Singularity Theorems in the Effective Field Theory for Quantum Gravity at Second Order in Curvature
Abstract
:1. Introduction
2. Effective Quantum Gravity in the Einstein Frame
3. Singularity Theorems in Effective Quantum Gravity
3.1. Massive Scalar Field
3.2. Bounds on the Mass of the Massive Scalar Field
3.3. Spin-2 Massive Ghost
4. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
Appendix A. Classical Singularity Theorems
Appendix A.1. Hawking’s Cosmological Singularity Theorem
Appendix A.2. Penrose’s Black Hole Singularity Theorem
Appendix B. Singularity Theorems for Weakened Energy Conditions
References
- Penrose, R. Gravitational collapse and space-time singularities. Phys. Rev. Lett. 1965, 14, 57. [Google Scholar] [CrossRef] [Green Version]
- Hawking, S.W. Singularities in the universe. Phys. Rev. Lett. 1966, 17, 444. [Google Scholar] [CrossRef]
- Borde, A. Geodesic focusing, energy conditions and singularities. Class. Quant. Grav. 1987, 4, 343. [Google Scholar] [CrossRef]
- Roman, T.A. On the ‘Averaged Weak Energy Condition’ and Penrose’s Singularity Theorem. Phys. Rev. D 1988, 37, 546. [Google Scholar] [CrossRef]
- Wald, R.M.; Yurtsever, U. General proof of the averaged null energy condition for a massless scalar field in two-dimensional curved space-time. Phys. Rev. D 1991, 44, 403. [Google Scholar] [CrossRef] [PubMed]
- Fewster, C.J.; Galloway, G.J. Singularity theorems from weakened energy conditions. Class. Quant. Grav. 2011, 28, 125009. [Google Scholar] [CrossRef] [Green Version]
- Brown, P.J.; Fewster, C.J.; Kontou, E.A. A singularity theorem for Einstein–Klein–Gordon theory. Gen. Relativ. Gravit. 2018, 50, 121. [Google Scholar] [CrossRef] [Green Version]
- Witten, E. Light Rays, Singularities, and All That. arXiv 2019, arXiv:1901.03928. [Google Scholar]
- Fewster, C.J.; Kontou, E.A. A new derivation of singularity theorems with weakened energy hypotheses. Class. Quant. Grav. 2020, 37, 065010. [Google Scholar] [CrossRef]
- Alani, I.; Santillan, O. Cosmological singularity theorems for f (R) gravity theories. J. Cosmol. Astropart. Phys. 2016, 1605, 023. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, S. Ultraviolet Divergences in Quantum Theories of Gravitation. In General Relativity: An Einstein Centenery Survey; Cambridge University Press: Cambridge, UK, 1980; Volume 790. [Google Scholar]
- Barvinsky, A.O.; Vilkovisky, G.A. The Generalized Schwinger-de Witt Technique And The Unique Effective Action In Quantum Gravity. Phys. Lett. 1983, 131B, 313. [Google Scholar] [CrossRef]
- Barvinsky, A.O.; Vilkovisky, G.A. The Generalized Schwinger-Dewitt Technique in Gauge Theories and Quantum Gravity. Phys. Rept. 1985, 119, 1. [Google Scholar] [CrossRef]
- Barvinsky, A.O.; Vilkovisky, G.A. Beyond the Schwinger-Dewitt Technique: Converting Loops Into Trees and In-In Currents. Nucl. Phys. B 1987, 282, 163. [Google Scholar] [CrossRef]
- Barvinsky, A.O.; Vilkovisky, G.A. Covariant perturbation theory. 2: Second order in the curvature. General algorithms. Nucl. Phys. B 1990, 333, 471. [Google Scholar] [CrossRef]
- Buchbinder, I.L.; Odintsov, S.D.; Shapiro, I.L. Effective Action in Quantum Gravity; IOP: Bristol, UK, 1992; 413p. [Google Scholar]
- Donoghue, J.F. General relativity as an effective field theory: The leading quantum corrections. Phys. Rev. D 1994, 50, 3874. [Google Scholar] [CrossRef] [Green Version]
- Ford, L.H. The Classical singularity theorems and their quantum loop holes. Int. J. Theor. Phys. 2003, 42, 1219. [Google Scholar] [CrossRef]
