Neutron Stars and Dark Matter
Abstract
:1. Introduction
2. Accumulation of DM in NSs
3. Estimating the Quantity of DM in the MW
4. Change of NS Mass Due to DM Accumulation
5. Constraints on the Cross Section
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Betoule, M.; Kessler, R.; Guy, J.; Mosher, J.; Hardin, D.; Biswas, R.; Astier, P.; El-Hage, P.; Konig, M.; Kuhlmann, S.; et al. Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples. Astron. Astrophys. 2014, 568, A22. [Google Scholar] [CrossRef]
- Ade, P.A.R. et al. [Planck Collaboration]. Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 2014, 571, A16. [Google Scholar] [CrossRef] [Green Version]
- Chatrchyan, S. et al. [The CMS collaboration]. Search for dark matter and large extra dimensions in monojet events in p p collisions at = 7 TeV. J. High Energy Phys. 2012, 9, 094. [Google Scholar]
- Aad, G. et al. [The ATLAS collaboration]. Search for dark matter candidates and large extra dimensions in events with a jet and missing transverse momentum with the ATLAS detector. J. High Energy Phys. 2013, 04, 075. [Google Scholar]
- Agnese, R. et al. [SuperCDMS Collaboration]. Search for Low-Mass Weakly Interacting Massive Particles with SuperCDMS. Phys. Rev. Lett. 2014, 112, 241302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angloher, G.; Bauer, M.; Bavykina, I.; Bento, A.; Bucci, C.; Ciemniak, C.; Deuter, G.; von Feilitzsch, F.; Hauff, D.; Huff, P.; et al. Results from 730 kg days of the CRESST-II Dark Matter Search. Eur. Phys. J. 2012, C72, 1971. [Google Scholar] [CrossRef] [Green Version]
- Felizardo, M. et al. [The SIMPLE Collaboration]. Final Analysis and Results of the Phase II SIMPLE Dark Matter Search. Phys. Rev. Lett. 2012, 108, 201302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klasen, M.; Pohl, M.; Sigl, G. Indirect and direct search for dark matter. Prog. Part. Nucl. Phys. 2015, 85, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Akerib, D.S. et al. [LUX Collaboration]. First results from the LUX dark matter experiment at the Sanford Underground Research Facility. Phys. Rev. Lett. 2014, 112, 091303. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, Z. et al. [CDMS Collaboration]. Results from a Low-Energy Analysis of the CDMS II Germanium Data. Phys. Rev. Lett. 2011, 106, 131302. [Google Scholar] [CrossRef] [Green Version]
- Bernabei, R.; Belli, P.; Cappella, F.; Cerulli, R.; Dai, C.J.; d’Angelo, A.; He, H.L.; Incicchitti, A.; Kuang, H.H.; Ma, X.H.; et al. New results from DAMA/LIBRA. Eur. Phys. J. 2010, C67, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Aalseth, C.E. et al. [CoGeNT Collaboration]. Results from a Search for Light-Mass Dark Matter with a P-type Point Contact Germanium Detector. Phys. Rev. Lett. 2011, 106, 131301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aprile, E. et al. [XENON100 Collaboration]. Dark Matter Results from 225 Live Days of XENON100 Data. Phys. Rev. Lett. 2012, 109, 181301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conrad, J. Indirect Detection of WIMP Dark Matter: A compact review. In Proceedings of the Interplay between Particle and Astroparticle Physics (IPA2014), London, UK, 18–22 August 2014. [Google Scholar]
- Dai, D.C.; Stojkovic, D. Neutralino dark matter stars can not exist. J. High Energy Phys. 2009, 08, 052. [Google Scholar] [CrossRef]
