Conformal Anomaly in Yang-Mills Theory and Thermodynamics of Open Confining Strings
Abstract
:1. Introduction
2. The Conformal Anomaly and Thermodynamics of Gluons
2.1. Conformal Anomaly with Isotropic Renormalization Scale: Equation of State of Gluon Plasma
2.2. Conformal Anomaly with Anisotropic Renormalization Scales: Energy and Pressure via Condensates
3. Gluon Energy and Pressure via Gluon Condensates in Presence of Confining String
3.1. Thermodynamics from the Conformal Anomaly
3.2. Generalization of Michael-Rothe Sum Rules
- (i)
- (ii)
- (iii)
- Finally, the pair Equations (31) and (32) describes the new finite-temperature sum rules.
3.3. New Sum Rules and Exact Relations for Gluon Thermodynamics around Static Sources
3.4. Negative Pressure Excess
3.5. Multiquarks and a Single Quark
3.6. A Few Phenomenological Examples
3.6.1. Deconfinement Phase
3.6.2. Confinement Phase at Finite Temperature
3.6.3. Zero Temperature
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Gyulassy, M.; McLerran, L. New forms of QCD matter discovered at RHIC. Nucl. Phys. A 2005, 750, 30–63. [Google Scholar] [CrossRef] [Green Version]
- Müller, B.; Schukraft, J.; Wyslouch, B. First results from Pb + Pb collisions at the LHC. Ann. Rev. Nucl. Part. Sci. 2012, 62, 361–396. [Google Scholar] [CrossRef] [Green Version]
- Jacak, B.V.; Müller, B. The exploration of hot nuclear matter. Nature 2012, 337, 310–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romatschke, P.; Romatschke, U. Viscosity Information from Relativistic Nuclear Collisions: How Perfect is the Fluid Observed at RHIC? Phys. Rev. Lett. 2007, 99, 172301. [Google Scholar] [CrossRef] [Green Version]
- Ryu, S.; Paquet, J.-F.; Shen, C.; Denicol, G.S.; Schenke, B.; Jeon, S.; Gale, C. Importance of the Bulk Viscosity of QCD in Ultrarelativistic Heavy-Ion Collisions. Phys. Rev. Lett. 2015, 115, 132301. [Google Scholar] [CrossRef] [PubMed]
- Heinz, U.; Snellings, R. Collective flow and viscosity in relativistic heavy-ion collisions. Annu. Rev. Nucl. Part. Sci. 2013, 63, 123. [Google Scholar] [CrossRef] [Green Version]
- Matsui, T.; Satz, H. J/psi Suppression by Quark-Gluon Plasma Formation. Phys. Lett. B 1986, 178, 416. [Google Scholar] [CrossRef]
- Brambilla, N.; Pineda, A.; Soto, J.; Vairo, A. Effective field theories for heavy quarkonium. Rev. Mod. Phys. 2005, 77, 1423. [Google Scholar] [CrossRef] [Green Version]
- Bazavov, A.; Petreczky, P.; Velytsky, A. Quarkonium at Finite Temperature. Quark-Gluon Plasma 2010, 4, 61. [Google Scholar]
- Kaczmarek, O.; Karsch, F.; Petreczky, P.; Zantow, F. Heavy Quark Anti-Quark Free Energy and the Renormalized Polyakov Loop. Phys. Lett. B 2002, 543, 41. [Google Scholar] [CrossRef] [Green Version]
- Torrieri, G.; Noronha, J. Flavoring the Quark-Gluon Plasma with Charm. Phys. Lett. B 2010, 690, 477–482. [Google Scholar] [CrossRef] [Green Version]
- Bialas, A. Fluctuations of string tension and transverse mass distribution. Phys. Lett. B 1999, 466, 301–304. [Google Scholar] [CrossRef] [Green Version]
- Steinke, S.; Rafelski, J. Quantum collective QCD string dynamics. J. Phys. G 2006, 32, S455–S460. [Google Scholar] [CrossRef]
- Shifman, M.A.; Vainshtein, A.I.; Zakharov, V.I. QCD and Resonance Physics: Sum Rules. Nucl. Phys. B 1979, 147, 385. [Google Scholar] [CrossRef]
- Shifman, M.A.; Vainshtein, A.I.; Zakharov, V.I. QCD and Resonance Physics: Applications. Nucl. Phys. B 1979, 147, 448. [Google Scholar] [CrossRef]
- Romatschke, P.; Son, D.T. Spectral sum rules for the quark-gluon plasma. Phys. Rev. D 2009, 80, 065021. [Google Scholar] [CrossRef]
- Meyer, H.B. Finite Temperature Sum Rules in Lattice Gauge Theory. Nucl. Phys. B 2008, 795, 230. [Google Scholar] [CrossRef] [Green Version]
- Michael, C. Lattice Sum Rules. Nucl. Phys. B 1987, 280, 13. [Google Scholar] [CrossRef] [Green Version]
- Rothe, H.J. A Novel Look at the Michael Lattice Sum Rules. Phys. Lett. B 1995, 355, 260. [Google Scholar] [CrossRef] [Green Version]
- Michael, C. Lattice sum rules for the color fields. Phys. Rev. D 1996, 53, 4102. [Google Scholar] [CrossRef] [Green Version]
