Spherically Symmetric Exact Vacuum Solutions in Einstein-Aether Theory
Abstract
:1. Introduction
2. Einstein-Aether Theory
3. Spherically Symmetric Spacetimes in Isotropic Coordinates
3.1. Spherically Symmetric Spacetimes
3.2. Time-Independent Solutions
3.3. Time-Dependent Solutions
4. Spherically Symmetric Spacetimes in Painlevè-Gullstrand Coordinates
5. Spacetimes in the Schwarzschild Coordinates
5.1. Time-Independent Solutions
5.2. Time-Dependent Solutions
6. Conclusions
- A minimal surface with non-zero area always exists at , given explicitly by Equation (54), the so-called throat of the spacetime. It smoothly connects two regions, and , as schematically shown by Figure 1.
- The Kretschmann scalar always diverges at as long as , so a spacetime curvature singularity always appears. Despite the fact , the proper radial distance between the throat and the singularity is always finite and non-zero [cf. Equation (55)].
- In the region , the spacetime is asymptotically flat as , and the proper radial distance between the throat and the spatial infinity is always infinitely large, so is the geometric area, .
- The throat is only marginally trapped, as now vanishes precisely only at the throat, , while away from it, we always have , as shown explicitly by Equation (58), where denote the expansions of the outgoing or ingoing null geodesic congruences.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A. Gμν and in different Coordinate Systems
Appendix A.1. Isotropic Coordinates
Appendix A.2. Painlevè-Gullstrand Coordinates
Appendix A.3. Schwarzschild Coordinates
1. | Here “comoving aether” means that the aether field is at rest in the chosen coordinates, so it has only the time-like component, while its spatial components vanish identically, i.e., . When the spacetime is static, it aligns with the time-like killing vector, . |
References
- Kostelecky, V.A.; Russell, N. Data Tables for Lorentz and CPT Violation. Rev. Mod. Phys. 2011, 83, 11. [Google Scholar] [CrossRef] [Green Version]
- Mattingly, D. Modern Tests of Lorentz Invariance. Living Rev. Relat. 2005, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Liberati, S. Tests of Lorentz invariance: A 2013 update. Class. Quantum Grav. 2013, 30, 133001. [Google Scholar] [CrossRef]
- Bourgoin, A.; Poncin-Lafitte, C.L.; Hees, A.; Bouquillon, S.; Francou, G.; Angonin, M.-C. Lorentz symmetry violations from matter-gravity couplings with lunar laser ranging. Phys. Rev. Lett. 2017, 119, 201102. [Google Scholar] [CrossRef] [Green Version]
- Flowers, N.A.; Goodge, C.; Tasson, J.D. Superconducting-gravimeter tests of local Lorentz invariance. Phys. Rev. Lett. 2017, 119, 201101. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, T.; Mattingly, D. Gravity with a dynamical preferred frame. Phys. Rev. D 2001, 64, 024028. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, T. Einstein-aether gravity: A status report. arXiv 2008, arXiv:0801.1547. [Google Scholar]
- Hořava, P. Quantum gravity at a Lifshitz point. Phys. Rev. D 2009, 79, 084008. [Google Scholar] [CrossRef] [Green Version]
- Mukohyama, S. Hořava–Lifshitz cosmology: A review. Class. Quantum Grav. 2010, 27, 223101. [Google Scholar] [CrossRef] [Green Version]