- Kouvaris, C.; Nielsen, N.G. Asymmetric Dark Matter Stars. Phys. Rev. 2015, D92, 063526. [Google Scholar] [CrossRef] [Green Version]
- Bertolami, O.; Gil Pedro, F.; Le Delliou, M. Dark Energy-Dark Matter Interaction and the Violation of the Equivalence Principle from the Abell Cluster A586. Phys. Lett. 2007, B654, 165–169. [Google Scholar] [CrossRef] [Green Version]
- Le Delliou, M.; Bertolami, O.; Gil Pedro, F. Dark Energy-Dark Matter Interaction from the Abell Cluster A586 and violation of the Equivalence Principle. AIP Conf. Proc. 2007, 957, 421–424. [Google Scholar]
- Bertolami, O.; Gil Pedro, F.; Le Delliou, M. Dark Energy-Dark Matter Interaction from the Abell Cluster A586. EAS Publ. Ser. 2008, 30, 161–167. [Google Scholar] [CrossRef]
- Bertolami, O.; Pedro, F.G.; Le Delliou, M. The Abell Cluster A586 and the Equivalence Principle. Gen. Rel. Grav. 2009, 41, 2839–2846. [Google Scholar] [CrossRef] [Green Version]
- Bertolami, O.; Gil Pedro, F.; Le Delliou, M. Testing the interaction of dark energy to dark matter through the analysis of virial relaxation of clusters Abell Clusters A586 and A1689 using realistic density profiles. Gen. Rel. Grav. 2012, 44, 1073–1088. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, E.; Abramo, L.R.W.; Sodre, L., Jr.; Wang, B. Signature of the interaction between dark energy and dark matter in galaxy clusters. Phys. Lett. 2009, B673, 107–110. [Google Scholar] [CrossRef]
- Abdalla, E.; Abramo, L.R.; de Souza, J.C.C. Signature of the interaction between dark energy and dark matter in observations. Phys. Rev. 2010, D82, 023508. [Google Scholar] [CrossRef] [Green Version]
- Le Delliou, M.; Marcondes, R.J.F.; Lima Neto, G.B.; Abdalla, E. Non-virialized clusters for detection of dark energy–dark matter interaction. Mon. Not. R. Astron. Soc. 2015, 453, 2–13. [Google Scholar] [CrossRef] [Green Version]
- Tolman, R.C. Static solutions of Einstein’s field equations for spheres of fluid. Phys. Rev. 1939, 55, 364–373. [Google Scholar] [CrossRef] [Green Version]
- Oppenheimer, J.R.; Volkoff, G.M. On Massive neutron cores. Phys. Rev. 1939, 55, 374–381. [Google Scholar] [CrossRef]
- Tolos, L.; Schaffner-Bielich, J. Dark compact planets. Phys. Rev. D 2015, 92, 123002. [Google Scholar] [CrossRef] [Green Version]
- Kouvaris, C. WIMP annihilation and cooling of neutron stars. Phys. Rev. D 2008, 77, 023006. [Google Scholar] [CrossRef] [Green Version]
- Bertone, G.; Fairbairn, M. Compact stars as dark matter probes. Phys. Rev. D 2008, 77, 043515. [Google Scholar] [CrossRef] [Green Version]
- Kouvaris, C.; Tinyakov, P. Can Neutron stars constrain Dark Matter? Phys. Rev. 2010, D82, 063531. [Google Scholar] [CrossRef] [Green Version]
- de Lavallaz, A.; Fairbairn, M. Neutron stars as dark matter probes. Phys. Rev. D 2010, 81, 123521. [Google Scholar] [CrossRef] [Green Version]
- Sandin, F.; Ciarcelluti, P. Effects of mirror dark matter on neutron stars. Astropart. Phys. 2009, 32, 278–284. [Google Scholar] [CrossRef] [Green Version]
- Petraki, K.; Volkas, R.R. Review of Asymmetric Dark Matter. Int. J. Mod. Phys. A 2013, 28, 1330028. [Google Scholar] [CrossRef] [Green Version]
- Ciarcelluti, P.; Sandin, F. Have neutron stars a dark matter core? Phys. Lett. B 2011, 695, 19–21. [Google Scholar] [CrossRef] [Green Version]
- Kouvaris, C. The Dark Side of Neutron Stars. arXiv 2013, arXiv:astro-ph.HE/1308.3222. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Huang, F.; Xu, R.X. Too massive neutron stars: The role of dark matter? Astropart. Phys. 2012, 37, 70. [Google Scholar] [CrossRef] [Green Version]
