Saturation of Energy Levels of the Hydrogen Atom in Strong Magnetic Field
Abstract
:1. Introduction
2. Spectrum Equation for Lower Even-Energy Levels
2.1. Preliminaries
2.2. Non-Relativistic Wave Equations, Diagonal Approximation and Effective Potential
2.3. Finding the Spectrum
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shabad, A.E.; Usov, V.V. Modified Coulomb Law in a Strongly Magnetized Vacuum. Phys. Rev. Lett. 2007, 98, 180403. [Google Scholar] [CrossRef] [Green Version]
- Shabad, A.E.; Usov, V.V. Electric field of a pointlike charge in a strong magnetic field and ground state of a hydrogenlike atom. Phys. Rev. D 2008, 77, 025001. [Google Scholar] [CrossRef] [Green Version]
- Loudon, R. One-Dimensional Hydrogen Atom. Am. J. Phys. 1959, 27, 649. [Google Scholar] [CrossRef]
- Elliot, R.J.; Loudon, R.J. Theory of the absorption edge in semiconductors in a high magnetic field. J. Phys. Chem. Solids 1960, 15, 196. [Google Scholar] [CrossRef]
- Schiff, L.I.; Snyder, H. Theory of the Quadratic Zeeman Effect. Phys. Rev. 1939, 55, 59. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshits, E.M. Quantum Mechanics; Pergamon Press: Oxford, UK, 1991. [Google Scholar]
- Batalin, I.A.; Shabad, A.E. Photon green function in a stationary homogeneous field of the most general form. Zh. Eksp. Teor. Fiz. 1971, 60, 894. [Google Scholar]
- Shabad, A.E. Cyclotronic resonance in the vacuum polarization. Lett. Nuovo Cimento 1972, 3, 457. [Google Scholar] [CrossRef]
- Tsai, W.Y. Vacuum polarization in homogeneous magnetic fields. Phys. Rev. D 1974, 10, 2699. [Google Scholar] [CrossRef]
- Baier, V.N.; Katkov, V.M.; Strakhovenko, V.M. Operator approach to quantum electrodynamics in an external field. Electron loops. ZhETF 1975, 68, 403. [Google Scholar]
- Shabad, A.E. Photon dispersion in a strong magnetic field. Ann. Phys. (N. Y.) 1975, 90, 166. [Google Scholar] [CrossRef]
- Shabad, A.E. Polarization of the Vacuum and a Quantum Relativistic Gas in an External Field; Nova Science Publishers: New York, NY, USA, 1991. [Google Scholar]
- Melrose, D.B.; Stoneham, R.J. Vacuum polarization and photon propagation in a magnetic field. Nuovo Cimento 1977, 32, 435. [Google Scholar] [CrossRef]
- Skobelev, V.V. Polarization operator of a photon in a superhigh magnetic field. Izv. Vissh. Uchebn. Zav. Fiz. (Sov. Phys. J.) 1975, 10, 142. [Google Scholar]
- Loskutov, Y.M.; Skobelev, V.V. Nonlinear electrodynamics in a superstrong magnetic field. Phys. Lett. A 1976, 56, 151. [Google Scholar] [CrossRef]
- Sadooghi, N.; Jalili, A.S. New look at the modified Coulomb potential in a strong magnetic field. Phys. Rev. D 2007, 76, 065013. [Google Scholar] [CrossRef] [Green Version]
- Erber, N. High-Energy Electromagnetic Conversion Processes in Intense Magnetic Fields. Rev. Mod. Phys. 1966, 38, 626. [Google Scholar] [CrossRef]
- Bialyniska-Birula, Z.; Bialyniski-Birula, I. Nonlinear Effects in Quantum Electrodynamics. Photon Propagation and Photon Splitting in an External Field. Phys. Rev. D 1970, 2, 2341. [Google Scholar] [CrossRef]
- Machet, B.; Vysotsky, M.I. Modification of Coulomb law and energy levels of the hydrogen atom in a superstrong magnetic field. Phys. Rev. D 2011, 83, 025022. [Google Scholar] [CrossRef] [Green Version]
- Karnakov, B.M.; Popov, V.S. A hydrogen atom in a superstrong magnetic field and the Zeldovich effect. J. Exp. Theor. Phys. 2003, 97, 890. [Google Scholar] [CrossRef]
- Popov, V.S.; Karnakov, B.M. On the spectrum of the hydrogen atom in an ultrastrong magnetic field. J. Exp. Theor. Phys. 2012, 114, 1. [Google Scholar] [CrossRef]
- Popov, V.S.; Karnakov, B.M. Hydrogen atom in a strong magnetic field. Phys. Usp. 2014, 57, 257. [Google Scholar] [CrossRef]
