Effects of Scattering of Radiation on Wormholes
Abstract
:1. Introduction
2. The Simplest Model of a Wormhole
3. Topological Damping of Cosmic Rays
3.1. Boltzmann Equation
3.2. Topological Damping of Cosmic Rays
3.3. Topological Bias of a Point Source
3.4. Dark Matter Halos
4. Topological Bias of Discrete Sources
4.1. Scattering of Waves in the Geometrical Optics Approximation
4.2. Lorentz Invariance and the Dispersion Relations
4.3. The Diffuse Halo
4.4. Estimates
5. Generation of an Interference Picture
6. Distortion of CMB Spectrum by Wormholes
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Flamm, L. Beiträge zur Einsteinschen Gravitationstheorie. Phys. Z. 1916, 17, 448–454. [Google Scholar]
- Einstein, A.; Rosen, N. The Particle Problem in the General Theory of Relativity. Phys. Rev. 1935, 48, 73–77. [Google Scholar] [CrossRef]
- Lobo, F.S.N. From the Flamm–Einstein–Rosen bridge to the modern renaissance of traversable wormholes. Int. J. Mod. Phys. D 2016, 25, 1630017. [Google Scholar] [CrossRef]
- Wheeler, J.A. Relativity, Groups, and Topology; Gordan and Breach: New York, NY, USA, 1964. [Google Scholar]
- Savelova, E.P. Gas of wormholes in Euclidean quantum field theory. Grav. Cosmol. 2015, 21, 48–56. [Google Scholar] [CrossRef]
- Savelova, E.P. On possible origin of an anisotropy in the speed of light in vacuum. Gen. Relativ. Gravit. 2016, 48, 85. [Google Scholar] [CrossRef]
- Kirillov, A.A.; Savelova, E.P. On the Possible Dynamical Realization of the Pauli–Villars Regularization. Phys. At. Nucl. 2015, 78, 1069–1073. [Google Scholar] [CrossRef]
- Hochberg, D.; Visser, M. Null Energy Condition in Dynamic Wormholes. Phys. Rev. Lett. 1998, 81, 746–749. [Google Scholar] [CrossRef]
- Kirillov, A.A.; Savelova, E.P. Cosmological wormholes. Int. J. Mod. Phys. D 2016, 25, 1650075. [Google Scholar] [CrossRef]
- Kirillov, A.A.; Savelova, E.P. Dark matter from a gas of wormholes. Phys. Lett. B 2008, 660, 93–99. [Google Scholar] [CrossRef]
- Kirillov, A.A.; Savelova, E.P. Modification of gravity by a spherically symmetric wormhole. Int. J. Mod. Phys. D 2017, 26, 1750145. [Google Scholar]
- Kirillov, A.A.; Savelova, E.P. Density perturbations in a gas of wormholes. Mon. Not. R. Astron. Soc. 2011, 412, 1710–1720. [Google Scholar] [CrossRef]
- Diemand, J.; Zemp, M.; Moore, B.; Stadel, J.; Carollo, M. Cusps in cold dark matter haloes. Mon. Not. R. Astron. Soc. Lett. 2005, 364, 665–673. [Google Scholar] [CrossRef]
- Kirillov, A.A.; Savelova, E.P.; Zolotarev, P.S. Propagation of cosmic rays in the foam-like Universe. Phys. Lett. B 2008, 663, 372–376. [Google Scholar]
- Kirillov, A.A.; Savelova, E.P.; Shamshutdinova, G.D. On the topological bias of discrete sources in the gas of wormholes. J. Energy Theor. Phys. Lett. 2009, 2009, 599–603. [Google Scholar] [CrossRef]
- Kirillov, A.A.; Savelova, E.P. On scattering of electromagnetic waves by a wormhole. Phys. Lett. B. 2012, 710, 516–518. [Google Scholar] [CrossRef]
- Kirillov, A.A.; Savelova, E.P. On scattering of CMB radiation on wormholes: Kinematic SZ-effect. In Proceedings of the MG14 Meeting on General Relativity University of Rome La Sapienza, Rome, Italy, 12–18 July 2015. [Google Scholar]
