; Magnon, A. Asymptotically anti-de Sitter space-times. Class. Quantum Gravity 1984, 1, L39–L44. [Google Scholar] [CrossRef]
- Kodama, H.; Ishibashi, A. A Master equation for gravitational perturbations of maximally symmetric black holes in higher dimensions. Prog. Theor. Phys. 2003, 110, 701–722. [Google Scholar] [CrossRef]
- Hawking, S.W.; Page, D.N. Thermodynamics of Black Holes in anti-De Sitter Space. Commun. Math. Phys. 1983, 87, 577. [Google Scholar] [CrossRef]
- Sotiriou, T.P. Black Holes and Scalar Fields. Class. Quantum Gravity 2015, 32, 214002. [Google Scholar] [CrossRef]
- Hawking, S.W. Black holes in general relativity. Commun. Math. Phys. 1972, 25, 152–166. [Google Scholar] [CrossRef]
- Torii, T.; Maeda, K.; Narita, M. Scalar hair on the black hole in asymptotically ant-de Sitter spacetime. Phys. Rev. D 2001, 64, 044007. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Zhou, S.Y. Black hole hair in generalized scalar-tensor gravity. Phys. Rev. Lett. 2014, 112, 251102. [Google Scholar] [CrossRef] [PubMed]
- Sotiriou, T.P.; Zhou, S.Y. Black hole hair in generalized scalar-tensor gravity: An explicit example. Phys. Rev. D 2014, 90, 124063. [Google Scholar] [CrossRef]
- Brans, C.H. Mach’s Principle and a Relativistic Theory of Gravitation. II. Phys. Rev. 1962, 125, 2194–2201. [Google Scholar] [CrossRef]
- Bhadra, A.; Nandi, K.K. On the equivalence of the Buchdahl and the Janis-Newman-Winnicour solutions. Int. J. Mod. Phys. A 2001, 16, 4543–4545. [Google Scholar] [CrossRef]
- Bhadra, A.; Sarkar, K. On static spherically symmetric solutions of the vacuum Brans–Dicke theory. Gen. Relativ. Gravitation 2005, 37, 2189–2199. [Google Scholar] [CrossRef]
- Wyman, M. Static Spherically Symmetric Scalar Fields in General Relativity. Phys. Rev. D 1981, 24, 839–841. [Google Scholar] [CrossRef]
- Buchdahl, H.A. Reciprocal Static Metrics and Scalar Fields in the General Theory of Relativity. Phys. Rev. 1959, 115, 1325–1328. [Google Scholar] [CrossRef]
- Agnese, A.G.; La Camera, M. Wormholes in the Brans–Dicke theory of gravitation. Phys. Rev. D 1995, 51, 2011–2013. [Google Scholar] [CrossRef]
- Faraoni, V.; Hammad, F.; Belknap-Keet, S.D. Revisiting the Brans solutions of scalar-tensor gravity. Phys. Rev. D 2016, 94, 104019. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Dialektopoulos, K.F.; Romano, A.E.; Tomaras, T.N. Brans–Dicke Theory with Λ>0: Black Holes and Large Scale Structures. Phys. Rev. Lett. 2015, 115, 181104. [Google Scholar] [CrossRef] [PubMed]
- Kim, H. Thermodynamics of black holes in Brans–Dicke gravity. Nuovo Cim. B 1997, 112, 329–338. [Google Scholar]
- Faraoni, V. Black hole entropy in scalar-tensor and f(R) gravity: An Overview. Entropy 2010, 12, 1246. [Google Scholar] [CrossRef]
- Kang, G. On black hole area in Brans–Dicke theory. Phys. Rev. D 1996, 54, 7483–7489. [Google Scholar] [CrossRef]
- Zaslavskii, O.B. Thermodynamics of black holes with an infinite effective area of a horizon. Class. Quantum Gravity 2002, 19, 3783–3798. [Google Scholar] [CrossRef]
- Nandi, K.K.; Bhadra, A.; Alsing, P.M.; Nayak, T.B. Tidal forces in cold black hole space-times. Int. J. Mod. Phys. D 2001, 10, 529–538. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Clement, G.; Constantinidis, C.P.; Fabris, J.C. Cold scalar tensor black holes: Causal structure, geodesics, stability. Gravity Cosmol. 1998, 4, 128–138. [Google Scholar]
- Morris, M.S.; Thorne, K.S. Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity. Am. J. Phys. 1988, 56, 395–412. [Google Scholar] [CrossRef]
