Einstein’s Geometrical versus Feynman’s Quantum-Field Approaches to Gravity Physics: Testing by Modern Multimessenger Astronomy
Abstract
:Contents | ||||
1 | Introduction | 3 | ||
1.1 | Key Discoveries of Modern Multimessenger Astronomy.......................................................... | 4 | ||
1.1.1 | Gravitational Waves.................................................................................... | 4 | ||
1.1.2 | Imaging of Black Holes Candidates: Relativistic Jets and Disks......................................... | 5 | ||
1.1.3 | Tensions between Local and Global Cosmological Parameters.............................................. | 6 | ||
1.1.4 | Conceptual Problems of the Gravity Physics............................................................. | 7 | ||
1.2 | The Quest for Unification of of the Gravity with Other Fundamental Forces................................... | 8 | ||
1.2.1 | Future Unified Theory.................................................................................. | 8 | ||
1.2.2 | Quantum Electrodynamics as the Paradigmatic Theory..................................................... | 9 | ||
1.3 | Einstein’s Geometrical and Feynman’s Quantum-Field Gravitation Physics.................................... | 11 | ||
1.3.1 | Two Ways in Gravity Physics............................................................................ | 11 | ||
1.3.2 | Special Features of the Geometrical Approach........................................................... | 13 | ||
1.3.3 | Problem of the Gravitational Field Energy-Momentum in GRT.............................................. | 14 | ||
1.3.4 | Attempts to Resolve the Gravitational Energy-Momentum Problem in Geometrical Approach.................. | 15 | ||
1.3.5 | Special Features of the Feynman Approach............................................................... | 15 | ||
1.3.6 | Why Is QFGT Principally Different from GRT?............................................................ | 16 | ||
1.3.7 | Conceptual Tensions between Quantum Mechanics and General Relativity................................... | 18 | ||
1.3.8 | Astrophysical Tests of the Nature of Gravitational Interaction......................................... | 19 | ||
2 | Einstein’s Geometrical Gravitation Theory | 20 | ||
2.1 | Basic Principles of GRT..................................................................................... | 20 | ||
2.1.1 | The Principle of Geometrization........................................................................ | 20 | ||
2.1.2 | The Principle of Least Action.......................................................................... | 20 | ||
2.2 | Basic Equations of General Relativity....................................................................... | 21 | ||
2.2.1 | Einstein’s Field Equations............................................................................ | 21 | ||
2.2.2 | The Equation of Motion of Test Particles............................................................... | 21 | ||
2.3 | The Weak Field Approximation................................................................................ | 21 | ||
2.3.1 | The Metric Tensor...................................................................................... | 22 | ||
2.3.2 | The Field Equations.................................................................................... | 22 | ||
2.3.3 | The Equation of Motion in the Weak Field............................................................... | 23 | ||
2.4 | Major Predictions for Experiments/Observations.............................................................. | 23 | ||
2.4.1 | The Classical Relativistic Gravity Effects in the Weak Field........................................... | 23 | ||
2.4.2 | Strong Gravity Effects in GRT: Schwarzschild Metric.................................................... | 24 | ||
2.4.3 | Tolman-Oppenheimer-Volkoff Equation.................................................................... | 24 | ||
2.5 | Modifications of GRT to Aviod Field Energy Problem.......................................................... | 24 | ||
2.5.1 | Geometrical Approach without Black Holes?.............................................................. | 25 | ||
2.5.2 | The Energy-Momentum of the Space Curvature?............................................................ | 25 | ||
2.5.3 | Non-Localizability of the Gravitation Field Energy in GRT.............................................. | 26 | ||
2.5.4 | The Physical Sense of the Space/Vacuum Creation in the Expanding Universe.............................. | 28 | ||
2.5.5 | Conclusions............................................................................................ | 28 | ||
3 | Feynman’s Quantum-Field Approach to Gravitation Theory | 28 | ||
3.1 | Initial Principles.......................................................................................... | 29 | ||
3.1.1 | The Unity of the Fundamental Interactions.............................................................. | 29 | ||
3.1.2 | The Principle of Consistent Iterations................................................................. | 30 | ||
3.1.3 | The Principle of Stationary Action..................................................................... | 30 | ||
3.1.4 | Lagrangian for the Gravitational Field................................................................. | 30 | ||
3.1.5 | Lagrangian for Matter.................................................................................. | 31 | ||
3.1.6 | The Principle of Universality and Lagrangian for Interaction........................................... | 31 | ||
3.2 | Basic Equations of the Quantum-Field Gravity Theory......................................................... | 32 | ||
3.2.1 | Field Equations........................................................................................ | 32 | ||
3.2.2 | Remarkable Features of the Field Equations............................................................. | 33 | ||
3.2.3 | Scalar and Traceless Tensor Are Dynamical Fields in QFGT............................................... | 34 | ||
3.2.4 | The Energy-Momentum Tensor of the Gravity Field........................................................ | 36 | ||
3.2.5 | The Retarded Potentials................................................................................ | 37 | ||
3.3 | Equations of Motion for Test Particles...................................................................... | 37 | ||
3.3.1 | Derivation from Stationary Action Principle............................................................ | 38 | ||
3.3.2 | Static Spherically Symmetric Weak Field................................................................ | 39 | ||
3.3.3 | The Role of the Scalar Part of the Field............................................................... | 40 | ||
3.4 | Poincaré Force and Poincaré Acceleration in PN Approximation................................................ | 40 | ||
3.4.1 | The EMT Source in PN-Approximation..................................................................... | 40 | ||
3.4.2 | Relativistic Physical Sense of the Potential Energy.................................................... | 41 | ||
3.4.3 | The PN Correction Due to the Energy of the Gravity Field............................................... | 41 | ||
3.4.4 | Post-Newtonian Equations of Motion..................................................................... | 41 | ||
3.4.5 | Lagrange Function in Post-Newtonian Approximation...................................................... | 43 | ||
3.5 | Quantum Nature of the Gravity Force......................................................................... | 43 | ||
3.5.1 | Propagators for Spin-2 and Spin-0 Massive Fields....................................................... | 44 | ||
3.5.2 | Composite Structure of the Quantum Newtonian Gravity Force............................................. | 46 | ||
4 | Relativistic Gravity Experiments/Observations in QFGT | 47 | ||
4.1 | Classical Relativistic Gravity Effects...................................................................... | 47 | ||
4.1.1 | Universality of Free Fall.............................................................................. | 48 | ||
4.1.2 | Light in the Gravity Field............................................................................. | 48 | ||
4.1.3 | The Time Delay of Light Signals........................................................................ | 49 | ||
4.1.4 | Atom in Gravity Field and Gravitational Frequency Shift................................................ | 49 | ||
4.1.5 | The Pericenter Shift and Positive Energy Density of Gravity Field...................................... | 50 | ||
4.1.6 | The Lense-Thirring Effect.............................................................................. | 50 | ||
4.1.7 | The Relativistic Precession of a Gyroscope............................................................. | 50 | ||
4.1.8 | The Quadrupole Gravitational Radiation................................................................. | 51 | ||
4.2 | New QFGT Predictions Different from GRT..................................................................... | 52 | ||
4.2.1 | The Quantum Nature of the Gravity Force................................................................ | 52 | ||
4.2.2 | Translational Motion of Rotating Test Body............................................................. | 52 | ||
4.2.3 | Testing the Equivalence and Effacing Principles........................................................ | 54 | ||
4.2.4 | Scalar and Tensor Gravitational Radiation.............................................................. | 56 | ||
4.2.5 | The Binary NS System with Pulsar PSR1913+16............................................................ | 57 | ||
4.2.6 | Detection of GW Signals by Advanced LIGO-Virgo Antennas................................................ | 58 | ||
4.2.7 | The Riddle of Core Collapse Supernova Explosion........................................................ | 60 | ||
4.2.8 | Self-Gravitating Gas Configurations.................................................................... | 62 | ||
4.2.9 | Relativistic Compact Objects Instead of Black Holes.................................................... | 63 | ||
5 | Cosmology in GRT and QFGT | 66 | ||
5.1 | General Principles of Cosmology............................................................................. | 66 | ||
5.1.1 | Practical Cosmology.................................................................................... | 66 | ||
5.1.2 | Empirical and Theoretical Laws......................................................................... | 67 | ||
5.1.3 | Global Inertial Rest Frame Relative to Isotropic CMB................................................... | 67 | ||
5.1.4 | Gravitation Theory as the Basis of Cosmological Models................................................. | 68 | ||
5.2 | Friedmann’s Homogeneous Model as the Basis of the SCM...................................................... | 68 | ||
5.2.1 | Initial Assumptions: General Relativity, Homogeneity, Expanding Space.................................. | 68 | ||
5.2.2 | Friedmann’s Equations for Dark Energy and Matter...................................................... | 69 | ||
5.2.3 | Observational and Conceptual Puzzles of the SCM........................................................ | 71 | ||
5.3 | Possible Fractal Cosmological Model in the Frame of QFGT.................................................... | 73 | ||
5.3.1 | Initial Assumptions of the FGF Model................................................................... | 73 | ||
5.3.2 | Universal Cosmological Solution and Global Gravitational Redshift...................................... | 74 | ||
5.3.3 | The Structure and Evolution of the Field-Gravity Fractal Universe...................................... | 77 | ||
5.3.4 | Crucial Cosmological Tests of the Fractal Model........................................................ | 78 | ||
6 | Conclusions | 80 | ||
References | 81 |
1. Introduction
1.1. Key Discoveries of Modern Multimessenger Astronomy
- detection of the gravitational waves from coalescent relativistic compact objects by LIGO-Virgo antennas;
- imaging of the supermassive black hole candidates M87* and SgrA* by Event Horizon Telescope; and,
- establishing tensions between Local and Global cosmological parameters.
1.1.1. Gravitational Waves
1.1.2. Imaging of Black Holes Candidates: Relativistic Jets and Disks
1.1.3. Tensions between Local and Global Cosmological Parameters
1.1.4. Conceptual Problems of the Gravity Physics
1.2. The Quest for Unification of of the Gravity with Other Fundamental Forces
1.2.1. Future Unified Theory
1.2.2. Quantum Electrodynamics as the Paradigmatic Theory
- the inertial reference frames;
- the flat Minkowski space-time;
- the relativistic vector field ;
- the Least (Stationary) Action Principle;
- the conservation of charges;
- the gauge invariance principle;
- the localizable positive energy density () of the field.
- -symmetry condition;
- - localizable field energy density, positive for both static and wave field, corresponding to the positive photon energy ;
- -trace of the EMT is zero; for mass-less particles (photons);
- the EMT from action S is defined not uniquely; and,
- the EMT is gauge invariant.
1.3. Einstein’s Geometrical and Feynman’s Quantum-Field Gravitation Physics
1.3.1. Two Ways in Gravity Physics
1.3.2. Special Features of the Geometrical Approach
- the non-inertial reference frames;
- the equivalence principle and geometrization of gravity;
- the curved Riemannian space-time with metric ;
- the geodesic motion of matter and light;
- the general covariance; and,
- the geometrical extension of Stationary Action Principle.
1.3.3. Problem of the Gravitational Field Energy-Momentum in GRT
1.3.4. Attempts to Resolve the Gravitational Energy-Momentum Problem in Geometrical Approach
1.3.5. Special Features of the Feynman Approach
- the inertial reference frames;
- the flat Minkowski space-time wih metric ;
- the reducible symmetric tensor potentials with trace ;
- the universality of gravitational interaction;
- the Stationary Action Principle (Lagrangian formalism);
- the conservation law of energy-momentum tensor;
- the gauge invariance principle;
- the localizable positive energy density of the gravitational field;
- the gravitational field energy quanta as mediators of the gravity force; and
- the uncertainty principle and other quantum postulates.