- Wang, A. Hořava gravity at a Lifshitz point: A progress report. Int. J. Mod. Phys. D 2017, 26, 1730014. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, T. Extended Hořava gravity and Einstein-aether theory. Phys. Rev. D 2017, 81, 101502. [Google Scholar] [CrossRef]
- Jacobson, T. Undoing the twist: The Hořava limit of Einstein-aether. Phys. Rev. D 2014, 89, 081501. [Google Scholar] [CrossRef] [Green Version]
- Blas, D.; Pujolas, O.; Sibiryakov, S. A healthy extension of Horava gravity. Phys. Rev. Lett. 2010, 104, 181302. [Google Scholar] [CrossRef] [Green Version]
- Blas, D.; Pujolas, O.; Sibiryakov, S. Models of non-relativistic quantum gravity, the good, the bad and the healthy. J. High Energy Phys. 2011, 4, 018. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, T.; Mattingly, D. Einstein-aether waves. Phys. Rev. D 2004, 70, 024003. [Google Scholar] [CrossRef] [Green Version]
- Elliott, J.W.; Moore, G.D.; Stoica, H. Constraining the New Aether: Gravitational Cherenkov radiation. J. High Energy Phys. 2005, 8, 066. [Google Scholar] [CrossRef]
- Abbott, B.; et al. [Virgo, LIGO Scientific Collaboration] GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; et al. [Virgo, Fermi-GBM, INTEGRAL, LIGO Scientific Collaboration] Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger, GW170817 and GRB 170817A. Astrophys. J. 2017, 848, L13. [Google Scholar] [CrossRef]
- Oost, J.; Mukohyama, S.; Wang, A. Constraints on Einstein-aether theory after GW170817. Phys. Rev. D 2018, 97, 124023. [Google Scholar] [CrossRef] [Green Version]
- Eling, C.; Jacobson, T. Spherical Solutions in Einstein-Aether Theory: Static Aether and Stars. Class. Quantum. Grav. 2006, 23, 5625. [Google Scholar] [CrossRef] [Green Version]
- Berglund, P.; Bhattacharyya, J.; Mattingly, D. Mechanics of universal horizons. Phys. Rev. D 2012, 85, 124019. [Google Scholar] [CrossRef] [Green Version]
- Berglund, P.; Bhattacharyya, J.; Mattingly, D. Towards Thermodynamics of Universal Horizons in Einstein-æther Theory. Phys. Rev. Lett. 2013, 110, 071301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, C.; Shen, Y. Static spherically symmetric solution of the Einstein-aether theory. Phys. Rev. D 2013, 88, 103508. [Google Scholar] [CrossRef] [Green Version]
- Ding, C.; Wang, A.; Wang, X. Charged Einstein-aether black holes and Smarr formula. Phys. Rev. D 2015, 92, 084055. [Google Scholar] [CrossRef] [Green Version]
- Ding, C.; Liu, C.; Wang, A.; Jing, J. Three-dimensional charged Einstein-aether black holes and the Smarr formula. Phys. Rev. D 2016, 94, 124034. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.; Ho, F.-H.; Qian, W.-L. Charged Einstein-aether black holes in n-dimensional spacetime. Int. J. Mod. Phys. D 2019, 28, 1950049. [Google Scholar] [CrossRef] [Green Version]
- Ding, C.; Wang, A. Thermodynamical study on universal horizons in higher D-dimensional spacetime and aether waves. Phys. Rev. D 2019, 99, 124011. [Google Scholar] [CrossRef] [Green Version]
- Oost, J. Observational Constraints, Exact Plane Wave Solutions, and Exact Spherical Solutions in æ-Theory. Available online: http://inspirehep.net/record/1778817/files/2104_10724.pdf (accessed on 26 July 2021).