- Battistelli, E.S.; Burigana, C.; de Bernardis, P.; Kirillov, A.A.; Lima Neto, G.B.; Masi, S.; Norgaard-Nielsen, H.U.; Ostermann, P.; Roman, M.; Rosati, P. Galaxy clusters as probes for cosmology and dark matter. Int. J. Mod. Phys. D 2016, 25, 1630023. [Google Scholar] [CrossRef]
- Visser, M. Lorentzian wormholes; Springer: New York, NY, USA, 1996. [Google Scholar]
- Stewart, J.M. Non-Equilibrium Relativistic Kinetic Theory; Springer: Berlin, Germany, 1971. [Google Scholar]
- Kachelriess, M.; Tomas, R. High-energy neutrino yields from astrophysical sources: Weakly magnetized sources. Phys. Rev. D 2006, 74, 063009. [Google Scholar] [CrossRef]
- Kirillov, A.A. The nature of dark matter. Phys. Lett. B. 2006, 632, 453–462. [Google Scholar] [CrossRef]
- Kirillov, A.A.; Turaev, D. The Universal rotation curve of spiral galaxies. Mon. Not. R. Astron. Soc. Lett. 2006, 371, 31–35. [Google Scholar] [CrossRef]
- Kirillov, A.A.; Turaev, D. Foam-like structure of the Universe. Phys. Lett. B. 2007, 656, 1–8. [Google Scholar] [CrossRef]
- Gentile, G.; Salucci, P.; Klein, U.; Vergani, D.; Kalberla, P. The cored distribution of dark matter in spiral galaxies. Mon. Not. R. Astron. Soc. 2004, 351, 903–922. [Google Scholar] [CrossRef]
- De Blok, W.J.G.; Bosma, A. High-resolution rotation curves of low surface brightness galaxies. Astron. Astrophys. 2002, 385, 816. [Google Scholar] [CrossRef]
- Weldrake, D.T.F.; de Blok, W.J.G.; Walter, F. A high-resolution rotation curve of NGC 6822: A test-case for cold dark matter. Mon. Not. R. Astron. Soc. 2003, 340, 12–28. [Google Scholar] [CrossRef]
- Shankar, F.; Lapi, A.; Salucci, P.; De Zotti, G.; Danese, L. New Relationships between Galaxy Properties and Host Halo Mass, and the Role of Feedbacks in Galaxy Formation. Astrophys. J. 2006, 643, 14. [Google Scholar] [CrossRef]
- Harris, D.E.; Krawczynski, H. X-Ray Emission from Extragalactic Jets. Annu. Rev. Astron. Astrophys. 2006, 44, 463–506. [Google Scholar] [CrossRef]
- Clowe, D.; Bradač, M.; Gonzalez, A.H.; Markevitch, M.; Randall, S.M.; Jones, C.; Zaritsky, D. A Direct Empirical Proof of the Existence of Dark Matter. Astrophys. J. Lett. 2006, 648, L109–L113. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics; Pergamon press: New York, NY, USA, 1968. [Google Scholar]
- Jacobson, T.; Liberati, S.; Mattingly, D. Lorentz violation at high energy: Concepts, phenomena, and astrophysical constraints. Annu. Phys. 2006, 321, 150–196. [Google Scholar] [CrossRef]
- Bernadotte, S.; Klinkhamer, F.R. Bounds on length scales of classical spacetime foam models. Phys. Rev. D 2007, 75, 024028. [Google Scholar] [CrossRef]
- Klinkhamer, F.R.; Rupp, C. Spacetime foam and high-energy photons. New Astron. Rev. 2010, 54, 211. [Google Scholar] [CrossRef]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Asano, K.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; et al. Testing Einstein’s special relativity with Fermi’s short hard gamma-ray burst GRB090510. Nature 2009, 462, 331–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jankiewicz, M.; Buniy, R.V.; Kephart, T.W.; Weiler, T.J. Space–time foam and cosmic-ray interactions. Astropart. Phys. 2004, 21, 651–666. [Google Scholar] [CrossRef]
- Christiansen, W.A.; Jack, N.Y.; van Dam, H. Probing Spacetime Foam with Extragalactic Sources. Phys. Rev. Lett. 2006, 96, 051301. [Google Scholar] [CrossRef] [PubMed]