- Leung, S.C.; Chu, M.C.; Lin, L.M. Dark-matter admixed neutron stars. Phys. Rev. D 2011, 84, 107301. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Q.F.; Jiang, W.Z.; Zhang, D.R.; Yang, R.Y. Effects of fermionic dark matter on properties of neutron stars. Phys. Rev. 2014, C89, 025803. [Google Scholar] [CrossRef] [Green Version]
- Goldman, I.; Mohapatra, R.N.; Nussinov, S.; Rosenbaum, D.; Teplitz, V. Possible Implications of Asymmetric Fermionic Dark Matter for Neutron Stars. Phys. Lett. 2013, B725, 200–207. [Google Scholar] [CrossRef] [Green Version]
- Demorest, P.; Pennucci, T.; Ransom, S.; Roberts, M.; Hessels, J. Shapiro Delay Measurement of A Two Solar Mass Neutron Star. Nature 2010, 467, 1081–1083. [Google Scholar] [CrossRef]
- Schaffner-Bielich, J. Strange quark matter in stars: A general overview. J. Phys. G Nucl. Part. Phys. 2005, 31, S651. [Google Scholar] [CrossRef] [Green Version]
- Alford, M.; Blaschke, D.; Drago, A.; Klahn, T.; Pagliara, G.; Schaffner-Bielich, J. Quark matter in compact stars? Nature 2007, 445, E7–E8. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, P.; Schaffner-Bielich, J. Quark stars admixed with dark matter. Phys. Rev. 2016, D93, 083009. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Liu, T.; Gubler, P.; Xu, R.X. Revisiting the boiling of primordial quark nuggets at nonzero chemical potential. Astropart. Phys. 2015, 62, 115–121. [Google Scholar] [CrossRef]
- Deliyergiyev, M.; Del Popolo, A.; Tolos, L.; Le Delliou, M.; Lee, X.; Burgio, F. Dark compact objects: An extensive overview. Phys. Rev. D 2019, 99, 063015. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.J.; Gao, X.T. Phase-space analysis of a class of k-essence cosmology. Class. Quantum Grav. 2011, 28, 065012. [Google Scholar] [CrossRef] [Green Version]
- Kouvaris, C.; Tinyakov, P. Constraining asymmetric dark matter through observations of compact stars. Phys. Rev. D 2011, 83, 083512. [Google Scholar] [CrossRef] [Green Version]
- Güver, T.; Emre Erkoca, A.; Hall Reno, M.; Sarcevic, I. On the capture of dark matter by neutron stars. J. Cosmol. Astropart. Phys. 2014, 5, 013. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Chen, L.W. Strange Quark Stars as a Probe of Dark Matter. Astrophys. J. 2016, 831, 127. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.Z.; Yang, R.Z.; Chang, J. Constraining Asymmetric Bosonic Non-interacting Dark Matter with Neutron Stars. arXiv 2012, arXiv:astro-ph.HE/1204.2564. [Google Scholar]
- Berezinsky, V.S.; Dokuchaev, V.I.; Eroshenko, Y.N. Formation and internal structure of superdense dark matter clumps and ultracompact minihaloes. J. Cosmol. Astropart. Phys. 2013, 11, 059. [Google Scholar] [CrossRef] [Green Version]
- Berezinsky, V.; Dokuchaev, V.; Eroshenko, Y. Small-scale clumps in the galactic halo and dark matter annihilation. Phys. Rev. D 2003, 68, 103003. [Google Scholar] [CrossRef] [Green Version]
- Ricotti, M.; Gould, A. A New Probe of Dark Matter and High-Energy Universe Using Microlensing. Astrophys. J. 2009, 707, 979–987. [Google Scholar] [CrossRef]
- Scott, P.; Sivertsson, S. Gamma Rays from Ultracompact Primordial Dark Matter Minihalos. Phys. Rev. Lett. 2009, 103, 211301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bringmann, T.; Scott, P.; Akrami, Y. Improved constraints on the primordial power spectrum at small scales from ultracompact minihalos. Phys. Rev. D 2012, 85, 125027. [Google Scholar] [CrossRef] [Green Version]