- Rothe, H.J. Lattice energy sum rule and the trace anomaly. Phys. Lett. B 1995, 364, 227. [Google Scholar] [CrossRef] [Green Version]
- Feuerbacher, B. Perturbative check of the energy lattice sum rule. Nucl. Phys. B 2003, 674, 484. [Google Scholar] [CrossRef]
- Agasian, N.O. Low temperature relations in QCD. Phys. Atom. Nucl. 2004, 67, 391–395. [Google Scholar] [CrossRef] [Green Version]
- Agasian, N.O. Nonperturbative vacuum and condensates in QCD below thermal phase transition. Phys. Lett. B 2001, 519, 71–77. [Google Scholar] [CrossRef]
- Dosch, H.G.; Nachtmann, O.; Rueter, M. String Formation in the Model of the Stochastic Vacuum and Consistency with Low-Energy Theorems. arXiv 1995, arXiv:hep-ph/9503386. [Google Scholar]
- Boyd, G.; Engels, J.; Karsch, F.; Laermann, E.; Legeland, C.; Lutgemeier, M.; Petersson, B. Thermodynamics of SU(3) Lattice Gauge Theory. Nucl. Phys. B 1996, 469, 419. [Google Scholar] [CrossRef] [Green Version]
- Engels, J.; Fingberg, J.; Redlich, K.; Satz, H.; Weber, M. The Onset of Deconfinement in SU(2) Lattice Gauge Theory. Z. Phys. C 1989, 42, 341. [Google Scholar] [CrossRef]
- Engels, J.; Karsch, F.; Satz, H.; Montvay, I. High Temperature SU(2) Gluon Matter on the Lattice. Phys. Lett. B 1981, 101, 89. [Google Scholar] [CrossRef] [Green Version]
- Karsch, F. SU(N) Gauge Theory Couplings on Asymmetric Lattices. Nucl. Phys. B 1982, 205, 285. [Google Scholar] [CrossRef] [Green Version]
- Bachas, C. Concavity of the Quarkonium Potential. Phys. Rev. D 1986, 33, 2723. [Google Scholar] [CrossRef]
- Casimir, H.B.G. On the Attraction Between Two Perfectly Conducting Plates. Proc. Kom. Ned. Akad. Wetensch. B 1948, 51, 793. [Google Scholar]
- Casimir, H.B.G.; Polder, D. The Influence of Retardation on the London-van der Waals Forces. Phys. Rev. 1948, 73, 360. [Google Scholar] [CrossRef]
- Lee, I.; Park, K.; Lee, J. Precision density and volume contraction measurements of ethanol–water binary mixtures using suspended microchannel resonators. Sens. Actuators A 2013, 194, 62. [Google Scholar] [CrossRef]
- Noronha, J. The Heavy Quark Free Energy in QCD and in Gauge Theories with Gravity Duals. Phys. Rev. D 2010, 82, 065016. [Google Scholar] [CrossRef] [Green Version]
- Kaczmarek, O.; Zantow, F. Static quark anti-quark interactions in zero and finite temperature QCD. I: Heavy quark free energies, running coupling and quarkonium binding. Phys. Rev. D 2005, 71, 114510. [Google Scholar] [CrossRef] [Green Version]
- Kaczmarek, O.; Karsch, F.; Laermann, E.; Lutgemeier, M. Heavy quark potentials in quenched QCD at high temperature. Phys. Rev. D 2000, 62, 034021. [Google Scholar] [CrossRef] [Green Version]
- Laine, M.; Philipsen, O.; Romatschke, P.; Tassler, M. Real-time static potential in hot QCD. JHEP 2007, 03, 054. [Google Scholar] [CrossRef] [Green Version]
- Wolschin, G. Aspects of Relativistic Heavy-Ion Collisions. Universe 2020, 6, 61. [Google Scholar] [CrossRef]
- Bazavov, A.; Weber, J.H. Color Screening in Quantum Chromodynamics. Prog. Part. Nucl. Phys. 2020, 2020, 103823. [Google Scholar] [CrossRef]
- Mocsy, A.; Petreczky, P. Heavy quarkonia survival in potential model. Eur. Phys. J. C 2005, 43, 77. [Google Scholar] [CrossRef] [Green Version]
- Mateu, V.; Ortega, P.G.; Entem, D.R.; Fernández, F. Calibrating the Naïve Cornell Model with NRQCD. Eur. Phys. J. C 2019, 79, 323. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chernodub, M.N. Conformal Anomaly in Yang-Mills Theory and Thermodynamics of Open Confining Strings. Universe 2020, 6, 202. https://doi.org/10.3390/universe6110202
Chernodub MN. Conformal Anomaly in Yang-Mills Theory and Thermodynamics of Open Confining Strings. Universe. 2020; 6(11):202. https://doi.org/10.3390/universe6110202
Chicago/Turabian StyleChernodub, Maxim N. 2020. "Conformal Anomaly in Yang-Mills Theory and Thermodynamics of Open Confining Strings" Universe 6, no. 11: 202. https://doi.org/10.3390/universe6110202
APA StyleChernodub, M. N. (2020). Conformal Anomaly in Yang-Mills Theory and Thermodynamics of Open Confining Strings. Universe, 6(11), 202. https://doi.org/10.3390/universe6110202