- Heydarzade, Y.; Riazi, N.; Moradpour, H. Phantom Wormhole Solutions in a Generic Cosmological Constant Background. Can. J. Phys. 2015, 93, 1523–1531. [Google Scholar] [CrossRef]
- Lemos, J.P.S.; Lobo, F.S.N.; Quinet de Oliveira, S. Morris-Thorne wormholes with a cosmological constant. Phys. Rev. D 2003, 68, 064004. [Google Scholar] [CrossRef]
- Narahara, K.; Furihata, Y.; Sato, K. Traversable wormhole in the expanding universe. Phys. Lett. B 1994, 336, 319–323. [Google Scholar] [CrossRef]
- Riazi, N.; Esfahani, B.N. Time dependent wormholes in an expanding universe dominated by traceless matter. Astrophys. Space Sci. 2000, 271, 237–243. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Quantum de Sitter cosmology and phantom matter. Phys. Lett. B 2003, 562, 147–152. [Google Scholar] [CrossRef]
- Carroll, S.M.; Hoffman, M.; Trodden, M. Can the dark energy equation-of-state parameter w be less than -1? Phys. Rev. D 2003, 68, 023509. [Google Scholar] [CrossRef]
- Scheel, M.; Shapiro, S.; Teukolsky, S. Collapse to black holes in Brans–Dicke theory. II. Comparison with general relativity. Phys. Rev. D 1995, 51, 4236–4249. [Google Scholar] [CrossRef]
- Uehara, K.; Kim, C.W. Brans-dicke Cosmology With the Cosmological Constant. Phys. Rev. D 1982, 26, 2575. [Google Scholar] [CrossRef]
- Riazi, N.; Ahmadi-Azar, E. A Class of Exact Cosmological Solutions of Brans–Dicke Theory with Cosmological Constant. Astrophys. Space Sci. 1995, 226, 1–15. [Google Scholar]
- Pimentel, L.O. Exact cosmological solutions in the scalar-tensor theory with cosmological constant. Astrophys. Space Sci. 1985, 112, 175–183. [Google Scholar] [CrossRef]
- Ram, S.; Singh, C.P. Early cosmological models with bulk viscosity in Brans–Dicke theory. Astrophys. Space Sci. 1997, 254, 143–150. [Google Scholar] [CrossRef]
- Pandey, S.N. Brans–Dicke cosmology with non-vanishing cosmological constant and non-zero curvature. Astrophys. Space Sci. 2001, 277, 403–408. [Google Scholar] [CrossRef]
- Romero, C.; Barros, A. Brans–Dicke vacuum solutions and the cosmological constant: A Qualitative analysis. Gen. Relativ. Gravitation 1993, 25, 491–502. [Google Scholar] [CrossRef]
- Romero, C.; Barros, A. Brans–Dicke cosmology and the cosmological constant: the spectrum of vacuum solutions. Astrophys. Space Sci. 1992, 192, 263–274. [Google Scholar] [CrossRef]
- Cerveró, J.M.; Estévez, P.G. General solutions for a cosmological Robertsonwalker metric in the Brans–Dicke theory. Gen. Relativ. Gravitation 1983, 15, 351–356. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Dialektopoulos, K.F.; Romano, A.E.; Skordis, C.; Tomaras, T.N. The maximum sizes of large scale structures in alternative theories of gravity. J. Cosmol. Astropart. Phys. 2017, 1707, 018. [Google Scholar] [CrossRef]
- Xiao, X.G.; Zhu, J.Y. Wormhole solution in vacuum Brans–Dicke theory with cosmological constant. Chin. Phys. Lett. 1996, 13, 405–408. [Google Scholar] [CrossRef]
- Hrycyna, O.; Szydłowski, M. Dynamical complexity of the Brans–Dicke cosmology. J. Cosmol. Astropart. Phys. 2013, 1312, 016. [Google Scholar] [CrossRef]
- Tretyakova, D.A.; Latosh, B.N.; Alexeyev, S.O. Wormholes and naked singularities in Brans–Dicke cosmology. Class. Quantum Gravity 2015, 32, 185002. [Google Scholar] [CrossRef]
- Agnese, A.G.; La Camera, M. Schwarzschild metrics and quasiuniverses. Found. Phys. Lett. 2001, 14, 581–587. [Google Scholar] [CrossRef]
