Comparison between the Thomas–Fermi and Hartree–Fock–Bogoliubov Methods in the Inner Crust of a Neutron Star: The Role of Pairing Correlations
Abstract
:1. Introduction
2. The Wigner–Seitz Cell
2.1. Hartree–Fock–Bogoliubov
2.2. The ETFSI Method
2.3. Choice of Functionals
Energy Minimization with ETFSI
2.4. HFB vs. ETFSI+Pairing
3. Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Neutron Condensation Energy
References
- Chamel, N.; Haensel, P. Physics of neutron star crusts. Living Rev. Relativ. 2008, 11, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reinhard, P.G.; Bender, M. Mean Field: Relativistic versus Non-relativistic. In Lectures Notes in Physics “Extended Density Functionals in Nuclear Structure Physics”; Springer: Berlin/Heidelberg, Germany, 2004; Volume 268, pp. 249–268. [Google Scholar]
- Goriely, S.; Chamel, N.; Pearson, J.M. Skyrme-Hartree-Fock-Bogoliubov Nuclear Mass Formulas: Crossing the 0.6 MeV Accuracy Threshold with Microscopically Deduced Pairing. Phys. Rev. Lett. 2009, 102, 152503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearson, J.M.; Chamel, N.; Potekhin, A.Y.; Fantina, A.F.; Ducoin, C.; Dutta, A.K.; Goriely, S. Unified Equations of State for Cold Non-Accreting Neutron Stars with Brussels–Montreal Functionals—I. Role of Symmetry Energy. Mon. Not. R. Astron. Soc. 2018, 481, 2994–3026, Erratum in 2019, 486, 768. [Google Scholar]
- Gendreau, K.C.; Arzoumanian, Z.; Okajima, T. The Neutron star Interior Composition ExploreR (NICER): An Explorer mission of opportunity for soft x-ray timing spectroscopy. Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray. Int. Soc. Opt. Photonics 2012, 8443, 844313. [Google Scholar]
- Abbott, B.P.; Abbott, R.; Abbott, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Adya, V.; et al. GW170817: Observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Most, E.R.; Weih, L.R.; Rezzolla, L.; Schaffner-Bielich, J. New constraints on radii and tidal deformabilities of neutron stars from GW170817. Phys. Rev. Lett. 2018, 120, 261103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blaschke, D.; Chamel, N. Phases of Dense Matter in Compact Stars. In The Physics and Astrophysics of Neutron Stars; Rezzolla, L., Pizzochero, P., Jones, D.I., Rea, N., Vidaña, I., Eds.; Springer International Publishing: Cham, Switzerland, 2018; Volume 457, pp. 337–400. [Google Scholar] [CrossRef] [Green Version]
- Stoecker, H.; Greiner, W. High energy heavy ion collisions—Probing the equation of state of highly excited hardronic matter. Phys. Rep. 1986, 137, 277–392. [Google Scholar] [CrossRef]
- Danielewicz, P.; Lacey, R.; Lynch, W.G. Determination of the equation of state of dense matter. Science 2002, 298, 1592–1596. [Google Scholar] [CrossRef] [Green Version]
- Steiner, A.W. Neutron star inner crust: Nuclear physics input. Phys. Rev. C 2008, 77, 035805. [Google Scholar] [CrossRef] [Green Version]
- Lattimer, J.M.; Prakash, M. The physics of neutron stars. Science 2004, 304, 536–542. [Google Scholar] [CrossRef] [Green Version]
- Alford, M.; Blaschke, D.; Drago, A.; Klähn, T.; Pagliara, G.; Schaffner-Bielich, J. Quark matter in compact stars? Nature 2007, 445, E7–E8. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, D.; Vidaña, I. Do hyperons exist in the interior of neutron stars? Eur. Phys. J. A 2016, 52, 29. [Google Scholar] [CrossRef] [Green Version]
- Vidana, I.; Bashkanov, M.; Watts, D.; Pastore, A. The d*(2380) in Neutron Stars—A New Degree of Freedom? Phys. Lett. B 2018, 781, 112–116. [Google Scholar] [CrossRef]
- Li, J.J.; Sedrakian, A.; Weber, F. Competition between delta isobars and hyperons and properties of compact stars. Phys. Lett. B 2018, 783, 234–240. [Google Scholar] [CrossRef]