1.3.6. Why Is QFGT Principally Different from GRT?
1.3.7. Conceptual Tensions between Quantum Mechanics and General Relativity
- general relativity having black hole solutions violates the simple topological structure of the Minkowski space of the quantum field theory;
- general relativity has lost the energy-momentum tensor of the gravity field together with the conservation laws, while in the Standard Model the EMT and its conservation is the direct consequences of the global symmetry of the Minkowski space.
1.3.8. Astrophysical Tests of the Nature of Gravitational Interaction
2. Einstein’s Geometrical Gravitation Theory
2.1. Basic Principles of GRT
2.1.1. The Principle of Geometrization
2.1.2. The Principle of Least Action
2.2. Basic Equations of General Relativity
2.2.1. Einstein’s Field Equations
2.2.2. The Equation of Motion of Test Particles
2.3. The Weak Field Approximation
2.3.1. The Metric Tensor
2.3.2. The Field Equations
2.3.3. The Equation of Motion in the Weak Field
2.4. Major Predictions for Experiments/Observations
2.4.1. The Classical Relativistic Gravity Effects in the Weak Field
- universality of free fall for non-rotating bodies,
- the deflection of light by massive bodies,
- gravitational frequency-shift,
- the time delay of light signals,
- the perihelion shift of a planet,
- the Lense–Thirring effect,
- the geodetic precession of a gyroscope, and
- the emission and detection of the quadrupole gravitational waves.
2.4.2. Strong Gravity Effects in GRT: Schwarzschild Metric
2.4.3. Tolman-Oppenheimer-Volkoff Equation
2.5. Modifications of GRT to Aviod Field Energy Problem
- the physical sense of the energy-momentum of the space curvature,
- the physical sense of the black hole horizon and singularity, and
- the physical sense of the space creation in the expanding Universe.
2.5.1. Geometrical Approach without Black Holes?
2.5.2. The Energy-Momentum of the Space Curvature?
2.5.3. Non-Localizability of the Gravitation Field Energy in GRT
Attempts to Overcome the Energy Problem by Using Simultaneously Minkowski and Riemannian Spaces
Absence of the Required EMT Physical Properties in the Metric Gravity Theories
- symmetry, ;
- positive localizable energy density, ; and,
- zero trace for massless fields, .
2.5.4. The Physical Sense of the Space/Vacuum Creation in the Expanding Universe
2.5.5. Conclusions
3. Feynman’s Quantum-Field Approach to Gravitation Theory
3.1. Initial Principles
3.1.1. The Unity of the Fundamental Interactions
- the inertial reference frames and Minkowski space with metric ;
- the reducible symmetric second rank tensor potential ;
- two irreducible parts which correspond to spin-2 and spin-0 (trace) fields;
- the Lagrangian formalism and Stationary Action principle;
- the principle of consistent iterations;
- the universality of gravitational interaction;
- the conservation law of the energy-momentum;
- the gauge invariance of the linear field equations;
- the positive localizable energy density and zero trace of the gravity field EMT;
- the quanta of the field energy as the mediators of the gravity force; and,
- the uncertainty principle and other quantum postulates.
3.1.2. The Principle of Consistent Iterations
3.1.3. The Principle of Stationary Action
3.1.4. Lagrangian for the Gravitational Field
3.1.5. Lagrangian for Matter
3.1.6. The Principle of Universality and Lagrangian for Interaction
3.2. Basic Equations of the Quantum-Field Gravity Theory
3.2.1. Field Equations
3.2.2. Remarkable Features of the Field Equations
3.2.3. Scalar and Traceless Tensor Are Dynamical Fields in QFGT
3.2.4. The Energy-Momentum Tensor of the Gravity Field
3.2.5. The Retarded Potentials
3.3. Equations of Motion for Test Particles
3.3.1. Derivation from Stationary Action Principle
3.3.2. Static Spherically Symmetric Weak Field
3.3.3. The Role of the Scalar Part of the Field
3.4. Poincaré Force and Poincaré Acceleration in PN Approximation
3.4.1. The EMT Source in PN-Approximation
3.4.2. Relativistic Physical Sense of the Potential Energy
3.4.3. The PN Correction Due to the Energy of the Gravity Field
3.4.4. Post-Newtonian Equations of Motion
3.4.5. Lagrange Function in Post-Newtonian Approximation
3.5. Quantum Nature of the Gravity Force
3.5.1. Propagators for Spin-2 and Spin-0 Massive Fields
3.5.2. Composite Structure of the Quantum Newtonian Gravity Force
4. Relativistic Gravity Experiments/Observations in QFGT
4.1. Classical Relativistic Gravity Effects
- universality of free fall for non-rotating bodies,
- the deflection of light by massive bodies,
- gravitational frequency-shift,
- the time delay of light signals,
- the perihelion shift of a planet,
- the Lense–Thirring effect,
- the geodetic precession of a gyroscope, and
- the quadrupole gravitational radiation.
4.1.1. Universality of Free Fall
4.1.2. Light in the Gravity Field
4.1.3. The Time Delay of Light Signals
4.1.4. Atom in Gravity Field and Gravitational Frequency Shift
4.1.5. The Pericenter Shift and Positive Energy Density of Gravity Field
4.1.6. The Lense-Thirring Effect
4.1.7. The Relativistic Precession of a Gyroscope
4.1.8. The Quadrupole Gravitational Radiation
4.2. New QFGT Predictions Different from GRT
4.2.1. The Quantum Nature of the Gravity Force
4.2.2. Translational Motion of Rotating Test Body
4.2.3. Testing the Equivalence and Effacing Principles
- does not depend on the rest mass of the test body, and
- does depend on its velocity (both on value and direction) and on the value of the gravitational potential at the location of the body.
4.2.4. Scalar and Tensor Gravitational Radiation
4.2.5. The Binary NS System with Pulsar PSR1913+16
4.2.6. Detection of GW Signals by Advanced LIGO-Virgo Antennas
4.2.7. The Riddle of Core Collapse Supernova Explosion
4.2.8. Self-Gravitating Gas Configurations
4.2.9. Relativistic Compact Objects Instead of Black Holes
5. Cosmology in GRT and QFGT
5.1. General Principles of Cosmology
5.1.1. Practical Cosmology
5.1.2. Empirical and Theoretical Laws
- experimentally measured empirical laws, and
- logically inferred theoretical laws.
- the cosmological redshift-distance law ,
- the thermal law of isotropic cosmic background radiation , and
- the power-law correlation of galaxy clustering. .
5.1.3. Global Inertial Rest Frame Relative to Isotropic CMB
5.1.4. Gravitation Theory as the Basis of Cosmological Models
5.2. Friedmann’s Homogeneous Model as the Basis of the SCM
5.2.1. Initial Assumptions: General Relativity, Homogeneity, Expanding Space
- General relativity can be applied to the whole Universe (; ; ).
- Homogeneity and isotropy of matter distribution in the expanding Universe (; ).
- Laboratory physics works in the expanding space.
- Inflation in the early universe is needed for explanation of the flatness, isotropy and initial conditions of large scale structure formation.
5.2.2. Friedmann’s Equations for Dark Energy and Matter
- Cosmological redshift is the Lemaitre effect and the linear expansion velocity-distance relation is the consequence of the space expansion of the homogeneous Universe.
- Cosmic microwave background radiation is the result of the photon gas cooling in the expanding space and the CMBR temperature is .
- Small anisotropy of the CMBR is determined by the initial spectrum of density fluctuations which are the source of the large scale structure of the Universe.
- The physics of the expanding Universe is described by the LCDM model which predicts the following matter budget at present epoch: 70% of unobservable in lab dark energy, 25% unknown nonbaryonic cold dark matter, 5% ordinary matter. Visible galaxies contribution is less than 0.5%.
5.2.3. Observational and Conceptual Puzzles of the SCM
- Absurd Universe. The visible matter of the Universe, the part which we can actually observe, is a surprisingly small (about 0.5%) piece of the predicted matter content and this looks like an “Absurd Universe” [246]. What is more, about 95% of the cosmological matter density, which determine the dynamics of the whole Universe has unknown physical nature. Turner [229] emphasized that modern SCM predicts with high precision the values for dark energy and nonbaryonic cold dark matter, but “we have to make sense to all this”.
- The cosmological constant problem. One of the most serious problem of the LCDM model is that the observed value of the cosmological constant Λ is about 120 orders of magnitude smaller than the expectation from the physical vacuum (as discussed by Weinberg [247] and Clifton et al. [7]). In fact, the critical density of the universe is g/cm3, while the Planck vacuum has g/cm3.
- The cold dark matter crisis on galactic and subgalactic scales. There are number of problems with predicting behavior of baryonic and nonbaryonic matter within galaxies. It was discussed by Kroupa [54] that there are discrepancies between observed and predicted galaxy density profiles (the cusp problem), small number of observed satellites galaxies (missing satellites problem), and observed tight correlation between dark matter and baryons in galaxies, which is not expected within LCDM galaxy formation theory.
- The LCDM crisis at super-large scales. The most recent observational facts which contradict the LCDM picture of the large scale structure formation, come from: the 2MASS, 2dF, and SDSS galaxy redshift surveys (Sylos Labini [55]), problems with observations of baryon acoustic oscillations (Sylos Labini et al. [245]), existence of structures with sizes ∼ 400 Mpc/h in the local Universe (Gott et al. [248], Tully et al. [51], and Pomarede et al. [48]) and ∼1000 Mpc/h structures in the spatial distribution of distant galaxies, quasars, and gamma-ray bursts (Nabokov & Baryshev [249], Clowes et al. [56], Einasto et al. [250], and Horvath et al. [57]), existence of old galaxies, and supermassive black holes in quasars at redshift up to (Dolgov [60], Yang et al. [61], alternative interpretation of the shape of the CMBR correlation function (Lopez-Corredoira & Gabrielli [251]), lack of CMBR power at angular scales larger 60 degrees and correlation of CMBR quadrupole with ecliptic plain (Copi et al. [252]).
- Vacuum energy paradox: in the framework of the Einstein’s geometrical gravity theory (GRT) there is the paradox of too small value of the Lambda term, considered as the physical vacuum [247].
- 1st Harrison’s paradox (“energy-momentum non-conservation”): physics of space expansion contains such puzzling phenomena as continuous creation of vacuum and violation of energy-momentum conservation for matter in any comoving volume, including photon gas of cosmic background radiation [8,76,77,78,80].
- 2nd Harrison’s paradox (“motion without motion”): a galaxy cosmological velocity is conceptually different from the galaxy peculiar velocity, in particular, the cosmological redshift in expanding space is not the Doppler effect, but the Lemaitre effect is applicable to a receding galaxy, which can have velocity larger than the velocity of light (so cosmological redshift is a new physical phenomenon, which also includes the global gravitational cosmological redshift) [8,76,77,79,80].
- Hubble-deVaucouleurs’ paradox (“Hubble law is not a consequence of homogeneity”): in the expanding space the linear Hubble law is the fundamental consequence of the assumed homogeneity, however modern observations reveal existence of strongly inhomogeneous (power-law correlated) large-scale galaxy distribution at interval of scales Mpc, where the linear Hubble law is firmly established, i.e., just inside inhomogeneous spatial galaxy distribution of the Local Universe [8,77,262,263,264].