- Alexeyev, S.O.; Rannu, K.A.; Gareeva, D.V. Possible observation sequences of Brans–Dicke wormholes. J. Exp. Theor. Phys. 2011, 113, 628–636. [Google Scholar] [CrossRef]
- Horndeski, G.W. Second-order scalar-tensor field equations in a four-dimensional space. Int. J. Theor. Phys. 1974, 10, 363–384. [Google Scholar] [CrossRef]
- Nicolis, A.; Rattazzi, R.; Trincherini, E. The Galileon as a local modification of gravity. Phys. Rev. D 2009, 79, 064036. [Google Scholar] [CrossRef]
- Deffayet, C.; Esposito-Farèse, G.; Vikman, A. Covariant Galileon. Phys. Rev. D 2009, 79, 084003. [Google Scholar] [CrossRef]
- Kobayashi, T.; Yamaguchi, M.; Yokoyama, J. Generalized G-inflation: Inflation with the most general second-order field equations. Prog. Theor. Phys. 2011, 126, 511–529. [Google Scholar] [CrossRef]
- Deffayet, C.; Deser, S.; Esposito-Farèse, G. Generalized Galileons: All scalar models whose curved background extensions maintain second-order field equations and stress-tensors. Phys. Rev. D 2009, 80, 064015. [Google Scholar] [CrossRef]
- Kobayashi, T.; Tanahashi, N. Exact black hole solutions in shift symmetric scalar–tensor theories. Prog. Theor. Exp. Phys. 2014, 2014, 073E02. [Google Scholar] [CrossRef]
- Starobinsky, A.A.; Sushkov, S.V.; Volkov, M.S. The screening Horndeski cosmologies. J. Cosmol. Astropart. Phys. 2016, 1606, 007. [Google Scholar] [CrossRef]
- Charmousis, C.; Iosifidis, D. Self tuning scalar tensor black holes. J. Phys. Conf. Ser. 2015, 600, 012003. [Google Scholar] [CrossRef]
- Rinaldi, M. Black holes with non-minimal derivative coupling. Phys. Rev. D 2012, 86, 084048. [Google Scholar] [CrossRef]
- Babichev, E.; Charmousis, C. Dressing a black hole with a time-dependent Galileon. J. High Energy Phys. 2014, 2014, 106. [Google Scholar] [CrossRef] [Green Version]
- Babichev, E.; Charmousis, C.; Hassaine, M. Charged Galileon black holes. J. Cosmol. Astropart. Phys. 2015, 2015, 031. [Google Scholar] [CrossRef]
- Anabalon, A.; Cisterna, A.; Oliva, J. Asymptotically locally AdS and flat black holes in Horndeski theory. Phys. Rev. D 2014, 89, 084050. [Google Scholar] [CrossRef]
- Minamitsuji, M. Solutions in the scalar-tensor theory with nonminimal derivative coupling. Phys. Rev. D 2014, 89, 064017. [Google Scholar] [CrossRef]
- Babichev, E.; Charmousis, C.; Lehébel, A. Black holes and stars in Horndeski theory. Class. Quantum Gravity 2016, 33, 154002. [Google Scholar] [CrossRef]
- Charmousis, C.; Kolyvaris, T.; Papantonopoulos, E.; Tsoukalas, M. Black Holes in Bi-scalar Extensions of Horndeski Theories. J. High Energy Phys. 2014, 2014, 85. [Google Scholar] [CrossRef]
- Tretyakova, D.A.; Takahashi, K. Stable black holes in shift-symmetric Horndeski theories. Class. Quantum Gravity 2017, 34, 175007. [Google Scholar] [CrossRef]
- Miao, Y.G.; Xu, Z.M. Thermodynamics of Horndeski black holes with non-minimal derivative coupling. Eur. Phys. J. C 2016, 76, 638. [Google Scholar] [CrossRef]
- Feng, X.H.; Liu, H.S.; Lü, H.; Pope, C.N. Thermodynamics of Charged Black Holes in Einstein- Horndeski-Maxwell Theory. Phys. Rev. D 2016, 93, 044030. [Google Scholar] [CrossRef]
- Feng, X.H.; Liu, H.S.; Lü, H.; Pope, C.N. Black Hole Entropy and Viscosity Bound in Horndeski Gravity. J. High Energy Phys. 2015, 2015, 176. [Google Scholar] [CrossRef]
- Sushkov, S.V. Horndeski Wormholes. Fundam. Theor. Phys. 2017, 189, 89–109. [Google Scholar]
- Korolev, R.V.; Sushkov, S.V. Exact wormhole solutions with nonminimal kinetic coupling. Phys. Rev. D 2014, 90, 124025. [Google Scholar] [CrossRef]
