The Reconstruction of Non-Minimal Derivative Coupling Inflationary Potentials
Abstract
:1. Introduction
2. The Relations
3. The Reconstruction
4. Reheating
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Starobinsky, A.A. A New Type of Isotropic Cosmological Models Without Singularity. Phys. Lett. 1980, 91B, 99–102. [Google Scholar] [CrossRef]
- Guth, A.H. The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems. Phys. Rev. D 1981, 23, 347–356. [Google Scholar] [CrossRef] [Green Version]
- Linde, A.D. Chaotic Inflation. Phys. Lett. 1983, 129B, 177–181. [Google Scholar] [CrossRef]
- Albrecht, A.; Steinhardt, P.J. Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking. Phys. Rev. Lett. 1982, 48, 1220–1223. [Google Scholar] [CrossRef]
- Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. X. Constraints on inflation. Astron. Astrophys. 2020, 641, A10. [Google Scholar] [CrossRef] [Green Version]
- Germani, C.; Kehagias, A. New Model of Inflation with Non-minimal Derivative Coupling of Standard Model Higgs Boson to Gravity. Phys. Rev. Lett. 2010, 105, 11302. [Google Scholar] [CrossRef] [Green Version]
- Germani, C.; Watanabe, Y.; Wintergerst, N. Self-unitarization of New Higgs Inflation and compatibility with Planck and BICEP2 data. J. Cosmol. Astropart. Phys. 2014, 1412, 9. [Google Scholar] [CrossRef] [Green Version]
- Horndeski, G.W. Second-order scalar-tensor field equations in a four-dimensional space. Int. J. Theor. Phys. 1974, 10, 363–384. [Google Scholar] [CrossRef]
- Sushkov, S.V. Exact cosmological solutions with nonminimal derivative coupling. Phys. Rev. D 2009, 80, 103505. [Google Scholar] [CrossRef] [Green Version]
- Yang, N.; Fei, Q.; Gao, Q.; Gong, Y. Inflationary models with non-minimally derivative coupling. Class. Quant. Grav. 2016, 33, 205001. [Google Scholar] [CrossRef] [Green Version]
- Yang, N.; Gao, Q.; Gong, Y. Inflation with non-minimally derivative coupling. Int. J. Mod. Phys. 2015, A30, 1545004. [Google Scholar] [CrossRef]
- Huang, Y.; Gong, Y.; Liang, D.; Yi, Z. Thermodynamics of scalar–tensor theory with non-minimally derivative coupling. Eur. Phys. J. C 2015, 75, 351. [Google Scholar] [CrossRef]
- Gong, Y.; Papantonopoulos, E.; Yi, Z. Constraints on scalar–tensor theory of gravity by the recent observational results on gravitational waves. Eur. Phys. J. C 2018, 78, 738. [Google Scholar] [CrossRef]
- Fu, C.; Wu, P.; Yu, H. Primordial Black Holes from Inflation with Nonminimal Derivative Coupling. Phys. Rev. D 2019, 100, 63532. [Google Scholar] [CrossRef] [Green Version]
- Oikonomou, V.; Fronimos, F. Reviving Non-Minimal Horndeski-Like Theories after GW170817: Kinetic Coupling Corrected Einstein-Gauss-Bonnet Inflation. arXiv 2020, arXiv:gr-qc/2006.05512. [Google Scholar]
- Odintsov, S.; Oikonomou, V.; Fronimos, F. Rectifying Einstein-Gauss-Bonnet Inflation in View of GW170817. Nucl. Phys. B 2020, 958, 115135. [Google Scholar] [CrossRef]
- Gialamas, I.D.; Karam, A.; Lykkas, A.; Pappas, T.D. Palatini-Higgs inflation with nonminimal derivative coupling. Phys. Rev. D 2020, 102, 063522. [Google Scholar] [CrossRef]
- Kaiser, D.I. Primordial spectral indices from generalized Einstein theories. Phys. Rev. D 1995, 52, 4295–4306. [Google Scholar] [CrossRef] [Green Version]