5.3. Possible Fractal Cosmological Model in the Frame of QFGT
5.3.1. Initial Assumptions of the FGF Model
- the gravitational interaction is described by the Poincare covariant Feynman’s quantum-field gravitation theory in Minkowski spacetime; and,
- the total baryonic matter distribution (visible and dark) in the Local Universe is described by the stochastic fractal density law with critical fractal dimension .
5.3.2. Universal Cosmological Solution and Global Gravitational Redshift
5.3.3. The Structure and Evolution of the Field-Gravity Fractal Universe
5.3.4. Crucial Cosmological Tests of the Fractal Model
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
GRT | general relativity theory |
QFGT | quantum-field gravitation theory |
EMT | energy momentum tensor |
SCM | standard cosmological model |
CMBR | cosmic microwave background radiation |
LCDM | lambda cold dark matter (model) |
UGI | The principle of universality of gravitational interaction |
RCO | relativistic compact objects |
BH | black hole |
FGF | field gravity fractal (model) |
HdeV | Hubble−de Vaucouleurs (paradox) |
vDVZ | van Dam-Veltman-Zakharov (paradox) |
References
- Cardoso, V.; Pani, P. Testing the nature of dark compact objects: A status report. arXiv 2019, arXiv:1904.05363. [Google Scholar] [CrossRef] [Green Version]
- Ishak, M. Testing general relativity in cosmology. Living Rev. Relativ. 2018, 22, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Rham, C.; Deskins, J.T.; Tolley, A.J.; Zhou, S.-Y. Graviton mass bounds. Rev. Mod. Phys. 2017, 89, 025004. [Google Scholar] [CrossRef] [Green Version]
- Giddings, S.B. Astronomical tests for quantum black hole structure. Nat. Astron. 2017, 1, 67. [Google Scholar] [CrossRef] [Green Version]
- Debono, I.; Smoot, G.F. General Relativity and Cosmology: Unsolved Questions and Future Directions. Universe 2016, 2, 23. [Google Scholar] [CrossRef]
- De Rham, C. Massive Gravity. Living Rev. Relativ. 2014, 17, 7. [Google Scholar] [CrossRef] [Green Version]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified gravity and cosmology. Phys. Rep. 2012, 513, 1–189. [Google Scholar] [CrossRef] [Green Version]
- Baryshev, Y.V.; Teerikorpi, P. Fundamental Questions of Practical Cosmology: Exploring the Realm of Galaxies; Astrophysics and Space Science Library—Springer: Berlin/Heidelberg, Germany, 2012; Volume 383, ISBN 978-94-007-2378-8. [Google Scholar]
- Uzan, J.-P. Varying constants, Gravitation and Cosmology. arXiv 2010, arXiv:1009.5514. [Google Scholar] [CrossRef] [Green Version]
- Rubakov, V.A.; Tinyakov, P.G. Infrared-modified gravities and massive gravitons. Phys. Uspekhi. 2008, 51, 759–792. [Google Scholar] [CrossRef]
- Uzan, J.-P. The fundamental constants and their variation: Observational status and the- oretical motivations. Rev. Mod. Phys. 2003, 75, 403. [Google Scholar] [CrossRef] [Green Version]
- Hoyle, F.; Fowler, W.; Burbidge, G.; Burbidge, E. On Relativistic Astrophysics. Astrophys. J. 1964, 139, 909. [Google Scholar] [CrossRef]
- Einstein, A. Die Feldgleichungen der Gravitation. Preuss. Akad. Wiss. Berlin Sitzber. 1915, 25, 844–847. [Google Scholar]
- Hilbert, D. Die Grundlagen der Physik. Nachrichten Ges. Wiss. GöTtingen-Math.-Phys. Kl. 1915, 1915, 395–407. [Google Scholar]
- Will, C.M. The confrontation between general relativity and experiment. Living Rev. Relativ. 2014, 17, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feynman, R. Feynman Lectures on Gravitation; California Institute of Technology: Pasadena, CA, USA, 1971. [Google Scholar]
- Feynman, R.; Morinigo, F.; Wagner, W. Feynman Lectures on Gravitation; Addison-Wesley Publishing Company: Boston, MA, USA, 1995. [Google Scholar]
- Thirring, W.E. An alternative approach to the theory of gravitation. Ann. Phys. 1961, 16, 96–117. [Google Scholar] [CrossRef]
- Baryshev, Y.V. Introduction to the Tensor Field Gravitation Theory; Unpublished Lectures; Saint Petersburg State University: St. Petersburg, Russia, 1990; p. 313. (In Russian) [Google Scholar]
- Baryshev, Y.V. Spatial Distribution of Galaxies and Tests of the Relativistic Cosmology. Ph.D. Thesis, Saint Petersburg State University, St. Petersburg, Russia, 2003. (In Russian). [Google Scholar]
- Abbott, B.; Jawahar, S.; Lockerbie, N.; Tokmakov, K.; [LIGO Scientific Collaboration and Virgo Collaboration]. GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Phys. Rev. D 2016, 93, 122003. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.; Jawahar, S.; Lockerbie, N.; Tokmakov, K.; [LIGO Scientific Collaboration and Virgo Collaboration]. Publications of the LIGO Scientific Collaboration and Virgo Collaboration. Available online: https://pnp.ligo.org/ppcomm/Papers.html (accessed on 15 November 2020).
- Abbott, B.; Jawahar, S.; Lockerbie, N.; Tokmakov, K.; [LIGO Scientific Collaboration and Virgo Collaboration]. Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 2017, 848, L13. [Google Scholar] [CrossRef]
- Cervantes-Cota, J.; Galindo-Uribarri, S.; Smoot, G. A Brief History of Gravitational Waves. Universe 2016, 2, 22. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.M.; Nester, J.M.; Ni, W.T. A brief history of gravitational wave research. Chin. J. Phys. 2016, arXiv:1610.08803. [Google Scholar] [CrossRef] [Green Version]
- Maggiore, M. Gravitational Waves; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. The Classical Theory of Fields; Pergamon: Oxford, UK, 1971. [Google Scholar]
- Misner, C.; Thorne, K.; Wheeler, J. Gravitation; Freeman: San Francisco, CA, USA, 1973. [Google Scholar]
- Weisberg, J.M.; Huang, Y. Relativistic Measurements from Timing the Binary Pulsar PSR B1913+16. Astrophys. J. 2016, 829, 55. [Google Scholar] [CrossRef] [Green Version]
- Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; Baloković, M.; Barrett, J.; Bintley, D.; [The Event Horizon Telescope Collaboration]. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett. 2019, 875, L1. [Google Scholar]
- Doeleman, S.; Agol, E.; Backer, D.; Baganoff, F.; Bower, G.C.; Broderick, A.; Fabian, A.; Fish, V.; Gammie, C.; Ho, P.; et al. Imaging an Event Horizon: Submm-VLBI of a Super Massive Black Hole, Science White Paper submitted to the ASTRO2010 Decadal Review Panels. arXiv 2009, arXiv:0906.3899. [Google Scholar]
- Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; Baloković, M.; Barrett, J.; Bintley, D.; [The Event Horizon Telescope Collaboration]. First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophys. J. Lett. 2019, 875, L5. [Google Scholar]
- Doeleman, S.S.; Weintroub, J.; Rogers, A.E.; Plambeck, R.; Freund, R.; Tilanus, R.P.J.; Friberg, P.; Ziurys, L.M.; Moran, J.M.; Corey, B.; et al. Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre. Nature 2008, 455, 78–80. [Google Scholar] [CrossRef] [PubMed]
- Doeleman, S.S.; Fish, V.L.; Schenck, D.E.; Beaudoin, C.; Blundell, R.; Bower, G.C.; Broderick, A.E.; Chamberlin, R.; Freund, R.; Friberg, P.; et al. Jet Launching Structure Resolved Near the Supermassive Black Hole in M87. Science 2012, 338, 355–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falcke, H.; Markoff, S. Toward the event horizon—The supermassive black hole in the Galactic Center. Class. Quantum Gravity 2013, 30, 244003. [Google Scholar] [CrossRef] [Green Version]
- Johannsen, T.; Broderick, A.E.; Plewa, P.M.; Chatzopoulos, S.; Doeleman, S.S.; Eisenhauer, F.; Fish, V.L.; Genzel, R.; Gerhard, O.; Johnson, M.D. Testing general relativity with the shadow size of Sgr A*. arXiv 2015, arXiv:1512.02640. [Google Scholar]
- Fabian, A. The Innermost Extremes of Black Hole Accretion. arXiv 2015, arXiv:1511.08596. [Google Scholar] [CrossRef] [Green Version]
- Wilkins, D.; Gallo, L. Driving extreme variability: The evolving corona and evidence for jet launching in Markarian 335. MNRAS 2015, 454, 4440. [Google Scholar] [CrossRef] [Green Version]
- King, A.L.; Miller, J.M.; Gültekin, K.; Walton, D.J.; Fabian, A.C.; Reynolds, C.S.; Nandra, K. What is on Tap? The Role of Spin in Compact Objects and Relativistic Jets. Astrophys. J. 2013, 771, 84. [Google Scholar] [CrossRef] [Green Version]
- Verde, L.; Treu, T.; Riess, A. Tensions between the early and late Universe. Nat. Astron. 2019, 3, 891–895. [Google Scholar] [CrossRef]
- Di Valentino, E.; Melchiorri, A.; Silk, J. Planck evidence for a closed Universe and a pos- sible crisis for cosmology. Nat. Astron. 2020, 4, 196–203. [Google Scholar] [CrossRef] [Green Version]
- Di Valentino, E.; Melchiorri, A.; Silk, J. Cosmic Discordance: Planck and luminos- ity distance data exclude LCDM. arXiv 2020, arXiv:2003.04935. [Google Scholar]
- Riess, A.G. The Expansion of the Universe is Faster than Expected. Nat. Rev. Phys. 2020, 2, 10–12. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.; Mack, K.J.; Hou, L. Investigating the Hubble Constant Tension—Two Numbers in the Standard Cosmological Model. arXiv 2019, arXiv:1910.02978. [Google Scholar]
- Handley, W. Curvature tension: Evidence for a closed universe. arXiv 2019, arXiv:1908.09139. [Google Scholar]
- Peebles, P.J.E. Formation of the Large Nearby Galaxies. arXiv 2005, arXiv:2005.07588. [Google Scholar] [CrossRef]
- Benhaiem, D.; Sylos Labini, F.; Joyce, M. Long-lived transient structure in collisionless self-gravitating systems. Phys. Rev. E 2019, 99, 022125. [Google Scholar] [CrossRef] [Green Version]
- Pomarède, D.; Tully, R.B.; Graziani, R.; Courtois, H.M.; Hoffman, Y.; Lezmy, J. Cosmicflows-3: The South Pole Wall. arXiv 2020, arXiv:2007.04414. [Google Scholar]
- Tully, R.B.; Pomarède, D.; Graziani, R.; Courtois, H.M.; Hoffman, Y.; Shaya, E.J. Cosmicflows-3: Cosmography of the Local Void. Astrophys. J. 2019, 880, 24. [Google Scholar] [CrossRef]
- Hoffman, Y.; Pomarede, D.; Tully, R.B.; Courtois, H. The dipole repeller. Nat. Astron. 2017, 1, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Tully, R.B.; Courtois, H.; Hoffman, Y.; Pomarède, D. The Laniakea supercluster of galaxies. Nature 2014, 513, 71–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Courtois, H.M.; Pomarede, D.; Tully, R.B.; Hoffman, Y.; Courtois, D. Cosmography of the Local Universe. Astron. J. 2013, 146, 69. [Google Scholar] [CrossRef] [Green Version]