- Kobayashi, T.; Yamaguchi, M.; Yokoyama, J. G-inflation: Inflation driven by the Galileon field. Phys. Rev. Lett. 2010, 105, 231302. [Google Scholar] [CrossRef] [PubMed]
- Kanti, P.; Gannouji, R.; Dadhich, N. Gauss–Bonnet Inflation. Phys. Rev. D 2015, 92, 041302. [Google Scholar] [CrossRef]
- Fomin, I.V.; Chervon, S.V. Exact Inflation in Einstein-Gauss–Bonnet Gravity. In Proceedings of the 5th Ulyanovsk International School Seminar: Problems of Theoretical and Observational Cosmology (UISS 2016), Ulyanovsk, Russia, 19–30 September 2016. [Google Scholar]
- Babichev, E.; Charmousis, C.; Lehébel, A. Asymptotically flat black holes in Horndeski theory and beyond. J. Cosmol. Astropart. Phys. 2017, 2017, 27. [Google Scholar] [CrossRef]
- Babichev, E.; Charmousis, C.; Lehébel, A.; Moskalets, T. Black holes in a cubic Galileon universe. J. Cosmol. Astropart. Phys. 2016, 2016, 011. [Google Scholar] [CrossRef]
- Moffat, J.W. Scalar-tensor-vector gravity theory. J. Cosmol. Astropart. Phys. 2006, 2006, 4. [Google Scholar] [CrossRef]
- Moffat, J.W.; Rahvar, S. The MOG weak field approximation and observational test of galaxy rotation curves. Mon. Not. R. Astron. Soc. 2013, 436, 1439–1451. [Google Scholar] [CrossRef]
- Iorio, L. Putting Yukawa-like Modified Gravity (MOG) on the test in the Solar System. Schol. Res. Exch. 2008, 2008, 238385. [Google Scholar] [CrossRef]
- Iorio, L. Constraints to a Yukawa gravitational potential from laser data to LAGEOS satellites. Phys. Lett. A 2002, 298, 315–318. [Google Scholar] [CrossRef]
- Iorio, L. Constraints on the range lambda of Yukawa-like modifications to the Newtonian inverse-square law of gravitation from Solar System planetary motions. J. High Energy Phys. 2007, 2007, 041. [Google Scholar] [CrossRef]
- Moffat, J.W.; Toth, V.T. Cosmological observations in a modified theory of gravity (MOG). Galaxies 2013, 1, 65–82. [Google Scholar] [CrossRef]
- Moffat, J.W.; Rahvar, S.; Toth, V.T. Applying MOG to lensing: Einstein rings, Abell 520 and the Bullet Cluster. arXiv, 2012. [Google Scholar]
- Moffat, J.W.; Toth, V.T. Testing modified gravity with motion of satellites around galaxies. arXiv, 2007. [Google Scholar]
- Moffat, J.W.; Toth, V.T. The Bending of light and lensing in modified gravity. Mon. Not. R. Astron. Soc. 2009, 397, 1885–1992. [Google Scholar] [CrossRef]
- Moffat, J.W. Time delay predictions in a modified gravity theory. Class. Quantum Gravity 2006, 23, 6767–6772. [Google Scholar] [CrossRef]
- Moffat, J.W.; Toth, V.T. Fundamental parameter-free solutions in modified gravity. Class. Quantum Gravity 2009, 26, 085002. [Google Scholar] [CrossRef]
- Moffat, J.W. A Modified Gravity and its Consequences for the Solar System, Astrophysics and Cosmology. Int. J. Mod. Phys. D 2008, 16, 2075–2090. [Google Scholar] [CrossRef]
- Moffat, J.W. Black Holes in Modified Gravity (MOG). Eur. Phys. J. C 2015, 75, 175. [Google Scholar] [CrossRef]
- Mureika, J.R.; Moffat, J.W.; Faizal, M. Black hole thermodynamics in MOdified Gravity (MOG). Phys. Lett B. 2016, 757, 528–536. [Google Scholar] [CrossRef]
- Ayon-Beato, E.; Garcia, A. Regular black hole in general relativity coupled to nonlinear electrodynamics. Phys. Rev. Lett. 1998, 80, 5056–5059. [Google Scholar] [CrossRef]
- Ayon-Beato, E.; Garcia, A. Nonsingular charged black hole solution for nonlinear source. Gen. Relativ. Gravitation 1999, 31, 629–633. [Google Scholar] [CrossRef]