- Godunov, S.I.; Vysotsky, M.I. Dependence of the atomic energy levels on a superstrong magnetic field with account of a finite nucleus radius and mass. Phys. Rev. D 2013, 87, 124035. [Google Scholar] [CrossRef] [Green Version]
- Greiner, W.; Reinhardt, J. Quantum Electrodynamics; Springer: Berlin, Germany, 1992. [Google Scholar]
- Oraevskii, V.N.; Rez, A.I.; Semikoz, V.B. Spontaneous production of positrons by a Coulomb center in a homogeneous magnetic field. Zh. Eksp. Teor. Fiz. 1977, 72, 820. [Google Scholar]
- Heisenberg, W.; Euler, H. Folgerungen aus der Diracschen Theorie des Positrons. Z. Phys. 1936, 98, 714. [Google Scholar] [CrossRef]
- Heyl, J.S.; Hernquist, L. Birefringence and dichroism of the QED vacuum. J. Phys. A 1997, 30, 6485. [Google Scholar] [CrossRef] [Green Version]
- Adorno, T.C.; Gitman, D.M.; Shabad, A.E. Coulomb field in a constant electromagnetic background. Phys. Rev. D 2016, 93, 125031. [Google Scholar] [CrossRef] [Green Version]
- Ritus, V.I. Issues in Intense-Field Quantum Electrodynamics; Nova Science Publ.: New York, NY, USA, 1987. [Google Scholar]
- Shabad, A.E.; Usov, V.V. Effective Lagrangian in nonlinear electrodynamics and its properties of causality and unitarity. Phys. Rev. D 2011, 83, 105006. [Google Scholar] [CrossRef] [Green Version]
- Villalba-Chávez, S.; Shabad, A.E. QED with an external field: Hamiltonian treatment of Lorentz-non-invariant background as an anisotropic medium. Phys. Rev. D 2012, 86, 105040. [Google Scholar] [CrossRef] [Green Version]
- Gitman, D.M.; Shabad, A.E. Nonlinear (magnetic) correction to the field of a static charge in an external field. Phys. Rev. D 2012, 86, 125028. [Google Scholar] [CrossRef] [Green Version]
- Schwinger, S. On Gauge Invariance and Vacuum Polarization. Phys. Rev. 1951, 82, 664. [Google Scholar] [CrossRef]
- Dittrich, W.; Reuter, M. Effective Lagrangians in Quantum Electrodynamics; Lecture Notes in Physics; Springer: Berlin, Germany, 1985. [Google Scholar]
- Dittrich, W.; Gies, H. Probing the Quantum Vacuum, Perturbative Effective Action Approach in Quantum Electrodynamics and Its Applications; Springer Tracts in Modern Physics; Springer: Berlin, Germany, 2000. [Google Scholar]
- Elizalde, E. Ten Physical Applications of Spectral Zeta Functions, 2nd ed.; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2012; Volume 855. [Google Scholar]
- Kirsten, K. Spectral Functions in Mathematics and Physics; Chapman & Hall/CRC: Boca Raton, FL, USA, 2002. [Google Scholar]
- Dunne, G.V. From Fields to Strings: Circumnavigating Theoretical Physics; Shifman, M., Vainshtein, A., Wheater, J., Eds.; World Scientific: Singapore, 2005; pp. 445–522. [Google Scholar]
- Karbstein, F.; Shaisultanov, R. Photon propagation in slowly varying inhomogeneous electromagnetic fields. Phys. Rev. D 2015, 91, 085027. [Google Scholar] [CrossRef] [Green Version]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. NIST Handbook of Mathematical Functions; Cambridge University Press: New York, NY, USA, 2010. [Google Scholar]
- Ritus, V.I. Lagrangian of an intense electromagnetic field and quantum electrodynamics at short distances. Zh. Eksp. Teor. Fiz. 1975, 69, 1517. [Google Scholar]
- Ritus, V.I. Connection between strong-field quantum electrodynamics with short-distance quantum electrodynamics. Zh. Eksp. Teor. Fiz. 1977, 73, 807. [Google Scholar]
- Landau, L.D.; Pomeranchuk, Y.I. On Point Interactions in Quantum Electrodynamics. Dokl. Akad. Nauk SSSR 1955, 102, 489. [Google Scholar]
- Pomeranchuk, Y.I. Zero equality of renormalized charge in quantum electrodynamics. Dokl. Akad. Nauk SSSR 1955, 103, 1005. [Google Scholar]
- Fradkin, E.S. The Asymptote of Green’s Function in Quantum Electrodynamics. Zh. Eksp. Teor. Fiz. 1955, 28, 750. [Google Scholar]
- The NIST Reference on Constants, Units, and Uncertainty. Available online: https://physics.nist.gov/cuu/Constants/index.html (accessed on 2 September 2020).