- Tekhanovich, D.I.; Baryshev, Y.V. Global Structure of the Local Universe according to 2MRS Survey. Astrophys. Bull. 2016, 71, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Kroupa, P.; Pawlowski, M.; Milgrom, M. The Failures of the Standard Model of Cosmology Require a New Paradigm. Int. J. Mod. Phys. D 2012, 21, 1230003. [Google Scholar] [CrossRef] [Green Version]
- Sylos Labini, F. Inhomogeneous Universe. Class. Quantum Gravity 2011, 28, 164003. [Google Scholar] [CrossRef]
- Clowes, R.G.; Harris, K.A.; Raghunathan, S.; Campusano, L.E.; Söchting, I.K.; Graham, M.J. A structure in the early Universe at z 1.3 that exceeds the homogeneity scale of the R-W concordance cosmology. Month. Not. R. Astron. Soc. 2013, 429, 2910–2916. [Google Scholar] [CrossRef] [Green Version]
- Horvath, I.; Bagoly, Z.; Hakkila, J.; Tóth, L.V. New data support the existence of the Hercules-Corona Borealis Great Wall. Astron. Astrophys. 2015, 584, A48. [Google Scholar] [CrossRef] [Green Version]
- Shirokov, S.I.; Lovyagin, N.Y.; Baryshev, Y.V.; Gorokhov, V.L. Large-Scale Fluctuations in the Number Density of Galaxies in Independent Surveys of Deep Fields. Astron. Rep. 2016, 60, 563–578. [Google Scholar] [CrossRef] [Green Version]
- Dolgov, A.D. Massive Primordial Black Holes. In Proceedings of the Multifrequency Behaviour of High Energy Cosmic Sources—XIII-MULTIF2019, Palermo, Italy, 3–8 June 2019. [Google Scholar]
- Dolgov, A.D. Massive and supermassive black holes in the contemporary and early Universe and problems in cosmology and astrophysics. Phys. Uspekhi 2018, 61, 115. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Wang, F.; Fan, X.; Hennawi, J.F.; Davies, F.B.; Yue, M.; Banados, E.; Wu, X.B.; Venemans, B.; Barth, A.; et al. Pōniuā’ena: A Luminous z = 7.5 Quasar Hosting a 1.5 Billion Solar Mass Black Hole. Astrophys. J. Lett. 2020, 897, L14. [Google Scholar] [CrossRef]
- Sandage, A. Astronomical problems for the next three decades. In The Universe at Large: Key Issues in Astronomy and Cosmology; Munch, G., Mampaso, A., Sanchez, F., Eds.; Cambridge University Press: Cambridge, UK, 1997; pp. 1–63. [Google Scholar]
- Shirokov, S.I.; Sokolov, I.V.; Lovyagin, N.Y.; Amati, L.; Baryshev, Y.V.; Sokolov, V.V.; Gorokhov, V.L. High Redshift Long Gamma-Ray Bursts Hubble Diagram as a Test of Basic Cosmological Relations. Mon. Not. R. Astron. Soc. 2020, 496, 1530–1544. [Google Scholar] [CrossRef]
- Shirokov, S.I.; Sokolov, I.V.; Vlasyuk, V.V.; Amati, L.; Sokolov, V.V.; Baryshev, Y.V. THESEUS–BTA cosmological crucial tests using Multimessenger Gamma-Ray Bursts observations. Astrophys. Bull. 2020, 73, N3. [Google Scholar] [CrossRef]
- Baryshev, Y.V. Energy-momentum of the gravitational field: Crucial point for gravitation physics and cosmology. In Proceedings of the International Conference “Problems of Practical Cosmology”, St. Petersburg, Russia, 23–27 June 2008; Volume 1, p. 276. [Google Scholar]
- Ehlers, J. General Relativity; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2007; Volume 721, pp. 91–104. [Google Scholar]
- Straumann, N. General Relativity; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Trautman, A. General Relativity Theory. Sov. Phys. Uspekhi 1966, 9, 319–339. [Google Scholar] [CrossRef]
- Einstein, A. On a stationary system with spherical symmetry Consisting of many gravitating masses. Ann. Phys. 1939, 40, 922–936. [Google Scholar] [CrossRef]
- Hawking, S. Information Preservation and Weather Forecasting for Black Holes. arXiv 2014, arXiv:1401.5761. [Google Scholar]
- Hawking, S. The Information Paradox for Black Holes. arXiv 2015, arXiv:1509.01147. [Google Scholar]
- ’t Hooft, G. Singularities, horizons, firewalls, and local conformal symmetry. In 2nd Karl Schwarzschild Meeting on Gravitational Physics; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Chowdhury, B.; Krauss, L. Hawking Evaporation is Inconsistent with a Classical Event Horizon at r = 2 M. arXiv 2014, arXiv:1409.0187. [Google Scholar]
- Miller, M.C.; Lamb, F.K.; Dittmann, A.J.; Bogdanov, S.; Arzoumanian, Z.; Gendreau, K.C.; Guillot, S.; Harding, A.K.; Ho, W.C.G.; Lattimer, J.M.; et al. PSR J0030+0451 Mass and Radius from NICER Data and Implications for the Properties of Neutron Star Matter. Astrophys. J. Lett. 2019, 887, L24. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.; Jawahar, S.; Lockerbie, N.; Tokmakov, K.; [LIGO Scientific Collaboration and Virgo Collaboration]. Model comparison from LIGO-Virgo data on GW170817’s binary components and consequences for the merger remnant. Class. Quantum Gravity 2020, 37, 045006. [Google Scholar] [CrossRef]
- Baryshev, Y.V. Expanding space: The root of conceptual problems of the cosmological physics. In Proceedings of the International Conference “Problems of Practical Cosmolog”, St. Petersburg, Russia, 23–27 June 2008; Volume 2, p. 20. [Google Scholar]
- Baryshev, Y.V. Paradoxes of the Cosmological Physics in the Beginning of the 21st Century. In Proceedings of the High Energy Physics—Particle and Astroparticle Physics, Gravitation and Cosmology-Predictions, Observations and New Projects, Moscow, Russia, 23–27 June 2014; p. 297. [Google Scholar]
- Harrison, E.R. Mining energy in an expanding universe. Astrophys. J. 1995, 446, 63–66. [Google Scholar] [CrossRef]
- Harrison, E.R. The redshift-distance and velocity-distance laws. Astrophys. J. 1993, 403, 28–31. [Google Scholar] [CrossRef]
- Harrison, E.R. Cosmology: The Science of the Universe, 2nd ed.; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Bogolubov, N.N.; Shirkov, D.V. Quantum Fields; Addison-Wesley: New York, NY, USA, 1982. [Google Scholar]
- Wilczek, F. Quantum Field Theory. Rev. Mod. Phys. 1999, 71, S85–S95. [Google Scholar] [CrossRef] [Green Version]
- Wilczek, F. Physics in 100 Years. arXiv 2015, arXiv:1503.07735. [Google Scholar] [CrossRef] [Green Version]
- Wilczek, F. Unification of Force and Substance. arXiv 2015, arXiv:1512.02094. [Google Scholar] [CrossRef] [Green Version]
- Blagojevic, M. Gravitation and Gauge Symmetries; CRC Press: Belgrade, Serbia, 1999. [Google Scholar]
- Pavsic, M. The Landscape of Theoretical Physics: A Global View; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- ’t Hooft, G. The conceptual basis of quantum field theory. In Handbook of the Philosophy of Science; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Maggiore, M. A Modern Introduction to Quantum Field Theory; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Stamatescu, I.-O.; Seiler, E. (Eds.) Approaches to Fundamental Physics; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2007; Volume 721, 415p. [Google Scholar]
- Kadomtsev, B.B. Irreversibility in quantum mechanics. Phys. Uspekhi 2003, 46, 1183. [Google Scholar] [CrossRef]
- Rauch, D.; Handsteiner, J.; Hochrainer, A.; Gallicchio, J.; Friedman, A.S.; Leung, C.; Liu, B.; Bulla, L.; Ecker, S.; Steinlechner, F.; et al. Cosmic Bell Test using Random Measurement Settings from High-Redshift Quasars. Phys. Rev. Lett. 2018, 121, 080403. [Google Scholar] [CrossRef] [Green Version]
- Erhard, M.; Krenn, M.; Zeilinger, A. Advances in high-dimensional quantum entanglement. Nat. Rev. Phys. 2020, 2, 365–381. [Google Scholar] [CrossRef]
- Wilczek, F. Origins of Mass. Cent. Eur. J. Phys. 2012, 10, 1021–1037. [Google Scholar] [CrossRef] [Green Version]
- De Sitter, W. On Einstein’s Theory of Gravitation and its Astronomical Consequences. I. Mon. Not. R. Astron. Soc. 1916, 76, 155–184. [Google Scholar] [CrossRef] [Green Version]
- Rovelli, C. Quantum Gravity; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2004. [Google Scholar]
- Schwinger, J. Particles, Sources and Fields; Addison-Wesley: Boston, MA, USA, 1973. [Google Scholar]
- Schwinger, J. Gravitons and photons: The methodological unification of the source theory. GRG 1976, 7, 251. [Google Scholar] [CrossRef]
- Barnes, K.J. Lagrangian theory for the second-rank-tensor field. J. Math. Phys. 1965, 6, 788. [Google Scholar] [CrossRef]
- Fronsdal, C. On the theory of higher spin fields. Nuovo C. 1958, 9, 416–443. [Google Scholar] [CrossRef]
- Ryder, L. Quantum Field Theory; University Kent Canterbury: Canterbury, UK, 1984. [Google Scholar]
- Sadovskii, M.V. Quantum Field Theory; Texts and Monographs in Theoretical Physics; De Gruyter: Berlin, Germany, 2019. [Google Scholar]
- Einstein, A. Die Grundlagen der allgemeinen Relativitätstheorie. Ann. Phys. 1916, 49, 769. [Google Scholar] [CrossRef] [Green Version]
- Kopeikin, S.; Efroimsky, M.; Kaplan, G. Relativistic Celestial Mechanics of the Solar System; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011. [Google Scholar]
- Schuts, B. A First Course in General Relativity; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Brumberg, V.A. Essential Relativistic Celestial Mechanics; Adam Hildger IOP Publ. Ltd.: New York NY, USA, 1991. [Google Scholar]
- Weinberg, S.E. Gravitation and Cosmology; Wiley: New York, NY, USA, 1972. [Google Scholar]
- Weinberg, S. Cosmology; Oxford University Press Inc.: New York, NY, USA, 2008. [Google Scholar]
- Zeldovich, Y.B.; Novikov, I.D. Relativistic Astrophysics; University Chicago Press: Chicago, IL, USA, 1984; Volumes 1, 2. [Google Scholar]
- Amelino-Camelia, G. Quantum theory’s last challenge. Nature 2000, 408, 661–664. [Google Scholar] [CrossRef] [Green Version]
- Poincarè, H. Sur la dynamique de l’èlectron. Comptes Rendus de l’Acadèmie des Sciences 140. 1905, pp. 1504–1508. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwj36t6RtfzsAhUqyYsBHYmMCXEQFjAAegQIBBAC&url=https%3A%2F%2Fwww.academie-sciences.fr%2Fpdf%2Fdossiers%2FPoincare%2FPoincare_pdf%2FPoincare_CR1905.pdf&usg=AOvVaw1LXKEvgWuitDhH_h6z15Zr (accessed on 12 November 2020).