- Baym, G.; Pethick, C.; Sutherland, P. The ground state of matter at high densities: Equation of state and stellar models. Astrophys. J. 1971, 170, 299. [Google Scholar] [CrossRef]
- Pearson, J.M.; Goriely, S.; Chamel, N. Properties of the Outer Crust of Neutron Stars from Hartree-Fock-Bogoliubov Mass Models. Phys. Rev. C 2011, 83, 065810. [Google Scholar] [CrossRef]
- Chamel, N.; Fantina, A.F. Binary and Ternary Ionic Compounds in the Outer Crust of a Cold Nonaccreting Neutron Star. Phys. Rev. C 2016, 94. [Google Scholar] [CrossRef]
- Negele, J.W.; Vautherin, D. Neutron star matter at sub-nuclear densities. Nucl. Phys. A 1973, 207, 298–320. [Google Scholar] [CrossRef]
- Chamel, N.; Fantina, A.; Zdunik, J.L.; Haensel, P. Neutron drip transition in accreting and nonaccreting neutron star crusts. Phys. Rev. C 2015, 91, 055803. [Google Scholar] [CrossRef] [Green Version]
- Pastore, A.; Neill, D.; Powell, H.; Medler, K.; Barton, C. Impact of statistical uncertainties on the composition of the outer crust of a neutron star. Phys. Rev. C 2020, 101, 035804. [Google Scholar] [CrossRef] [Green Version]
- Chamel, N.; Naimi, S.; Khan, E.; Margueron, J. Validity of the Wigner-Seitz approximation in neutron star crust. Phys. Rev. C 2007, 75, 055806. [Google Scholar] [CrossRef] [Green Version]
- Chamel, N. Neutron conduction in the inner crust of a neutron star in the framework of the band theory of solids. Phys. Rev. C 2012, 85, 035801. [Google Scholar] [CrossRef]
- Ring, P.; Schuck, P. The Nuclear Many-Body Problem; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Baldo, M.; Saperstein, E.; Tolokonnikov, S. The role of the boundary conditions in the Wigner–Seitz approximation applied to the neutron star inner crust. Nucl. Phys. A 2006, 775, 235–244. [Google Scholar] [CrossRef] [Green Version]
- Margueron, J.; Van Giai, N.; Sandulescu, N. Equation of state in the inner crust of neutron stars: Discusion of the unbound neutron states. In Exotic States of Nuclear Matter; Lombardo, U., Baldo, M., Burgio, F., Schulze, H.J., Eds.; World Scientific: Singapore, 2007; p. 362. [Google Scholar]
- Pastore, A.; Baroni, S.; Losa, C. Superfluid properties of the inner crust of neutron stars. Phys. Rev. C 2011, 84, 065807. [Google Scholar] [CrossRef] [Green Version]
- Pastore, A.; Shelley, M.; Baroni, S.; Diget, C. A new statistical method for the structure of the inner crust of neutron stars. J. Phys. G Nucl. Part. Phys. 2017, 44, 094003. [Google Scholar] [CrossRef] [Green Version]
- Fantina, A.F.; Zdunik, J.L.; Chamel, N.; Pearson, J.M.; Haensel, P.; Goriely, S. Crustal Heating in Accreting Neutron Stars from the Nuclear Energy-Density Functional Theory: I. Proton Shell Effects and Neutron-Matter Constraint. Astron. Astrophys. 2018, 620, A105. [Google Scholar] [CrossRef] [Green Version]
- Schuetrumpf, B.; Martínez-Pinedo, G.; Afibuzzaman, M.; Aktulga, H.M. Survey of Nuclear Pasta in the Intermediate-Density Regime: Shapes and Energies. Phys. Rev. C 2019, 100, 045806. [Google Scholar] [CrossRef] [Green Version]
- Brack, M.; Jennings, B.; Chu, Y. On the extended Thomas-Fermi approximation to the kinetic energy density. Phys. Lett. B 1976, 65, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Pearson, J.M.; Chamel, N.; Goriely, S.; Ducoin, C. Inner Crust of Neutron Stars with Mass-Fitted Skyrme Functionals. Phys. Rev. C 2012, 85, 065803. [Google Scholar] [CrossRef] [Green Version]
- Grill, F.; Margueron, J.; Sandulescu, N. Cluster structure of the inner crust of neutron stars in the Hartree-Fock-Bogoliubov approach. Phys. Rev. C 2011, 84, 065801. [Google Scholar] [CrossRef] [Green Version]