- Azreg-Aïnou, M.; Chen, Z.-H.; Deng, B.-J.; Jamil, M.; Zhu, T.; Wu, Q.; Lim, Y.-K. Orbital mechanics for, and QPOs’ resonances in, black holes of Einstein-æther theory. Phys. Rev. D 2020, 102, 044028. [Google Scholar] [CrossRef]
- Chan, R.; da Silva, M.F.A.; Satheeshkumar, V.H. Existence of new singularities in Einstein-aether theory. J. Cosmol. Astropart. Phys. 2020, 5, 025. [Google Scholar] [CrossRef]
- Chan, R.; da Silva, M.F.A.; Satheeshkumar, V.H. Spherically Symmetric Analytic Solutions and Naked Singularities in Einstein-Aether Theory. arXiv 2003, arXiv:2003.00227. [Google Scholar]
- Churilova, M.S. Black holes in Einstein-aether theory: Quasinormal modes and time-domain evolution. Phys. Rev. D 2020, 102, 024076. [Google Scholar] [CrossRef]
- Khodadi, M.; Saridakis, E.N. Einstein-aether Gravity in the light of Event Horizon Telescope Observations of M87. arXiv 2012, arXiv:2012.05186. [Google Scholar]
- Rayimbaev, J.; Abdujabbarov, A.; Jamil, M.; Han, W.-B. Dynamics of magnetized particles around Einstein-aether black hole with uniform magnetic field. Nucl. Phys. B 2021, 966, 115364. [Google Scholar] [CrossRef]
- Eling, C.; Jacobson, T. Black holes in Einstein-aether theory. Class. Quantum. Grav. 2006, 23, 5643. [Google Scholar] [CrossRef] [Green Version]
- Eling, C.; Jacobson, T.; Miller, M.C. Neutron stars in Einstein-aether theory. Phys. Rev. D 2007, 76, 042003. [Google Scholar] [CrossRef] [Green Version]
- Tamaki, T.; Miyamoto, U. Generic features of Einstein-Aether black holes. Phys. Rev. D 2008, 77, 024026. [Google Scholar] [CrossRef] [Green Version]
- Blas, D.; Sibiryakov, S. Hořava gravity versus thermodynamics: The black hole case. Phys. Rev. D 2011, 84, 124043. [Google Scholar] [CrossRef] [Green Version]
- Barausse, E.; Jacobson, T.; Sotiriou, T.P. Black holes in Einstein-aether and Hořava-Lifshitz gravity. Phys. Rev. D 2011, 83, 124043. [Google Scholar] [CrossRef] [Green Version]
- Zhu, T.; Wu, Q.; Jamil, M.; Jusufi, K. Shadows and deflection angle of charged and slowly rotating black holes in Einstein-Æther theory. Phys. Rev. D 2019, 100, 044055. [Google Scholar] [CrossRef] [Green Version]
- Garfinkle, D.; Eling, C.; Jacobson, T. Numerical simulations of gravitational collapse in Einstein-aether theory. Phys. Rev. D 2007, 76, 024003. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.; Goldoni, O.; da Silva, M.F.; Wang, A. New look at black holes: Existence of universal horizons. Phys. Rev. D 2015, 91, 024047. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Zhao, X.; Lin, K.; Zhang, S.-J.; Zhao, W.; Wang, A. Spherically symmetric static black holes in Einstein-aether theory. Phys. Rev. D 2020, 102, 064043. [Google Scholar] [CrossRef]
- Bhattacharjee, M.; Mukohyama, S.; Wan, M.-B.; Wang, A. Gravitational collapse and formation of universal horizons in Einstein-aether theory. Phys. Rev. D 2018, 98, 064010. [Google Scholar] [CrossRef] [Green Version]
- Cropp, B.; Liberati, S.; Visser, M. Surface gravities for non-Killing horizons. Class. Quantum Grav. 2013, 30, 125001. [Google Scholar] [CrossRef] [Green Version]
- Saravani, M.; Afshordi, N.; Mann, R.B. Dynamical emergence of universal horizons during the formation of black holes. Phys. Rev. D 2014, 89, 084029. [Google Scholar] [CrossRef] [Green Version]
- Eling, C.; Oz, Y. Horava-Lifshitz black hole hydrodynamics. J. High Energy Phys. 2014, 11, 067. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, J.; Mattingly, D. Universal horizons in maximally symmetric spaces. Int. J. Mod. Phys. D 2014, 23, 1443005. [Google Scholar] [CrossRef]
- Lin, K.; Abdalla, E.; Cai, R.-G.; Wang, A. Universal horizons and black holes in gravitational theories with broken Lorentz symmetry. Int. J. Mod. Phys. D 2014, 23, 1443004. [Google Scholar] [CrossRef] [Green Version]