- Poincarè, H. Sur la dynamique de l’èlectron. Rendiconti del Circolo matematico di Palermo 21. 1906, p. 129. Available online: https://www.sophiararebooks.com/pages/books/4926/henri-poincare/sur-la-dynamique-de-l-electron-offprint-from-rendiconti-del-circolo-matematico-di-palermo-vol-21-no (accessed on 12 November 2020).
- Birkhoff, G.D. Flat space-time and gravitation. Proc. Nat. Acad. Sci. USA 1944, 30, 324–334. [Google Scholar] [CrossRef] [Green Version]
- Moshinsky, M. On the interacting Birkhoff’s gravitational field with the electromagnetic and pair fields. Phys. Rev. 1950, 80, 514–519. [Google Scholar] [CrossRef]
- Kalman, G. Lagrangian formalism in relativistic dynamics. Phys. Rev. 1961, 123, 384. [Google Scholar] [CrossRef]
- Bronstein, M.D. Quantization of gravitational waves. J. Exp.Theor. Phys. 1936, 6, 195. [Google Scholar]
- Fierz, M.; Pauli, W. On relativistic wave equations for particles of arbitrary spin in an electromagnetic field. Proc. R. Soc. 1939, 173, 211–232. [Google Scholar]
- Ivanenko, D.D.; Sokolov, A. Quantum Gravitation Theory. Trans. Moscow University 1947, 8, 103. (In Russian) [Google Scholar]
- Gupta, S. Quantization of gravitational field. I. Proc. Phys. Soc. 1952, A65, 161. [Google Scholar] [CrossRef]
- Gupta, S. Quantization of gravitational field. II. Proc. Phys. Soc. 1952, A65, 608. [Google Scholar] [CrossRef]
- Feynman, R. Quantum theory of gravitation. Acta Phys. Pol. 1963, 24, 697–722. [Google Scholar]
- Weinberg, S. Photons and gravitons in perturbation theory: Derivation of Maxwell’s and Einstein’s equations. Phys. Rev. B 1965, 138, 988. [Google Scholar] [CrossRef] [Green Version]
- Zakharov, V.I. Spin of virtual gravitons. Zh. Eksp. Teor. Fiz. 1965, 48, 303–309. [Google Scholar]
- Ogievetsky, V.I.; Polubarinov, I.V. Interacting Field of Spin 2 and the Einstein Equations. Ann. Phys. 1965, 35, 167–208. [Google Scholar] [CrossRef]
- Baryshev, Y.V. Equations of motion of test particles in Lorentz-covariant tensor theory of gravity. Vestnik Len. Gos. University 1986, 4, 113–118. (In Russian) [Google Scholar]
- Baryshev, Y.V. Conservation laws and equations of motion in the field gravitation theory. Vestnik Len. Gos. University 1988, 2, 80–85. (In Russian) [Google Scholar]
- Baryshev, Y.V.; Sokolov, V.V. Antigravitation in gravidynamics. Hyperfine Interact. 1997, 109, 95–104. [Google Scholar] [CrossRef]
- Sokolov, V.V. Gravidynamics and Quarks; URSS: Moscow, Russia, 2019. [Google Scholar]
- Sokolov, V.V. On the Observed Mass Distribution of Compact Stellar Remnants in Close Binary Systems and Localizability of Gravitational Energy. Int. J. Astron. Astrophys. Space Sci. 2015, 2, 51–58. [Google Scholar]
- Sokolov, V.V.; Baryshev, Y.V. Field-theoretical approach to gravitation: Energy-momentum tensor of the field. Gravitatsiya Teor. Otnositel’nosti. 1980, 17, 34–42. (In Russian) [Google Scholar]
- Amelino-Camelia, G.; Lammerzahl, C.; Macias, A.; Muller, H. The search for quantum gravity signals. AIP Conf. Proc. Am. Inst. Phys. 2005, 758, 30–80. [Google Scholar]
- Bertolami, O.; Paramos, J.; Turyshev, S. General theory of relativity: Will it survive the next decade? In Lasers, Clocks and Drag-Free Control; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Baryshev, Y.V. New possibilities for observational distinction between geometrical and field gravity theories. In Proceedings of the International Conference “Problems of Practical Cosmology”, St. Petersburg, Russia, 23–27 June 2008; Volume 1, p. 347. [Google Scholar]
- Einstein, A. On Gravitational Waves. Preuss. Akad. Wiss. Berlin Sitzber. 1918, 154. Available online: https://web.archive.org/web/20160115224321/http://einstein-annalen.mpiwg-berlin.mpg.de/related_texts/sitzungsberichte (accessed on 15 November 2020).
- Einstein, A. Note on E.Schrodinger paper. Phys. Z. 1918, 19, 115. [Google Scholar]
- Schrödinger, E. The energy components of the gravitational field. Phys. Z. 1918, 19, 4. [Google Scholar]
- Bauer, H. On the energy components of the gravitational field. Phys. Z. 1918, 19, 163. [Google Scholar]
- Logunov, A.A.; Folomeshkin, V.N. Problem of energy-momentum and gravity theory. Theor. Math. Phys. 1977, 32, 291. [Google Scholar]
- Straumann, N. Reflections on gravity. arXiv 2000, arXiv:astro-ph/0006423. [Google Scholar]
- Pitts, J.B.; Schieve, W.C. Null cones in Lorentz-covariant general relativity. arXiv 2001, arXiv:gr-qc/0111004. [Google Scholar]
- Xulu, S.S. The Energy-Momentum Problem in General Relativity. arXiv 2003, arXiv:hep-th/0308070. [Google Scholar]
- Hilbert, D. Gottingen Nachrichten. 1917, 4, 21. [Google Scholar]
- Noether, E. Invariante Variationsprobleme. KöNiglich Ges. Wiss. GöTtingen Nachrichten-Math.-Phys. Kl. 1918, 2, 235–267. [Google Scholar]
- Einstein, A.; Grossmann, M. Entwerf einer verallgemeinerten Relativitatstheorie und einer Theorie der Gravitation. Zeit. Math. Phys. 1913, 62, 225–244. [Google Scholar]
- Szabados, L.B. Quasi-Local Energy-Momentum and Angular Momentum in General Relativity. Living Rev. Relativ. 2009, 12, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Logunov, A.A. The Theory of Gravitation. arXiv 2002, arXiv:gr-qc 021005. [Google Scholar]
- Logunov, A.A.; Mestvirishvili, M.A. The Relativistic Theory of Gravitation; Mir: Moscow, Russia, 1989. [Google Scholar]
- Logunov, A.A.; Mestvirishvili, M.A. The causality principle in the field theory of gravitation. arXiv 2001, arXiv:gr-qc/0106055. [Google Scholar]
- Yilmaz, H. Toward a field theory of gravitation. Nuovo C. 1992, 107, 941–960. [Google Scholar] [CrossRef]
- Babak, S.V.; Grishchuk, L.P. The energy-momentum tensor for the gravitational field. Phys. Rev. D 2000, 61, 024038. [Google Scholar] [CrossRef] [Green Version]
- Baryshev, Y.V. Field theory of gravitation: Desire and reality. Gravitation 1996, 2, 69–81. [Google Scholar]
- Wigner, E. On unitary representations of the inhomogeneous lorentz group. Ann. Math. 1939, 40, 149. [Google Scholar] [CrossRef]
- Einstein, A. Approximative Integration of the Field Equations of Gravitation. Preuss. Akad. Wiss. Berlin Sitzber. 1916, 688–696. Available online: https://ui.adsabs.harvard.edu/abs/1916SPAW.......688E (accessed on 12 November 2020).
- Deser, S. Self-interaction and gauge invariance. Gen. Relativ. Gravit. 1970, 1, 9–18. [Google Scholar] [CrossRef]
- Wigner, E. The Basic Conflict Between the Concepts of General Relativity and of Quantum Mechanics. In Part I: Particles and Fields. Part II: Foundations of Quantum Mechanics; Wightman, A.S., Ed.; The Scientific Papers; Springer: Berlin/Heidelberg, Germany, 1997; Volume A/3. [Google Scholar]
- Chiao, R. Conceptual tensions between quantum mechanics and general relativity: Are there experimental consequences? arXiv 2003, arXiv:gr-qc/0303100. [Google Scholar]
- Padmanabhan, T. From gravitons to gravity: Myth and reality. arXiv 2004, arXiv:gr-qc/0409089. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.H.; Wolszzan, A.; Damour, T.; Weisberg, J.M. Experimental constraints on strong-field relativistic gravity. Nature 1992, 355, 132–136. [Google Scholar] [CrossRef]
- Kiselev, V.V.; Logunov, A.A.; Mestvirishvili, M.A. The physical inconsistency of the Schwarzschild and Kerr solutions. Theor. Math. Phys. 2010, 164, 972–975. [Google Scholar] [CrossRef]
- Mitra, A. On the Final State of Spherical Gravitational Collapse. Found. Phys. Lett. 2002, 15, 439–471. [Google Scholar] [CrossRef]
- Gershtein, S.S.; Logunov, A.A.; Mestvirishvili, M.A. Hilbert’s causality principle and the impossibility of gravitational collapse of a nonstatic spherical body. Dokl. Phys. 2011, 56, 65–66. [Google Scholar] [CrossRef]
- Mitra, A. Radiation pressure supported stars in Einstein gravity: Eternally collapsing objects. MNRAS 2006, 369, 492–496. [Google Scholar] [CrossRef] [Green Version]
- Robertson, S.L.; Leiter, D.J. The magnetospheric eternally collapsing object (MECO) model of galactic black hole candidates and active galactic nuclei. In New Developments in Black Hole Reseach; Kreitler, P.V., Ed.; Nova Science Publisher: New York, NY, USA, 2005. [Google Scholar]
- Dymnikova, I. The cosmological term as a source of mass. Class. Quantum Gravity 2002, 19, 725–740. [Google Scholar] [CrossRef] [Green Version]
- Mazur, P.; Mottola, E. Gravitational vacuum condensate stars. Proc. Nat. Acad. Sci. USA 2004, 111, 9545–9550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapline, G. Dark energy stars. arXiv 2005, arXiv:astro-ph/0503200. [Google Scholar]
- Grischuk, L.P.; Petrov, A.N.; Popova, A.D. Exact theory of the (Einstein) gravitational field in an arbitrary background space-time. Commun. Math. Phys. 1984, 94, 379–396. [Google Scholar] [CrossRef]
- Francis, M.J.; Barnes, L.A.; James, J.B.; Lewis, G.F. Expanding Space: The Root of all Evil? Publ. Astron. Soc. Aust. 2007, 24, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Bowler, M.G. Gravitation and Relativity; Pergamon Press: Oxford, UK, 1976. [Google Scholar]
- Logunov, A.A.; Mestvirishvili, M.A.; Chugreev, Y.V. On incorrect formulations of the equivalence principle. Phys. Uspekhi. 1996, 39, 73. [Google Scholar] [CrossRef]
- Ginzburg, V.L.; Frolov, V.P. Vacuum in a homogeneous gravitational field and excitation of a uniformly accelerated detector. Sov. Phys. Uspekhi 1987, 30, 1073–1095. [Google Scholar] [CrossRef]
- Capozziello, S.; Faraoni, V. Beyond Einstein Gravity— A Survey of Gravitational Theories for Cosmology and Astrophysics; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Van Dam, H.; Veltman, M.J.G. Massive and massless Yang-Mills and gravitational fields. Nucl. Phys. 1970, 22, 397–411. [Google Scholar] [CrossRef] [Green Version]
- Zakharov, V.I. Linearized gravitation theory and the graviton mass. JETP Lett. 1970, 12, 312. [Google Scholar]
- Veltman, M. Quantum Theory of Gravitation; Balian, R., Zinn-Justin, J., Eds.; LesHouches, Session XXVIII, 1975-Methodes en Theories des Champs/Methods in Field Theory; North-Holland Publishing Company: Amsterdam, The Netherlands, 1976. [Google Scholar]
- Baryshev, Y.V.; Oschepkov, A. A solution of the van Dam-Veltman-Zakharov discontinuity problem in the frame of the Poincare-covariant field gravitation theory. arXiv 2019, arXiv:1906.07014. [Google Scholar]
- Baryshev, Y.V. On a possibility of scalar gravitational wave detection from the binary pulsar PSR1913+16. In Proceedings of the First Amaldi Conference on Gravitational Wave Experiments; Coccia, E., Pizzella, G., Ronga, F., Eds.; World Scientific Publishing Co.: Singapore, 1995; p. 251. [Google Scholar]
- Baryshev, Y.V.; Paturel, G. Statistics of the detection rates for tensor and scalar gravitational waves from the local galaxy Universe. Astron. Astrophys. 2001, 371, 378–392. [Google Scholar] [CrossRef]
- Fesik, L.E.; Baryshev, Y.V.; Sokolov, V.V.; Paturel, G. LIGO-Virgo events localization as a test of gravitational wave polarization state. arXiv 2017, arXiv:1702.03440. [Google Scholar]
- Einstein, A. Über den Einfluss der Schwerkraft auf die Ausbreitung des Lichtes. Ann. Phys. 1911, 35, 898–908. [Google Scholar] [CrossRef] [Green Version]
- Will, C.M. Theory and Experiment in Gravitational Physics; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Okun, L.B.; Selivanov, K.G.; Telegdi, V.L. Gravitation, photons, clocks. Phys. Uspekhi 1999, 42, 1045–1050. [Google Scholar] [CrossRef]
- Okun, L.B.; Selivanov, K.G.; Telegdi, V.L. On the interpretation of the redshift in a static gravitational field. Am. J. Phys. 2000, 68, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Stanford University. Gravity Probe B: Testing Einstein’s Universe, Project Homepage. Available online: Http://einstein.stanford.edu/ (accessed on 1 June 2014).