- Kirillov, A.A.; Savelova, E.P. Astrophysical Effects of Space-Time Foam. Gravit. Cosmol. 2008, 14, 256–261. [Google Scholar] [CrossRef]
- Clement, G. Scattering of Klein–Gordon and Maxwell waves by an Ellis geometry. Int. J. Theor. Phys. 1984, 23, 335–350. [Google Scholar] [CrossRef]
- Jackson, J.D. Classical Electrodynamics; Wiley: New York, NY, USA, 1962. [Google Scholar]
- Sunyaev, R.A.; Zeldovich, Y.B. The velocity of clusters of galaxies relative to the microwave background. The possibility of its measurement. Mon. Not. R. Astron. Soc. 1980, 190, 413–420. [Google Scholar] [CrossRef]
- Sunyaev, R.A.; Zeldovich, Y.B. Microwave background radiation as a probe of the contemporary structure and history of the Universe. Ann. Rev. A 1980, 18, 537–560. [Google Scholar] [CrossRef]
- Kashlinsky, A.; Atrio-Barandela, F.; Ebeling, H. Measuring the dark flow with public X-ray cluster data. Astrophys. J. 2011, 732, 1. [Google Scholar] [CrossRef]
- Sayers, J.; Mroczkowski, T.; Czakon, N.G.; Golwala, S.R.; Mantz, A.; Ameglio, A.; Downes, T.P.; Koch, P.M.; Lin, K.-Y.; Molnar, S.M.; et al. The contribution of radio galaxy contamination to measurements of the Sunyaev–Zel’dovich decrement in massive galaxy clusters at 140 GHz with Bolocam. Astrophys. J. 2013, 264, 152. [Google Scholar] [CrossRef]
- Hand, N.; Addison, G.E.; Aubourg, E.; Battaglia, N.; Battistelli, E.S.; Bizyaev, D.; Bond, J.R.; Brewington, H.; Brinkmann, J.; Brown, B.R.; et al. Evidence of galaxy cluster motions with the kinematic Sunyaev–Zel’dovich effect. Phys. Rev. Lett. 2012, 109, 041101. [Google Scholar] [CrossRef] [PubMed]
- Ambrosi, G.; An, Q.; Asfandiyarov, R.; Azzarello, P.; Bernardini, P.; Bertucci, B.; Cai, M.S.; Chang, J.; Chen, D.Y.; Chen, H.F.; et al. Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons. Nature 2017, 552, 24475. [Google Scholar] [CrossRef] [PubMed]
- Savelova, E.P. Gas of Wormholes as a Model for Dark Energy. Grav. Cosmol. 2013, 19, 101–105. [Google Scholar] [CrossRef]
- Donato, F.; Gentile, G.; Salucci, P. Cores of dark matter haloes correlate with stellar scalelengths. Mon. Not. R. Astron. Soc. Lett. 2004, 353, L17–L22. [Google Scholar] [CrossRef]
1 | For the topological damping, the absence of collisions is not essential however, as they merely modify the function in Equation (11). |
2 | We note that the light side of a throat is turned by the matrix with respect to the dark side, so that in general, we have the union . |
3 | We recall that wormholes relate to three basic parameters. These are the density of wormholes , the mean throat size b, and the mean distance between throats . |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirillov, A.; Savelova, E. Effects of Scattering of Radiation on Wormholes. Universe 2018, 4, 35. https://doi.org/10.3390/universe4020035
Kirillov A, Savelova E. Effects of Scattering of Radiation on Wormholes. Universe. 2018; 4(2):35. https://doi.org/10.3390/universe4020035
Chicago/Turabian StyleKirillov, Alexander, and Elena Savelova. 2018. "Effects of Scattering of Radiation on Wormholes" Universe 4, no. 2: 35. https://doi.org/10.3390/universe4020035
APA StyleKirillov, A., & Savelova, E. (2018). Effects of Scattering of Radiation on Wormholes. Universe, 4(2), 35. https://doi.org/10.3390/universe4020035