- Shu, F.-W.; Lin, K.; Wang, A.; Wu, Q. Lifshitz spacetimes, solitons, and generalized BTZ black holes in quantum gravity at a Lifshitz point. J. High Energy Phys. 2014, 4, 056. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.; Shu, F.-W.; Wang, A.; Wu, Q. High-dimensional Lifshitz-type spacetimes, universal horizons, and black holes in Hořava-Lifshitz gravity. Phys. Rev. D 2015, 91, 044003. [Google Scholar] [CrossRef] [Green Version]
- Michel, F.; Parentani, R. Black hole radiation in the presence of a universal horizon. Phys. Rev. D 2015, 91, 124049. [Google Scholar] [CrossRef] [Green Version]
- Blas, D.; Lim, E. Phenomenology of theories of gravity without Lorentz invariance: The preferred frame case. Int. J. Mod. Phys. D 2015, 23, 1443009. [Google Scholar] [CrossRef] [Green Version]
- Misonoh, Y.; Maeda, K.-I. Black holes and Thunderbolt singularities with Lifshitz scaling terms. Phys. Rev. D 2015, 92, 084049. [Google Scholar] [CrossRef] [Green Version]
- Tian, M.; Wang, X.-W.; da Silva, M.F.; Wang, A. Gravitational collapse and formation of universal horizons. arXiv 2015, arXiv:1501.04134. [Google Scholar]
- Ding, C.; Wang, A.; Wang, X.-W.; Zhu, T. Hawking radiation of charged Einstein-aether black holes at both Killing and universal horizons. Nucl. Phys. B 2016, 913, 694. [Google Scholar] [CrossRef] [Green Version]
- Liberati, S.; Pacilio, C. Smarr formula for Lovelock black holes: A Lagrangian approach. Phys. Rev. D 2016, 93, 084044. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.; Satheeshkumar, V.H.; Wang, A. Static and rotating universal horizons and black holes in gravitational theories with broken Lorentz invariance. Phys. Rev. D 2016, 93, 124025. [Google Scholar] [CrossRef] [Green Version]
- Maciel, A. Quasilocal approach to general universal horizons. Phys. Rev. D 2016, 93, 104013. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.; Mukohyama, S.; Wang, A.; Zhu, T. No static black hole hairs in gravitational theories with broken Lorentz invariance. Phys. Rev. D 2017, 95, 124053. [Google Scholar] [CrossRef] [Green Version]
- Gasperini, M. Singularity prevention and broken Lorentz symmetry. Class. Quantum Grav. 1987, 4, 485. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Samuel, S. Spontaneous breaking of Lorentz symmetry in string theory. Phys. Rev. D 1989, 39, 683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, Q.G.; Kostelecký, V.A. Signals for Lorentz violation in post-Newtonian gravity. Phys. Rev. D 2006, 74, 045001. [Google Scholar] [CrossRef] [Green Version]
- Baumgarte, T.W.; Shapiro, S.L. Numerical Relativity: Solving Einstein’s Equations on the Computer; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Spacetime; Cambridge University Press: Cambridge, UK, 1973. [Google Scholar]
- Seifert, M.D. Stability of spherically symmetric solutions in modified theories of gravity. Phys. Rev. D 2007, 76, 064002. [Google Scholar] [CrossRef] [Green Version]
- D’Inverno, R. Introducing Einstein’s Relativity; Clarendon Press: Oxford, UK, 2003. [Google Scholar]
- Zhu, T.; Wang, A. Observational tests of the self-dual spacetime in loop quantum gravity. Phys. Rev. D 2020, 102, 124042. [Google Scholar] [CrossRef]
- Visser, M. Lorentzian Wormholes: From Einstein to Hawking; American Institute of Physics: Melville, NY, USA, 1996. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oost, J.; Mukohyama, S.; Wang, A. Spherically Symmetric Exact Vacuum Solutions in Einstein-Aether Theory. Universe 2021, 7, 272. https://doi.org/10.3390/universe7080272
Oost J, Mukohyama S, Wang A. Spherically Symmetric Exact Vacuum Solutions in Einstein-Aether Theory. Universe. 2021; 7(8):272. https://doi.org/10.3390/universe7080272
Chicago/Turabian StyleOost, Jacob, Shinji Mukohyama, and Anzhong Wang. 2021. "Spherically Symmetric Exact Vacuum Solutions in Einstein-Aether Theory" Universe 7, no. 8: 272. https://doi.org/10.3390/universe7080272
APA StyleOost, J., Mukohyama, S., & Wang, A. (2021). Spherically Symmetric Exact Vacuum Solutions in Einstein-Aether Theory. Universe, 7(8), 272. https://doi.org/10.3390/universe7080272