- Frolov, V.P.; Vilkovisky, G. Spherically Symmetric Collapse in Quantum Gravity. Phys. Lett. B 1981, 106, 307. [Google Scholar] [CrossRef]
- Donoghue, J.F.; El-Menoufi, B.K. Nonlocal quantum effects in cosmology: Quantum memory, nonlocal FLRW equations, and singularity avoidance. Phys. Rev. D 2014, 89, 104062. [Google Scholar] [CrossRef] [Green Version]
- Hoyle, C.D.; Kapner, D.J.; Heckel, B.R.; Adelberger, E.G.; Gundlach, J.H.; Schmidt, U.; Swanson, H.E. Sub-millimeter tests of the gravitational inverse-square law. Phys. Rev. D 2004, 70, 042004. [Google Scholar] [CrossRef] [Green Version]
- Deser, S.; van Nieuwenhuizen, P. One Loop Divergences of Quantized Einstein-Maxwell Fields. Phys. Rev. D 1974, 10, 401. [Google Scholar] [CrossRef] [Green Version]
- Birrell, N.D.; Davies, P.C.W. Quantum Fields in Curved Space; Cambridge University Press: Cambridge, UK, 1982. [Google Scholar]
- Kallosh, R.E.; Tarasov, O.V.; Tyutin, I.V. One Loop Finiteness Of Quantum Gravity Off Mass Shell. Nucl. Phys. B 1978, 137, 145. [Google Scholar] [CrossRef] [Green Version]
- Magnano, G.; Ferraris, M.; Francaviglia, M. Nonlinear gravitational Lagrangians. Gen. Rel. Grav. 1987, 19, 465. [Google Scholar] [CrossRef]
- Ferraris, M.; Francaviglia, M.; Magnano, G. Do non-linear metric theories of gravitation really exist? Class. Quant. Grav. 1988, 5, L95. [Google Scholar] [CrossRef]
- Magnano, G.; Ferraris, M.; Francaviglia, M. Legendre transformation and dynamical structure of higher derivative gravity. Class. Quant. Grav. 1990, 7, 557. [Google Scholar] [CrossRef]
- Jakubiec, A.; Kijowski, J. On Theories of Gravitation with Nonlinear Lagrangians. Phys. Rev. D 1988, 37, 1406. [Google Scholar] [CrossRef]
- Calmet, X.; Yang, T.C. Frame Transformations of Gravitational Theories. Int. J. Mod. Phys. A 2013, 28, 1350042. [Google Scholar] [CrossRef] [Green Version]
- Calmet, X.; Kuntz, I. What is modified gravity and how to differentiate it from particle dark matter? Eur. Phys. J. C 2017, 77, 132. [Google Scholar] [CrossRef]
- Hindawi, A.; Ovrut, B.A.; Waldram, D. Consistent spin two coupling and quadratic gravitation. Phys. Rev. D 1996, 53, 5583. [Google Scholar] [CrossRef] [Green Version]
- Calmet, X. Vanishing of Quantum Gravitational Corrections to Vacuum Solutions of General Relativity at Second Order in Curvature. Phys. Lett. B 2018, 787, 36. [Google Scholar] [CrossRef]
- Barvinsky, A.O.; Gusev, Y.V.; Vilkovisky, G.A.; Zhytnikov, V.V. The Basis of nonlocal curvature invariants in quantum gravity theory. (Third order.). J. Math. Phys. 1994, 35, 3525. [Google Scholar] [CrossRef] [Green Version]
- Barvinsky, A.O.; Gusev, Y.V.; Zhytnikov, V.V.; Vilkovisky, G.A. Covariant perturbation theory. 4. Third order in the curvature. arXiv 1993, arXiv:0911.1168. [Google Scholar]
- Calmet, X.; Latosh, B. Three Waves for Quantum Gravity. Eur. Phys. J. C 2018, 78, 205. [Google Scholar] [CrossRef] [Green Version]
- Bekenstein, J.D. Nonsingular General Relativistic Cosmologies. Phys. Rev. D 1975, 11, 2072. [Google Scholar] [CrossRef]
- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge University Press: Cambridge, UK, 1973. [Google Scholar]
- Calmet, X. The Lightest of Black Holes. Mod. Phys. Lett. A 2014, 29, 1450204. [Google Scholar] [CrossRef] [Green Version]
- Calmet, X.; Casadio, R. The horizon of the lightest black hole. Eur. Phys. J. C 2015, 75, 445. [Google Scholar] [CrossRef] [Green Version]
- Calmet, X.; Casadio, R.; Kamenshchik, A.Y.; Teryaev, O.V. Graviton propagator, renormalization scale and black-hole like states. Phys. Lett. B 2017, 774, 332. [Google Scholar] [CrossRef]