- Bezrukov, F.L.; Shaposhnikov, M. The Standard Model Higgs boson as the inflaton. Phys. Lett. B 2008, 659, 703–706. [Google Scholar] [CrossRef] [Green Version]
- Kallosh, R.; Linde, A.; Roest, D. Superconformal Inflationary α-Attractors. JHEP 2013, 11, 198. [Google Scholar] [CrossRef] [Green Version]
- Kallosh, R.; Linde, A. Universality Class in Conformal Inflation. J. Cosmol. Astropart. Phys. 2013, 1307, 2. [Google Scholar] [CrossRef] [Green Version]
- Kallosh, R.; Linde, A. Non-minimal Inflationary Attractors. J. Cosmol. Astropart. Phys. 2013, 1310, 33. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.G. Constraints on the spectral index for the inflation models in string landscape. Phys. Rev. D 2007, 76, 61303. [Google Scholar] [CrossRef] [Green Version]
- Gobbetti, R.; Pajer, E.; Roest, D. On the Three Primordial Numbers. J. Cosmol. Astropart. Phys. 2015, 1509, 58. [Google Scholar] [CrossRef] [Green Version]
- Mukhanov, V. Quantum Cosmological Perturbations: Predictions and Observations. Eur. Phys. J. C 2013, 73, 2486. [Google Scholar] [CrossRef] [Green Version]
- Roest, D. Universality classes of inflation. J. Cosmol. Astropart. Phys. 2014, 1401, 7. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Bellido, J.; Roest, D. Large-N running of the spectral index of inflation. Phys. Rev. D 2014, 89, 103527. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Bellido, J.; Roest, D.; Scalisi, M.; Zavala, I. Lyth bound of inflation with a tilt. Phys. Rev. D 2014, 90, 123539. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Bellido, J.; Roest, D.; Scalisi, M.; Zavala, I. Can CMB data constrain the inflationary field range? J. Cosmol. Astropart. Phys. 2014, 1409, 6. [Google Scholar] [CrossRef] [Green Version]
- Creminelli, P.; Dubovsky, S.; López Nacir, D.; Simonović, M.; Trevisan, G.; Villadoro, G.; Zaldarriaga, M. Implications of the scalar tilt for the tensor-to-scalar ratio. Phys. Rev. D 2015, 2, 123528. [Google Scholar] [CrossRef] [Green Version]
- Boubekeur, L.; Giusarma, E.; Mena, O.; Ramírez, H. Phenomenological approaches of inflation and their equivalence. Phys. Rev. D 2015, 91, 83006. [Google Scholar] [CrossRef] [Green Version]
- Barranco, L.; Boubekeur, L.; Mena, O. A model-independent fit to Planck and BICEP2 data. Phys. Rev. D 2014, 90, 63007. [Google Scholar] [CrossRef] [Green Version]
- Galante, M.; Kallosh, R.; Linde, A.; Roest, D. Unity of Cosmological Inflation Attractors. Phys. Rev. Lett. 2015, 114, 141302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiba, T. Reconstructing the inflaton potential from the spectral index. PTEP 2015, 2015, 73E02. [Google Scholar] [CrossRef] [Green Version]
- Cicciarella, F.; Pieroni, M. Universality for quintessence. J. Cosmol. Astropart. Phys. 2017, 1708, 10. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Gao, Q.; Gong, Y. The reconstruction of inflationary potentials. Mon. Not. R. Astron. Soc. 2016, 459, 4029–4037. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rept. 2011, 505, 59–144. [Google Scholar] [CrossRef] [Green Version]
- Odintsov, S.D.; Oikonomou, V.K. Inflationary α-attractors from F(R) gravity. Phys. Rev. D 2016, 94, 124026. [Google Scholar] [CrossRef] [Green Version]
- Yi, Z.; Gong, Y. Nonminimal coupling and inflationary attractors. Phys. Rev. D 2016, 94, 103527. [Google Scholar] [CrossRef] [Green Version]