- Erdélyi, A. Higher Transcendental Functions; Bateman Manuscript Project; MacGraw-Hill: New York, NY, USA, 1953; Volume 1. [Google Scholar]
- Ruder, H.; Wunner, G.; Herold, H.; Geyer, F. Atoms in Strong Magnetic Fields—Quantum Mechanical Treatment and Applications in Astrophysics and Quantum Chaos; Springer: Berlin, Germany, 1994. [Google Scholar]
- Friedrich, H.; Wintgen, D. The hydrogen atom in a uniform magnetic field—An example of chaos. Phys. Rep. 1989, 183, 37. [Google Scholar] [CrossRef]
- Simola, J.; Virtamo, J. Energy levels of hydrogen atoms in a strong magnetic field. J. Phys. B At. Mol. Phys. 1978, 11, 3309. [Google Scholar] [CrossRef]
- Wunner, G.; Ruder, H. Lyman- and Balmer-like transitions for the hydrogen atom in strong magnetic fields. Astron. Astrophys. 1980, 89, 241. [Google Scholar]
- Wunner, G.; Ruder, H. Electromagnetic transitions for the hydrogen atom in strong magnetic fields. Astrophys. J. 1980, 242, 828. [Google Scholar] [CrossRef]
- Wunner, G.; Ruder, H.; Herold, A. Quality of one-configuration hartree-fock-type calculations for the H atom in arbitrary magnetic fields. Phys. Lett. A 1981, 85, 430. [Google Scholar] [CrossRef]
- Friedrich, H. Bound-state spectrum of the hydrogen atom in strong magnetic fields. Phys. Rev. A 1982, 26, 1827. [Google Scholar] [CrossRef]
- Rösner, W.; Herold, H.; Ruder, H.; Wunner, G. Approximate solution of the strongly magnetized hydrogenic problem with the use of an asymptotic property. Phys. Rev. A 1983, 28, 2071. [Google Scholar] [CrossRef]
- Ferrer, E.J.; Sanchez, A. Magnetic field effect in the fine-structure constant and electron dynamical mass. Phys. Rev. D 2019, 100, 096006. [Google Scholar] [CrossRef] [Green Version]
1. | |
2. | By critical charge of a nucleus, its value is meant when the ground state of a hydrogen-like atom treated via the Dirac equation sinks into the lower continuum, see for instance [24]. |
3. | Moreover, it can be demonstrated that this property is preserved by the polarization tensor obtained from the two-loop expression for the local effective action, as calculated in [29]. |
4. | The above expression must be understood in a special reference frame where the background is purely magnetic and where the charge distribution is at rest. Such a frame always exists, provided that the first field invariant is positive and the second identically zero. |
5. | The reference magnetic field is chosen such that the corresponding oscillator energy equals the Rydberg energy . |
6. | Hereafter, we drop the label from the wave functions for simplicity. |
7. | The dominant contribution to the integral over in (22) comes from values beneath the Landau radius , due to the exponential damping from the wave functions . |
8. | Apart from the usual gauge invariance of the eigenvalues of the Schrödinger equation with external potentials, it is worth noticing that this symmetry is preserved in Equation (25), since the dielectric permittivities depend only on field intensities, and, besides, they are obtained from the gauge-invariant (4-transverse) polarization tensor, like in [1,2,7,8,9,10,11,12,30,56]. |
9. | This is not unexpected, because the shallower the effective potential, the more it “deviates” from the Coulombian pattern at small distances, as can be seen in Figure 2. |
10. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adorno, T.C.; Gitman, D.M.; Shabad, A.E. Saturation of Energy Levels of the Hydrogen Atom in Strong Magnetic Field. Universe 2020, 6, 204. https://doi.org/10.3390/universe6110204
Adorno TC, Gitman DM, Shabad AE. Saturation of Energy Levels of the Hydrogen Atom in Strong Magnetic Field. Universe. 2020; 6(11):204. https://doi.org/10.3390/universe6110204
Chicago/Turabian StyleAdorno, Tiago C., Dmitry M. Gitman, and Anatoly E. Shabad. 2020. "Saturation of Energy Levels of the Hydrogen Atom in Strong Magnetic Field" Universe 6, no. 11: 204. https://doi.org/10.3390/universe6110204
APA StyleAdorno, T. C., Gitman, D. M., & Shabad, A. E. (2020). Saturation of Energy Levels of the Hydrogen Atom in Strong Magnetic Field. Universe, 6(11), 204. https://doi.org/10.3390/universe6110204