- Barrow, J.D.; Ottewill, A.C. The Stability of General Relativistic Cosmological Theory. J. Phys. A 1983, 16, 2757. [Google Scholar] [CrossRef]
- Calmet, X.; Capozziello, S.; Pryer, D. Gravitational Effective Action at Second Order in Curvature and Gravitational Waves. Eur. Phys. J. C 2017, 77, 589. [Google Scholar] [CrossRef] [Green Version]
- Calmet, X.; Latosh, B. The Spectrum of Quantum Gravity. Phys. Part. Nucl. Lett. 2019, 16, 656. [Google Scholar] [CrossRef] [Green Version]
- Giacchini, B.L.; Netto, T.d. Weak-field limit and regular solutions in polynomial higher-derivative gravities. Eur. Phys. J. C 2019, 79, 217. [Google Scholar] [CrossRef] [Green Version]
- Giacchini, B.L.; Netto, T.d. Effective delta sources and regularity in higher-derivative and ghost-free gravity. J. Cosmol. Astropart. Phys. 2019, 1907, 013. [Google Scholar] [CrossRef] [Green Version]
- Tseytlin, A.A. On singularities of spherically symmetric backgrounds in string theory. Phys. Lett. B 1995, 363, 223. [Google Scholar] [CrossRef] [Green Version]
- Accioly, A.; Giacchini, B.L.; Shapiro, I.L. Low-energy effects in a higher-derivative gravity model with real and complex massive poles. Phys. Rev. D 2017, 96, 104004. [Google Scholar] [CrossRef] [Green Version]
- Stelle, K.S. Classical Gravity with Higher Derivatives. Gen. Rel. Grav. 1978, 9, 353. [Google Scholar] [CrossRef]
- Lu, H.; Perkins, A.; Pope, C.N.; Stelle, K.S. Black Holes in Higher-Derivative Gravity. Phys. Rev. Lett. 2015, 114, 171601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lü, H.; Perkins, A.; Pope, C.N.; Stelle, K.S. Spherically Symmetric Solutions in Higher-Derivative Gravity. Phys. Rev. D 2015, 92, 124019. [Google Scholar] [CrossRef] [Green Version]
- Raychaudhuri, A. Relativistic cosmology. 1. Phys. Rev. 1955, 98, 1123. [Google Scholar] [CrossRef]
- Sachs, R.K. On the characteristic initial value problem in gravitational theory. J. Math. Phys. 1962, 3, 908. [Google Scholar] [CrossRef]
1. | However, see [9] for a recent example that doesn’t make use of this equation. |
2. | |
3. | Note that the spin-2 field is symmetric in its indices, since is symmetric. |
4. | The potential is real, which can easily be shown by evaluating the expression. |
5. | We do not consider the tachyonic case, as it is unphysical. It can be shown, however, using Equation (40) that in this case, the strong energy condition is satisfied. |
6. | We take . |
7. | A codimension 2 spacelike and achronal submanifold such that the null expansion parameter is negative everywhere on U for each family of orthogonal future going null geodesics. |
Scalar | 2 | ||
Fermion | 8 | 7 | |
Vector | 176 | ||
Graviton | 250 | 424 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuipers, F.; Calmet, X. Singularity Theorems in the Effective Field Theory for Quantum Gravity at Second Order in Curvature. Universe 2020, 6, 171. https://doi.org/10.3390/universe6100171
Kuipers F, Calmet X. Singularity Theorems in the Effective Field Theory for Quantum Gravity at Second Order in Curvature. Universe. 2020; 6(10):171. https://doi.org/10.3390/universe6100171
Chicago/Turabian StyleKuipers, Folkert, and Xavier Calmet. 2020. "Singularity Theorems in the Effective Field Theory for Quantum Gravity at Second Order in Curvature" Universe 6, no. 10: 171. https://doi.org/10.3390/universe6100171
APA StyleKuipers, F., & Calmet, X. (2020). Singularity Theorems in the Effective Field Theory for Quantum Gravity at Second Order in Curvature. Universe, 6(10), 171. https://doi.org/10.3390/universe6100171