- Everitt, C.F.; DeBra, D.B.; Parkinson, B.W.; Turneaure, J.P.; Conklin, J.W.; Heifetz, M.I.; Keiser, G.M.; Silbergleit, A.S.; Holmes, T.; Kolodziejczak, J.; et al. Gravity Probe B: Final Results of a Space Experiment to Test General Relativity. Phys. Rev. Lett. 2011, 106, 221101. [Google Scholar] [CrossRef]
- Pitjeva, E.V.; Pitjev, N.P. Changes in the Sun’s mass and gravitational constant estimated using modern observations of planets and spacecraft. Sol. Syst. Res. 2012, 46, 78–87. [Google Scholar] [CrossRef]
- Pitjeva, E.V.; Pitjev, N.P. Relativistic effects and dark matter in the Solar system from observations of planets and spacecraft. Mon. Not. R. Astron. Soc. 2013, 432, 3431–3437. [Google Scholar] [CrossRef] [Green Version]
- Ragazzoni, R.; Turatto, M.; Gaessler, W. Lack of observational evidence for quantum structure of space-time at Plank scales. Astrophys. J. 2003, 587, L1–L4. [Google Scholar] [CrossRef]
- Nesvizhevsky, V.V.; Protasov, K.V. Constrains on non-Newtonian gravity from the experiment on neutron quantum states in the Earth’s gravitational field. Class. Quantum Gravity 2004, 21, 4557–4566. [Google Scholar] [CrossRef] [Green Version]
- Klimchitskaya, G.L.; Kuusk, P.; Mostepanenko, V.M. Constraints on non-Newtonian gravity and axionlike particles from measuring the Casimir force in nanometer separation range. Phys. Rev. 2020, 101, 056013. [Google Scholar] [CrossRef] [Green Version]
- Nesvizhevsky, V.V.; Börner, H.G.; Petukhov, A.K.; Abele, H.; Baeßler, S.; Rueß, F.J.; Stöferle, T.; Westphal, A.; Gagarski, A.M.; Petrov, G.A.; et al. Quantum states of neutrons in the Earth’s gravitational field. Nature 2002, 415, 297–299. [Google Scholar] [CrossRef] [PubMed]
- Nesvizhevsky, V.V.; Petukhov, A.K.; Börner, H.G.; Baranova, T.A.; Gagarski, A.M.; Petrov, G.A.; Protasov, K.V.; Voronin, A.Y.; Baeßler, S.; Abele, H.; et al. Study of the neutron quantum states in the gravity field. Eur. Phys. J. 2005, 40, 479–491. [Google Scholar] [CrossRef]
- Westphal, A.; Abele, H.; Baeßler, S.; Nesvizhevsky, V.V.; Protasov, K.V.; Voronin, A.Y. A quantum mechanical description of the experiment on the observation of gravitationally bound states. Eur. Phys. J. C 2007, 51, 367–375. [Google Scholar] [CrossRef]
- Podkletnov, E.; Nieminen, R. A possibility of gravitational force shielding by bulk YBa2Cu3O7-x superconductor. Physica C 1992, 203, 441–444. [Google Scholar] [CrossRef]
- Podkletnov, E. Weak gravitational shielding properties of composite bulk YBa2Cu3O7-x superconductor below 70K under e.m. field. arXiv 1997, arXiv:cond-mat/9701074. [Google Scholar]
- Modanese, G. Gravitational anomalies by HTC superconductors: A 1999 theoretical status report. arXiv 1999, arXiv:physics/9901011. [Google Scholar]
- Tajmar, M.; Plesescu, F.; Marhold, K.; de Matos, C.J. Experimental detection of the gravitomagnetic London moment. arXiv 2006, arXiv:gr-qc/0603033. [Google Scholar]
- Baryshev, Y.V. Translational motion of rotating bodies and tests of the equivalence principle. Gravit. Cosmol. 2002, 8, 232. [Google Scholar]
- Baryshev, Y.V. Generalized Nordtvedt Effect and Tests of the Equivalence Principle for Rotating Bodies. 2002. Available online: http://iaaras.ru/library/paper/306/ (accessed on 15 November 2020).
- Unzicker, A. Why do we Still Believe in Newton’s Law? Facts, Myths and Methods in Gravitational Physics. arXiv 2007, arXiv:gr/qc 0702009. [Google Scholar]
- Williams, J.G.; Turyshev, S.G.; Boggs, D.H. Lunar Laser Ranging Tests of the Equivalence Principle with the Earth and Moon. Int. J. Mod. Phys. D 2009, 18, 1129–1175. [Google Scholar] [CrossRef] [Green Version]
- Touboul, P.; Métris, G.; Rodrigues, M.; André, Y.; Baghi, Q.; Berge, J.; Boulanger, D.; Bremer, S.; Chhun, R.; Christophe, B.; et al. Space test of the Equivalence Principle: First results of the MICROSCOPE mission. Class. Quantum Gravity 2019, 36, 225006. [Google Scholar] [CrossRef] [Green Version]
- Baryshev, Y.V. On the gravitational radiation of the binary system with the pulsar PSR1913+16. Astrophysics 1982, 18, 93. [Google Scholar]
- Weisberg, J.M.; Taylor, J.H. The Relativistic Binary Pulsar B1913+16. ASP Conf. Proc. 2003, 302, 93. [Google Scholar]
- Weisberg, J.M.; Nice, D.J.; Taylor, J.H. Timing measurements of the relativistic binary pulsar PSR B1913+16. Astrophys. J. 2010, 722, 1030–1034. [Google Scholar] [CrossRef]
- Damour, T.; Taylor, J. On the orbital period change of the binary pulsar PSR 1913+16. Astrophys. J. 1991, 366, 501–511. [Google Scholar] [CrossRef]
- Abbott, B.; Jawahar, S.; Lockerbie, N.; Tokmakov, K.; [LIGO Scientific Collaboration and Virgo Collaboration]. The basic physics of the binary black hole merger GW150914. Ann. Phys. 2017, 529, 1600209. [Google Scholar]
- Broadhurst, T.; Diego, J.M.; Smoot, G.F. Interpreting LIGO/Virgo “Mass-Gap” events as lensed Neutron Star-Black Hole binaries. arXiv 2020, arXiv:2006.13219. [Google Scholar]
- Amaldi, E.; Pizzella, G. The search for gravitational waves. In Relativity, Quanta and Cosmology in the Development of the Scientific thought of Albert Einstein; Academic Press: Cambridge, MA, USA, 1979; p. 241. [Google Scholar]
- Baryshev, Y.V. Signals from SN1987A in Amaldi-Weber antennas as Possible detection of scalar gravitational waves. Astrophysics 1997, 40, 377. [Google Scholar] [CrossRef]
- Burrows, A. Colloquium: Perspectives on core-collapse supernova theory. Rev. Mod. Phys. 2013, 85, 245. [Google Scholar] [CrossRef] [Green Version]
- Burrows, A.; Radice, D.; Vartanyan, D.; Nagakura, H.; Skinner, M.A.; Dolence, J.C. The overarching framework of core-collapse supernova explosions as revealed by 3D FORNAX simulations. Mon. Not. R. Astron. Soc. 2020, 491, 2715–2735. [Google Scholar] [CrossRef]
- Imshennik, V.S. Rotational explosion mechanism for collapsing supernovae and the two-stage neutrino signal from supernova 1987A in the Large Magellanic Cloud. Phys. Uspekhi 2010, 53, 1121. [Google Scholar] [CrossRef]
- Paczynski, B. Gamma-Ray Burst - Supernova Relation. In Supernovae and Gamma-Ray Bursts: The Greatest Explosions Since the Big Bang; Livio, M., Panagia, N., Sahu, K., Eds.; Cambridge University Press: Cambridge, UK, 2001; p. 1. [Google Scholar]
- Dolence, J.; Burrows, A.; Zhang, W. Two-dimensional core-collapse supernova models with multi-dimensional transport. Astrophys. J. 2015, 800, 10. [Google Scholar] [CrossRef]
- Bisnovatyi-Kogan, G.S.; Moiseenko, S.G.; Ardeljan, N.V. Magnetorotational explosions of core-collapse supernovae. arXiv 2014, arXiv:1408.2395. [Google Scholar] [CrossRef] [Green Version]
- Galeotti, P.; Pizzella, G. New analysis for the correlation between gravitational wave and neutrino detectors during SN1987A. Eur. Phys. J. C 2016, 76, 426. [Google Scholar] [CrossRef] [Green Version]
- Wallace, J.; Burrows, A.; Dolence, J. Detecting the Supernova Breakout Burst in Terrestrial Neutrino Detectors. Astrophys. J. 2016, 817, 182. [Google Scholar] [CrossRef] [Green Version]
- Goddi, C.; Crew, G.; Impellizzeri, V.; Martí-Vidal, I.; Matthews, L.D.; Messias, H.; Rottmann, H.; Alef, W.; Blackburn, L.; Bronzwaer, T.; et al. First M87 Event Horizon Telescope Results and the Role of ALMA. Messenger 2019, 177, 25. [Google Scholar]
- Baryshev, Y.V. Pulsation of supermassive star in the tensor field Gravitation theory. In Variability of Blazars; Cambridge University Press: Cambridge, UK, 1992; p. 52. [Google Scholar]
- Oshepkov, S.A.; Raikov, A.A. Post-Newtonian Politrops in Alternative Gravitation Theories, Gravitation, V.1, N.1. 1995. Available online: astro.okis.ru/files/1/7/2/172962/05_oshepkov_raikov_en.pdf (accessed on 12 November 2020).