- Pearson, J.; Chamel, N.; Pastore, A.; Goriely, S. Role of proton pairing in a semimicroscopic treatment of the inner crust of neutron stars. Phys. Rev. C 2015, 91, 018801. [Google Scholar] [CrossRef]
- Mondal, C.; Viñas, X.; Centelles, M.; De, J.N. Structure and Composition of the Inner Crust of Neutron Stars from Gogny Interactions. Phys. Rev. C 2020, 102, 015802. [Google Scholar] [CrossRef]
- Shelley, M.; Pastore, A. How accurately can the Extended Thomas-Fermi method describe the inner crust of a neutron star? arXiv 2020, arXiv:2002.01839. [Google Scholar] [CrossRef]
- Pastore, A.; Margueron, J.; Schuck, P.; Viñas, X. Pairing in exotic neutron-rich nuclei near the drip line and in the crust of neutron stars. Phys. Rev. C 2013, 88, 034314. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, S.L.; Teukolsky, S.A. Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Skyrme, T. CVII. The nuclear surface. Philos. Mag. 1956, 1, 1043–1054. [Google Scholar] [CrossRef]
- Perlińska, E.; Rohoziński, S.; Dobaczewski, J.; Nazarewicz, W. Local density approximation for proton-neutron pairing correlations: Formalism. Phys. Rev. C 2004, 69, 014316. [Google Scholar] [CrossRef] [Green Version]
- Pastore, A. Superfluid properties of the inner crust of neutron stars. II. Wigner-Seitz cells at finite temperature. Phys. Rev. C 2012, 86, 065802. [Google Scholar] [CrossRef] [Green Version]
- Grammaticos, B.; Voros, A. Semiclassical approximations for nuclear hamiltonians. I. Spin-Independent Potentials. Ann. Phys. 1979, 123, 359. [Google Scholar] [CrossRef]
- Bartel, J.; Bencheikh, K. Nuclear mean fields through self-consistent semiclassical calculations. Eur. Phys. J. A-Hadron. Nucl. 2002, 14, 179–190. [Google Scholar] [CrossRef]
- Onsi, M.; Dutta, A.; Chatri, H.; Goriely, S.; Chamel, N.; Pearson, J. Semi-classical equation of state and specific-heat expressions with proton shell corrections for the inner crust of a neutron star. Phys. Rev. C 2008, 77, 065805. [Google Scholar] [CrossRef] [Green Version]
- Chabanat, E.; Bonche, P.; Haensel, P.; Meyer, J.; Schaeffer, R. A Skyrme parametrization from subnuclear to neutron star densities Part II. Nuclei far from stabilities. Nucl. Phys. A 1998, 635, 231–256. [Google Scholar] [CrossRef]
- Goriely, S.; Chamel, N.; Pearson, J. Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XIII. The 2012 atomic mass evaluation and the symmetry coefficient. Phys. Rev. C 2013, 88, 024308. [Google Scholar] [CrossRef]
- Wiringa, R.B.; Fiks, V.; Fabrocini, A. Equation of State for Dense Nucleon Matter. Phys. Rev. C 1988, 38, 1010–1037. [Google Scholar] [CrossRef] [PubMed]
- Wiringa, R.B. From Deuterons to Neutron Stars: Variations in Nuclear Many-Body Theory. Rev. Mod. Phys. 1993, 65, 231–242. [Google Scholar] [CrossRef]
- Li, Z.H.; Schulze, H.J. Neutron Star Structure with Modern Nucleonic Three-Body Forces. Phys. Rev. C 2008, 78, 028801. [Google Scholar] [CrossRef]
- Bertsch, G.; Esbensen, H. Pair correlations near the neutron drip line. Ann. Phys. 1991, 209, 327–363. [Google Scholar] [CrossRef]
- Gandolfi, S.; Illarionov, A.Y.; Fantoni, S.; Pederiva, F.; Schmidt, K. Equation of State of Superfluid Neutron Matter and the Calculation of the S 0 1 Pairing Gap. Phys. Rev. Lett. 2008, 101, 132501. [Google Scholar] [CrossRef] [Green Version]
- Bulgac, A.; Yu, Y. Renormalization of the Hartree-Fock-Bogoliubov equations in the case of a zero range pairing interaction. Phys. Rev. Lett. 2002, 88, 042504. [Google Scholar] [CrossRef] [Green Version]