- Odintsov, S.D.; Oikonomou, V.K. Inflation with a Smooth Constant-Roll to Constant-Roll Era Transition. Phys. Rev. D 2017, 96, 24029. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Constant-roll Inflation in F(R) Gravity. Class. Quant. Grav. 2017, 34, 245012. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, S. COSMOS-e′-soft Higgsotic attractors. Eur. Phys. J. C 2017, 77, 469. [Google Scholar] [CrossRef] [Green Version]
- Gao, Q.; Gong, Y. Reconstruction of extended inflationary potentials for attractors. Eur. Phys. J. Plus 2018, 133, 491. [Google Scholar] [CrossRef]
- Jinno, R.; Kaneta, K. Hill-climbing inflation. Phys. Rev. D 2017, 96, 43518. [Google Scholar] [CrossRef] [Green Version]
- Gao, Q. Reconstruction of constant slow-roll inflation. Sci. China Phys. Mech. Astron. 2017, 60, 90411. [Google Scholar] [CrossRef] [Green Version]
- Fei, Q.; Gong, Y.; Lin, J.; Yi, Z. The reconstruction of tachyon inflationary potentials. J. Cosmol. Astropart. Phys. 2017, 1708, 18. [Google Scholar] [CrossRef] [Green Version]
- Koh, S.; Lee, B.H.; Tumurtushaa, G. Reconstruction of the Scalar Field Potential in Inflationary Models with a Gauss-Bonnet term. Phys. Rev. D 2017, 95, 123509. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.; Kamionkowski, M.; Wang, J. Reheating constraints to inflationary models. Phys. Rev. Lett. 2014, 113, 41302. [Google Scholar] [CrossRef] [Green Version]
- Cook, J.L.; Dimastrogiovanni, E.; Easson, D.A.; Krauss, L.M. Reheating predictions in single field inflation. J. Cosmol. Astropart. Phys. 2015, 1504, 47. [Google Scholar] [CrossRef]
- Ueno, Y.; Yamamoto, K. Constraints on α-attractor inflation and reheating. Phys. Rev. D 2016, 93, 83524. [Google Scholar] [CrossRef] [Green Version]
- Kabir, R.; Mukherjee, A.; Lohiya, D. Reheating Constraints on Kähler Moduli Inflation. arXiv 2016, arXiv:gr-qc/1609.09243. [Google Scholar] [CrossRef] [Green Version]
- Di Marco, A.; Cabella, P.; Vittorio, N. Reconstruction of α-attractor supergravity models of inflation. Phys. Rev. D 2017, 95, 23516. [Google Scholar] [CrossRef]
- Dimopoulos, K.; Owen, C. Quintessential Inflation with α-attractors. J. Cosmol. Astropart. Phys. 2017, 1706, 27. [Google Scholar] [CrossRef] [Green Version]
- Gong, J.O.; Pi, S.; Leung, G. Probing reheating with primordial spectrum. J. Cosmol. Astropart. Phys. 2015, 5, 27. [Google Scholar] [CrossRef] [Green Version]
- Tsujikawa, S. Observational tests of inflation with a field derivative coupling to gravity. Phys. Rev. D 2012, 85, 83518. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fei, Q.; Yi, Z.; Yang, Y. The Reconstruction of Non-Minimal Derivative Coupling Inflationary Potentials. Universe 2020, 6, 213. https://doi.org/10.3390/universe6110213
Fei Q, Yi Z, Yang Y. The Reconstruction of Non-Minimal Derivative Coupling Inflationary Potentials. Universe. 2020; 6(11):213. https://doi.org/10.3390/universe6110213
Chicago/Turabian StyleFei, Qin, Zhu Yi, and Yingjie Yang. 2020. "The Reconstruction of Non-Minimal Derivative Coupling Inflationary Potentials" Universe 6, no. 11: 213. https://doi.org/10.3390/universe6110213
APA StyleFei, Q., Yi, Z., & Yang, Y. (2020). The Reconstruction of Non-Minimal Derivative Coupling Inflationary Potentials. Universe, 6(11), 213. https://doi.org/10.3390/universe6110213