- Sokolov, V.V. The gamma-ray bursts and core-collapse supernovae-global star forming rate peaks at large redshifts. In Proceedings of the XXIX International Workshop on High Energy Physics: New Results and Actual Problems in Particle & Astroparticle Physics and Cosmology (HEPFT2013), Moscow, Russia, 26–28 June 2013. [Google Scholar]
- Sokolov, V.V.; Bisnovatyi-Kogan, G.S.; Kurt, V.G.; Gnedin, Yu.N.; Baryshev, Y.V. Observational Constraints on the Angular and Spectral Distributions of Photons in Gamma-Ray Burst Sources. Astron. Rep. 2006, 50, 612. [Google Scholar] [CrossRef] [Green Version]
- Amaldi, E.; Bonifazi, P.; Castellano, M.G.; Coccia, E.; Cosmelli, C.; Frasca, S.; Gabellieri, M.; Modena, I.; Pallottino, G.V.; Pizzella, G. Data recorded by the Rome room temperature gravitational wave antenna, during the supernova SN 1987a in the Large Magellanic Cloud. Europhys. Lett. 1987, 3, 1325–1330. [Google Scholar] [CrossRef]
- Aglietta, M.; Badino, G.; Bologna, G.; Castagnoli, C.; Castellina, A.; Dadykin, V.L.; Fulgione, W.; Galeotti, P.; Kalchukov, F.F.; Kortchaguin, B.; et al. On the event observed in the Mont Blanc Underground Neutrino Observatory during the occurrence of supernova 1987a. Europhys. Lett. 1987, 3, 1315–1320. [Google Scholar] [CrossRef]
- Astone, P.; Babusci, D.; Bassan, M.; Bonifazi, P.; Carelli, P.; Cavallari, G.; Coccia, E.; Cosmelli, C.; D’Antonio, S.; Fafone, V. Study of the coincidences between the gravitational wave detectors EXPLORER and NAUTILUS in the year 2001. Class. Quantum Gravity. 2002, 19, 5449–5463. [Google Scholar] [CrossRef]
- Baryshev, Y.V.; Kovalevski, M.A. Homogeneous ball in the field gravitation theory. Vestnik Len. Gos. University Ser.1 1990, 1, 86. (In Russian) [Google Scholar]
- Lusso, E.; Piedipalumbo, E.; Risaliti, G.; Paolillo, M.; Bisogni, S.; Nardini, E.; Amati, L. Tension with the flat LCDM model from a high redshift Hubble Diagram of supernovae, quasars and gamma-ray bursts. Astron. Astrophys. 2019, 628, L4. [Google Scholar] [CrossRef]
- Perivolaropoulos, L.; Kazantzidis, L. Hints of Modified Gravity in Cosmos and in the Lab? Int. J. Mod. Phys. D 2019, 28, 1942001. [Google Scholar] [CrossRef] [Green Version]
- Turner, M. Making sense of the new cosmology. Int. J. Mod. Phys. A 2002, 17, 180–196. [Google Scholar] [CrossRef] [Green Version]
- Sandage, A. The change of redshift and apparent luminosity of galaxies due to the deceleration of the expanding universes. Astrophys. J. 1962, 136, 319. [Google Scholar] [CrossRef]
- Liske, J.; Grazian, A.; Vanzella, E.; Dessauges, M.; Viel, M.; Pasquini, L.; Haehnelt, M.; Cristiani, S.; Pepe, F.; Avila, G.; et al. Cosmic dynamics in the era of extremely large telescopes. Mon. Not. R. Astron. Soc. 2008, 386, 1192–1218. [Google Scholar] [CrossRef] [Green Version]
- Pasquini, L.; Cristiani, S.; Dekker, H.; Haehnelt, M.; Molaro, P.; Pepe, F.; Avila, G.; Delabre, B.; D’Odorico, S.; Liske, J.; et al. CODEX: Measuring the expansion of the Universe. Messenger 2005, 122, 10. [Google Scholar]
- Koribalski, B.S.; Staveley-Smith, L.; Westmeier, T.; Serra, P.; Spekkens, K.; Wong, O.I.; Lagos, C.D.P.; Obreschkow, D.; Ryan-Weber, E.V.; Zwaan, M.; et al. WALLABY—An SKA Pathfinder HI Survey. arXiv 2020, arXiv:2002.07311. [Google Scholar]
- Hubble, E. A relation between distance and radial velocity among extra-galactic nebulae. Proc. Natl. Acad. Sci. USA 1929, 15, 168–173. [Google Scholar] [CrossRef] [Green Version]
- Sandage, A.; Reindl, B.; Tammann, G. The Linearity of the Cosmic Expansion Field from 300 to 30,000 km s-1 and the Bulk Motion of the Local Supercluster with Respect to the Cosmic Microwave Background. Astrophys. J. 2010, 714, 1441–1459. [Google Scholar] [CrossRef] [Green Version]
- Paturel, G.; Teerikorpi, P.; Baryshev, Y. Hubble law: Measure and interpretation. Found. Phys. 2017, 47, 1208–1228. [Google Scholar] [CrossRef] [Green Version]
- Lemaître, G. Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques. Ann. Soc. Sci. Brux. 1927, 47, 49. [Google Scholar]
- Peebles, P.J.E. Principles of Physical Cosmology; Princeton University Press: Princeton, USA, 1993. [Google Scholar]
- Kim, J.S. Feynman’s Current Agenda. 2020. Available online: http://www2.physics.umd.edu/~yskim/feynman/index.html (accessed on 15 November 2020).
- Milgrom, M. MOND vs. dark matter in light of historical parallels. Stud. Hist. Philos. Mod. Phys. 2020, 71, 170–195. [Google Scholar] [CrossRef] [Green Version]
- Pavsic, M. An Attempt to Resolve the Astrophysical Puzzles by Postulating Scale Degree of Freedom. Int. J. Theor. Phys. 1975, 14, 299–311. [Google Scholar] [CrossRef]
- Slosar, A.; Davis, T.; Eisenstein, D.; Hložek, R.; Ishak-Boushaki, M.; Mandelbaum, R.; Marshall, P.; Sakstein, J.; White, M. Dark Energy and Modified Gravity, Astro2020: Decadal Survey on Astronomy and Astrophysics. Science White Papers, No. 97. arXiv 2019, arXiv:1903.12016. [Google Scholar]
- Bartelmann, M.; Kozlikin, E.; Lilow, R.; Littek, C.; Fabis, F.; Kostyuk, I.; Viermann, C.; Heisenberg, L.; Konrad, S.; Geiss, D. Cosmic Structure Formation with Kinetic Field Theory. arXiv 2019, arXiv:1905.01179. [Google Scholar] [CrossRef] [Green Version]
- Gromov, A.; Baryshev, Y.; Teerikorpi, P. Two-fluid matter-quintessence FLRW models: Energy transfer and the equation of state of the universe. Astron. Astrophys. 2004, 415, 813–820. [Google Scholar] [CrossRef] [Green Version]
- Sylos Labini, F.; Vasilyev, N.L.; Baryshev, Y.V.; López-Corredoira, M. Absence of anti-correlations and of baryon acoustic oscillations in the galaxy correlation function from the Sloan Digital Sky Survey data release 7. Astron. Astrophys. 2009, 505, 981–990. [Google Scholar] [CrossRef] [Green Version]
- Turner, M. Absurd Universe. Astronomy 2003, 31, 44. [Google Scholar]
- Weinberg, S.E. The cosmological constant problem. Rev. Mod. Phys. 1989, 61, 1. [Google Scholar] [CrossRef]
- Gott, J.R., III; Jurić, M.; Schlegel, D.; Hoyle, F.; Vogeley, M.; Tegmark, M.; Bahcall, N.; Brinkmann, J. A map of the universe. Astrophys. J. 2005, 624, 463. [Google Scholar] [CrossRef]
- Nabokov, N.; Baryshev, Y. Method for analyzing the spatial distribution of galaxies on gigaparsec scales. II. Application to a grid of the HUDF-FDF-COSMOS-HDF surveys. Astrophysics 2010, 53, 101–111. [Google Scholar] [CrossRef]
- Einasto, M.; Tago, E.; Lietzen, H.; Park, C.; Heinämäki, P.; Saar, E.; Song, H.; Liivamägi, L.J.; Einasto, J. Tracing a high redshift cosmic web with quasar systems. Astron. Astrophys. 2014, 568, 46. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Corredoira, M.; Gabrielli, A. Peaks in the CMBR power spectrum. I. Mathematical analysis of the associated real space structures. Physica A 2013, 392, 474–484. [Google Scholar] [CrossRef] [Green Version]
- Copi, C.J.; Huterer, D.; Schwarz, D.J.; Starkman, G.D. Large-Angle Anomalies in the CMB. Adv. Astron. 2010, 2010, 847541. [Google Scholar] [CrossRef]
- Kaiser, N. Astronomical redshifts and the expansion of space. Mon. Not. R. Astron. Soc. 2014, 438, 2456–2465. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Corredoira, M. Non-standard models and the sociology of cosmology. Stud. Hist. Philos. Mod. Phys. 2014, 46, 86–96. [Google Scholar] [CrossRef] [Green Version]
- Davis, T. Expanding Confusion: Com- mon Misconceptions of Cosmological Horizons and the Superluminal Expansion of the Universe. Publ. Astron. Soc. Aust. 2004, 21, 97–109. [Google Scholar] [CrossRef] [Green Version]
- Davis, T. Is the Universe leaking energy? Sci. Am. 2010, 303, 38–47. [Google Scholar] [CrossRef]
- Abramowicz, M.A.; Bajtlik, S.; Lasota, J.-P.; Moudens, A. Eppur si espande. Acta Astrophys. 2007, 57, 139. [Google Scholar]
- Abramowicz, M.A. A short answer to critics of our article “Eppur si espande”. Acta Astrophys. 2009, 59, 131. [Google Scholar]
- Peacock, J.A. Cosmological Physics; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Peacock, J.A. A diatribe on expanding space. arXiv 2008, arXiv:astro-ph/0809.4573. [Google Scholar]
- Hubble, E.; Tolman, R.C. Two methods of investigating the nature of the nebular red-shift. Astrophys. J. 1935, 82, 302–337. [Google Scholar] [CrossRef]
- Baryshev, Y.V. Two fundamental cosmological laws of the Local Universe. In Cosmology on Small Scales; Krizek, M., Yurii Dumin, Y., Eds.; Institute of Mathematics CAS: Prague, Czech Republic, 2016; p. 9. [Google Scholar]
- Baryshev, Y.V.; Sylos-Labini, F.; Montuori, M.; Pietronero, L. Facts and Ideas in Modern Cosmology. Vistas Astron. 1994, 38, 419–500. [Google Scholar] [CrossRef] [Green Version]
- Baryshev, Y.V.; Sylos Labini, F.; Montuori, M.; Pietronero, L.; Teerikorpi, P. On the fractal structure of galaxy distribution and its implications for cosmology. Fractals 1998, 6, 231–243. [Google Scholar] [CrossRef] [Green Version]
- Probst, R.A.; Milaković, D.; Toledo-Padrón, B.; Curto, G.L.; Avila, G.; Brucalassi, A.; Canto Martins, B.L.; de Castro Leão, I.; Esposito, M.; Hernández, J.I.G.; et al. A crucial test for astronomical spectrograph calibration with frequency combs. arXiv 2020, arXiv:2002.08868. [Google Scholar] [CrossRef] [Green Version]
- Kopeikin, S. Celestial Ephemerides in an Expanding Universe. Phys. Rev. D 2012, 86, 064004. [Google Scholar] [CrossRef] [Green Version]
- Kopeikin, S. Local gravitational physics of the Hubble expansion. Eur. Phys. J. Plus 2015, 130, 11. [Google Scholar] [CrossRef] [Green Version]