- Chamel, N. Effective Contact Pairing Forces from Realistic Calculations in Infinite Homogeneous Nuclear Matter. Phys. Rev. C 2010, 82, 014313. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Lombardo, U.; Schuck, P. Screening effects in superfluid nuclear and neutron matter within Brueckner theory. Phys. Rev. C 2006, 74, 064301. [Google Scholar] [CrossRef]
- Barranco, F.; Broglia, R.; Esbensen, H.; Vigezzi, E. Role of finite nuclei on the pairing gap of the inner crust of neutron stars. Phys. Lett. B 1997, 390, 13–17. [Google Scholar] [CrossRef]
- Dean, D.; Hjorth-Jensen, M. Pairing in nuclear systems: From neutron stars to finite nuclei. Rev. Mod. Phys. 2003, 75, 607. [Google Scholar] [CrossRef] [Green Version]
- Sandulescu, N.; Van Giai, N.; Liotta, R. Superfluid properties of the inner crust of neutron stars. Phys. Rev. C 2004, 69, 045802. [Google Scholar] [CrossRef] [Green Version]
- Maurizio, S.; Holt, J.W.; Finelli, P. Nuclear pairing from microscopic forces: Singlet channels and higher-partial waves. Phys. Rev. C 2014, 90, 044003. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, G.; Pethick, C.J. Superfluid density of neutrons in the inner crust of neutron stars: New life for pulsar glitch models. Phys. Rev. Lett. 2017, 119, 062701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennemann, K.H.; Ketterson, J.B. Superconductivity: Volume 1: Conventional and Unconventional Superconductors Volume 2: Novel Superconductors; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Burrello, S.; Gulminelli, F.; Aymard, F.; Colonna, M.; Raduta, A.R. Heat Capacity of the Neutron Star Inner Crust within an Extended Nuclear Statistical Equilibrium Model. Phys. Rev. C. 2015, 92, 055804. [Google Scholar] [CrossRef]
- Pizzochero, P.M.; Viverit, L.; Broglia, R.A. Vortex-Nucleus Interaction and Pinning Forces in Neutron Stars. Phys. Rev. Lett. 1997, 79, 3347–3350. [Google Scholar] [CrossRef] [Green Version]
- Pastore, A.; Barranco, F.; Broglia, R.; Vigezzi, E. Microscopic calculation and local approximation of the spatial dependence of the pairing field with bare and induced interactions. Phys. Rev. C 2008, 78, 024315. [Google Scholar] [CrossRef] [Green Version]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Pearson, J.M.; Chamel, N.; Potekhin, A.Y. Unified Equations of State for Cold Nonaccreting Neutron Stars with Brussels-Montreal Functionals. II. Pasta Phases in Semiclassical Approximation. Phys. Rev. C 2020, 101, 015802. [Google Scholar] [CrossRef] [Green Version]
- Carreau, T.; Gulminelli, F.; Margueron, J. Bayesian analysis of the crust-core transition with a compressible liquid-drop model. Eur. Phys. J. A 2019, 55, 188. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shelley, M.; Pastore, A. Comparison between the Thomas–Fermi and Hartree–Fock–Bogoliubov Methods in the Inner Crust of a Neutron Star: The Role of Pairing Correlations. Universe 2020, 6, 206. https://doi.org/10.3390/universe6110206
Shelley M, Pastore A. Comparison between the Thomas–Fermi and Hartree–Fock–Bogoliubov Methods in the Inner Crust of a Neutron Star: The Role of Pairing Correlations. Universe. 2020; 6(11):206. https://doi.org/10.3390/universe6110206
Chicago/Turabian StyleShelley, Matthew, and Alessandro Pastore. 2020. "Comparison between the Thomas–Fermi and Hartree–Fock–Bogoliubov Methods in the Inner Crust of a Neutron Star: The Role of Pairing Correlations" Universe 6, no. 11: 206. https://doi.org/10.3390/universe6110206
APA StyleShelley, M., & Pastore, A. (2020). Comparison between the Thomas–Fermi and Hartree–Fock–Bogoliubov Methods in the Inner Crust of a Neutron Star: The Role of Pairing Correlations. Universe, 6(11), 206. https://doi.org/10.3390/universe6110206