- Skordis, C. The Tensor-Vector-Scalar theory and its cosmology. Class. Quantum Gravity 2009, 26, 143001. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Relativistic gravitation theory for the MOND paradigm. Phys. Rev. D 2004, 70, 083509. [Google Scholar] [CrossRef]
- Zhao, H. Constraining TeVeS Gravity as Effective Dark Matter and Dark Energy. Int. J. Mod. Phys. D 2008, 16, 2055–2063. [Google Scholar] [CrossRef]
- Armendariz-Picon, C.; Damour, T.; Mukhanov, V.F. k-inflation. Phys. Lett. B 1999, 458, 209–218. [Google Scholar] [CrossRef]
- Armendariz-Picon, C.; Mukhanov, V.F.; Steinhardt, P.J. A Dynamical solution to the problem of a small cosmological constant and late time cosmic acceleration. Phys. Rev. Lett. 2000, 85, 4438–4441. [Google Scholar] [CrossRef] [PubMed]
- Giannios, D. Spherically symmetric, static spacetimes in TeVeS. Phys. Rev. D 2005, 71, 103511. [Google Scholar] [CrossRef]
- Sagi, E.; Bekenstein, J.D. Black holes in the TeVeS theory of gravity and their thermodynamics. Phys. Rev. D 2008, 77, 024010. [Google Scholar] [CrossRef]
- Skordis, C.; Zlosnik, T. The Geometry Of Modified Newtonian Dynamics. Phys. Rev. D 2012, 85, 044044. [Google Scholar] [CrossRef]
- Blas, D.; Lim, E. Phenomenology of theories of gravity without Lorentz invariance: the preferred frame case. Int. J. Mod. Phys. D 2015, 23, 1443009. [Google Scholar] [CrossRef]
- Skenderis, K. Black holes in string theory; Springer: Binlin, Germany, 2000; pp. 325–364. [Google Scholar]
- Mathur, S.D. The Fuzzball proposal for black holes: An Elementary review. Fortsch. Phys. 2005, 53, 793–827. [Google Scholar] [CrossRef]
- Susskind, L. Some speculations about black hole entropy in string theory; World Scientific: Singapore, Singapore, 1998; pp. 118–131. [Google Scholar]
- Russo, J.G.; Susskind, L. Asymptotic level density in heterotic string theory and rotating black holes. Nucl. Phys. B 1995, 437, 611–626. [Google Scholar] [CrossRef]
- Skenderis, K.; Taylor, M. The fuzzball proposal for black holes. Phys. Rep. 2008, 467, 117–171. [Google Scholar] [CrossRef]
- Donoghue, J.F. General relativity as an effective field theory: The leading quantum corrections. Phys. Rev. D 1994, 50, 3874–3888. [Google Scholar] [CrossRef]
- Burgess, C.P. Quantum gravity in everyday life: General relativity as an effective field theory. Living Rev. Relativ. 2004, 7, 5–56. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, G.T.; Maldacena, J.M.; Strominger, A. Nonextremal black hole microstates and U duality. Phys. Lett. B 1996, 383, 151–159. [Google Scholar] [CrossRef]
- Youm, D. Black holes and solitons in string theory. Phys. Rep. 1999, 316, 1–232. [Google Scholar] [CrossRef]
- Cvetic, M. Properties of black holes in toroidally compactified string theory. Nucl. Phys. B Proc. Suppl. 1997, 56, 1–10. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tretyakova, D.; Latosh, B. Scalar-Tensor Black Holes Embedded in an Expanding Universe. Universe 2018, 4, 26. https://doi.org/10.3390/universe4020026
Tretyakova D, Latosh B. Scalar-Tensor Black Holes Embedded in an Expanding Universe. Universe. 2018; 4(2):26. https://doi.org/10.3390/universe4020026
Chicago/Turabian StyleTretyakova, Daria, and Boris Latosh. 2018. "Scalar-Tensor Black Holes Embedded in an Expanding Universe" Universe 4, no. 2: 26. https://doi.org/10.3390/universe4020026
APA StyleTretyakova, D., & Latosh, B. (2018). Scalar-Tensor Black Holes Embedded in an Expanding Universe. Universe, 4(2), 26. https://doi.org/10.3390/universe4020026