- Baryshev, Y.V. The Hierarchical Structure of Metagalaxy—A Review of Problems. Rep.SAO Rus. Acad. Sci. 1981, 14, 24. [Google Scholar]
- Baryshev, Y.V. Field fractal cosmological model as an example of practical cosmology approach. In Proceedings of the International Conference “Problems of Practical Cosmology”, St. Petersburg, Russia, 23–27 June 2008; Volume 2, p. 60. [Google Scholar]
- Einstein, A. Kosmologiche Betrachtungen zur Allgemeinen Relativitatstheorie; Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften: Berlin, Germany, 1917; Volume 1, p. 142. [Google Scholar]
- Bondi, H. Spherically symmetrical models in general relativity. Mon. Not. R. Astron. Soc. 1947, 107, 410–425. [Google Scholar] [CrossRef] [Green Version]
- Mandelbrot, B.B. The Fractal Geometry of Nature; W.H. Freeman: New York, NY, USA, 1982. [Google Scholar]
- Gabrielli, A.; Sylos Labini, F.; Joyce, M.; Pietronero, L. Statistical Physics for Cosmic Structures; Springer: Berlin, Germany, 2005. [Google Scholar]
- Pietronero, L. The fractal structure of the Universe: Correlations of galaxies and clusters and the average mass density. Physica A 1987, 144, 257–284. [Google Scholar] [CrossRef]
- Pietronero, L.; Kuper, R. Stochastic approach to large scale clustering of matter in the universe. In Fractals in Physics; Pietronero, L., Tosatti, E., Eds.; Elsevier: Amsterdam, The Netherlands, 1986; p. 319. [Google Scholar]
- Pietronero, L.; Sylos Labini, F. Cosmological principle and the debate about large-scale structures distribution. In Birth of the Universe and Fundamental Physics; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 1995; Volume 455, pp. 17–24. [Google Scholar]
- Pietronero, L.; Montuori, M.; Sylos Labini, F. On the fractal structure of the visible universe. In Critical Dialogues in Cosmology; Turok, N., Ed.; World Scientific: Singapore, 1997; p. 24. [Google Scholar]
- Sylos Labini, F.; Montuori, M.; Pietronero, L. Scale-invariance of galaxy clustering. Phys. Rep. 1998, 293, 61–226. [Google Scholar] [CrossRef] [Green Version]
- Baryshev, Y.V.; Teerikorpi, P. Discovery of Cosmic Fractals; World Scientific: Singapore, 2002. [Google Scholar]
- Baryshev, Y.V.; Teerikorpi, P. The fractal analysis of the large-scale galaxy distribution. Bull. Spec. Astrophys. Obs. 2006, 59, 92. [Google Scholar]
- Del Popolo, A. Non-Baryonic Dark Matter in Cosmology. Int. J. Mod. Phys. D 2014, 23, 1430005. [Google Scholar] [CrossRef]
- Jacobs, D.; Starkman, G.; Lynn, B. Macro Dark Matter. MNRAS 2015, 450, 3418–3430. [Google Scholar] [CrossRef] [Green Version]
- Baryshev, Y.V.; Raikov, A.A. Note on characteristic quantities in cosmology. Astrofizika 1988, 28, 689 (rus). [Google Scholar]
- Baryshev, Y.V.; Raikov, A.A.; Sergeev, A.G.; Tron, A.A. A new approach to the large cosmological numbers coincidences. Astron. Astrophys. Trans. 1994, 5, 27–29. [Google Scholar] [CrossRef]
- Jeans, J. Astronomy and Cosmogony; Cambridge University Press: Cambridge, UK, 1929. [Google Scholar]
- Hoyle, F. On the Fragmentation of Gas Clouds Into Galaxies and Stars. Astrophys. J. 1953, 118, 513. [Google Scholar] [CrossRef]
- Schulman, L.S.; Seiden, P.E. Hierarchical structure in the distribution of galaxies. Astrophys. J. 1986, 311, 1. [Google Scholar] [CrossRef]
- Perdang, J. Self-gravitational fractal configuration. Vistas Astron. 1990, 33, 371. [Google Scholar] [CrossRef]
- De Vega, H.; S’anches, N.; Combes, F. Self-gravity as an explanation of the fractal structure of the interstellar medium. Nature 1996, 383, 56–58. [Google Scholar] [CrossRef] [Green Version]
- De Vega, H.; S’anches, N.; Combes, F. The fractal structure of the universe: A new field theory approach. Astrophys. J. 1998, 500, 8. [Google Scholar] [CrossRef] [Green Version]
- Hoyle, F. The Universe: Past and present reflections. Ann. Rev. Astron. Astrophys. 1982, 20, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Hoyle, F. Modern Cosmology in Retrospect; Cambridge University Press: Cambridge, UK, 1991; p. 221. [Google Scholar]
- Sylos Labini, F.; Tekhanovich, D.; Baryshev, Y. Spatial density fluctuations and selection effects in galaxy redshift surveys. J. Cosmol. Astropart. Phys. 2014, 7, 35. [Google Scholar] [CrossRef] [Green Version]
- De Vaucouleurs, G. The case for a hierarchical cosmology. Science 1970, 167, 1203–1212. [Google Scholar] [CrossRef]
- De Vaucouleurs, G. The large-scale distribution of galaxies and clusters of galaxies. Publ. Astron. Soc. Pac. 1971, 83, 113. [Google Scholar] [CrossRef]
- Ekholm, T.; Baryshev, Yu.; Teerikorpi, P.; Hanski, M.; Paturel, G. On the quiescence of the Hubble flow in the vicinity of the local group: A study using galaxies with distances from the Cepheid PL-relation. Astron. Astrophys. 2001, 368, L17–L20. [Google Scholar] [CrossRef]
- Karachentsev, I.D.; Makarov, D.I.; Sharina, M.E.; Dolphin, A.E.; Grebel, E.K.; Geisler, D.; Guhathakurta, P.; Hodge, P.W.; Karachentseva, V.E.; Sarajedini, A.; et al. Local galaxy flows within 5 Mpc. Astron. Astrophys. 2003, 398, 479–491. [Google Scholar] [CrossRef] [Green Version]
- Tully, R.B.; Courtois, H.M.; Sorce, J.G. Cosmicflows-3. Astron. J. 2016, 152, 50. [Google Scholar] [CrossRef] [Green Version]
- Peebles, P.J.E.; Schramm, D.N.; Turner, E.L.; Kron, R.G. The case for the relativistic hot big bang cosmology. Nature 1991, 352, 769–776. [Google Scholar] [CrossRef]
- Amati, L.; O’Brien, P.; Götz, D.; Bozzo, E.; Tenzer, C.; Frontera, F.; Ghirlanda, G.; Labanti, C.; Osborne, J.P.; Stratta, S.; et al. The THESEUS space mission concept: Science case, design and expected per- formances. Adv. Space Res. 2018, 62, 191–244. [Google Scholar] [CrossRef] [Green Version]
1 | |
2 | R.A. Hulse and J.H. Taylor won in 1993 Nobel Prize in physics for this discovery. |
3 | We use main definitions and notations similar to Landau & Lifshitz [27], so the Minkowski metric has signature , 4-dimensional tensor indices are denoted by Latin letters which take on the values 0, 1, 2, 3, and Greek letters take the values 1,2,3. |
4 | |
5 | |
6 | Also called as the de Donder gauge. |
7 | The problem of the physical meaning of coordinates in general relativity has been debated for a long time and up to now there are many opinions on the physical interpretation of the coordinate transformations in GRT. E.g., Misner, Thorne & Wheeler 1973 [28] (p. 1097) wrote that Schwarzschild coordinates are “wrong” because “physicists, astronomers and other celestial mechanics have adopted the fairly standard convention of using ’isotropic coordinates’ rather than ’Schwarzschild coordinates’ when analyzing the solar system”. |
8 | Mathematically this is because the integral is conserved only if the condition is fulfilled, while Equation (35) gives relation . |
9 | |
10 | The gage transformation (54) of the gravitational potentials can also be written as which however does not change the number of arbitrary functions because the arbitrary function can be included in 4 arbitrary new functions . |
11 | Also called as the de Donder gauge. |
12 | The decomposition and the appropriate projection operators are exhibited explicitly e.g., in Barnes [98]. |
13 | In the case of electrodynamics the conservation of 4-current lead to exclusion of 1 dof of the source of the 4-vector potentials (3), so there is no source of the scalar photons. The conservation law of EMT in QFGT restrict only four components and leaves 6 independent dofs − pure tensor and trace-scalar dynamical fields. In the metric gravity theories there is an additional condition that the trace of the metric tensor equals to constant, so the 4-scalar wave is absent. |
14 | It is important to note that to calculate the loss of energy (149) one should use in GRT an expression for the energy-momentum “pseudotensor” of the gravitational field, ill-defined in general relativity. This difficulty originated a long-time discussion about the reality of gravitational waves in GRT (Trautman 1966 [68], Cervantes-Cota et al., 2016 [24], Chen et al., 2016 [25]). |
15 | The name “leviton” was suggested by V.V. Sokolov for spin-0 scalar gravitons which corresponds to the repulsive force. |
16 | If the distance to the pulsar PSR 1913+16 has the critical value kpc, then the second term in Equation (178) equals zero. For distances this term even changes its sign. |
17 | The list of LIGO-Virgo publications see [22]. |
18 | There is more general Mandelbrot’s Cosmological Principle which states the fractality of matter distribution together with isotropy. Fractal cosmological models can be build on the basis of MCP also in the frame of GRT. |
19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baryshev, Y. Einstein’s Geometrical versus Feynman’s Quantum-Field Approaches to Gravity Physics: Testing by Modern Multimessenger Astronomy. Universe 2020, 6, 212. https://doi.org/10.3390/universe6110212
Baryshev Y. Einstein’s Geometrical versus Feynman’s Quantum-Field Approaches to Gravity Physics: Testing by Modern Multimessenger Astronomy. Universe. 2020; 6(11):212. https://doi.org/10.3390/universe6110212
Chicago/Turabian StyleBaryshev, Yurij. 2020. "Einstein’s Geometrical versus Feynman’s Quantum-Field Approaches to Gravity Physics: Testing by Modern Multimessenger Astronomy" Universe 6, no. 11: 212. https://doi.org/10.3390/universe6110212
APA StyleBaryshev, Y. (2020). Einstein’s Geometrical versus Feynman’s Quantum-Field Approaches to Gravity Physics: Testing by Modern Multimessenger Astronomy. Universe, 6(11), 212. https://doi.org/10.3390/universe6110212