- Berezinsky, V.S.; Dokuchaev, V.I.; Eroshenko, Y.N. Small-scale clumps of dark matter. Phys. Uspekhi 2014, 57, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Catena, R.; Ullio, P. A novel determination of the local dark matter density. J. Cosmol. Astropart. Phys. 2010, 1008, 004. [Google Scholar] [CrossRef] [Green Version]
- Weber, M.; de Boer, W. Determination of the Local Dark Matter Density in our Galaxy. Astron. Astrophys. 2010, 509, A25. [Google Scholar] [CrossRef]
- Navarro, J.F.; Frenk, C.S.; White, S.D.M. A Universal Density Profile from Hierarchical Clustering. Astrophys. J. 1997, 490, 493–508. [Google Scholar] [CrossRef]
- Stadel, J.; Potter, D.; Moore, B.; Diemand, J.; Madau, P.; Zemp, M.; Kuhlen, M.; Quilis, V. Quantifying the heart of darkness with GHALO—A multibillion particle simulation of a galactic halo. Mon. Not. R. Astron. Soc. Lett. 2009, 398, L21–L25. [Google Scholar] [CrossRef] [Green Version]
- Navarro, J.F.; Ludlow, A.; Springel, V.; Wang, J.; Vogelsberger, M.; White, S.D.M.; Jenkins, A.; Frenk, C.S.; Helmi, A. The diversity and similarity of simulated cold dark matter haloes. Mon. Not. R. Astron. Soc. Lett. 2010, 402, 21–34. [Google Scholar] [CrossRef] [Green Version]
- Del Popolo, A.; Deliyergiyev, M.; Le Delliou, M.; Tolos, L.; Burgio, F. On the change of old neutron star masses with galactocentric distance. Phys. Dark Universe 2020, 28, 100484. [Google Scholar] [CrossRef] [Green Version]
- Gnedin, O.Y.; Kravtsov, A.V.; Klypin, A.A.; Nagai, D. Response of Dark Matter Halos to Condensation of Baryons: Cosmological Simulations and Improved Adiabatic Contraction Model. Astrophys. J. 2004, 616, 16–26. [Google Scholar] [CrossRef]
- Gustafsson, M.; Fairbairn, M.; Sommer-Larsen, J. Baryonic pinching of galactic dark matter halos. Phys. Rev. D 2006, 74, 123522. [Google Scholar] [CrossRef] [Green Version]
- Pedrosa, S.E.; Tissera, P.B.; Scannapieco, C. The impact of baryons on dark matter haloes. Mon. Not. R. Astron. Soc. 2009, 395, 57. [Google Scholar] [CrossRef]
- Duffy, A.R.; Schaye, J.; Kay, S.T.; Dalla Vecchia, C.; Battye, R.A.; Booth, C.M. Impact of baryon physics on dark matter structures: A detailed simulation study of halo density profiles. Mon. Not. R. Astron. Soc. 2010, 405, 2161. [Google Scholar] [CrossRef] [Green Version]
- Del Popolo, A. On the universality of density profiles. Mon. Not. R. Astron. Soc. Lett. 2010, 408, 1808–1817. [Google Scholar] [CrossRef] [Green Version]
- Di Cintio, A.; Brook, C.B.; Dutton, A.A.; Macciò, A.V.; Stinson, G.S.; Knebe, A. A mass-dependent density profile for dark matter haloes including the influence of galaxy formation. Mon. Not. R. Astron. Soc. 2014, 441, 2986–2995. [Google Scholar] [CrossRef] [Green Version]
- Del Popolo, A.; Pace, F. The Cusp/Core problem: Supernovae feedback versus the baryonic clumps and dynamical friction model. Astrophys. Space Sci. 2016, 361, 162. [Google Scholar] [CrossRef] [Green Version]
- Del Popolo, A.; Pace, F.; Le Delliou, M. A high precision semi-analytic mass function. J. Cosmol. Astropart. Phys. 2017, 3, 032. [Google Scholar] [CrossRef]
- Del Popolo, A. The Cusp/Core Problem and the Secondary Infall Model. Astrophys. J. 2009, 698, 2093–2113. [Google Scholar] [CrossRef] [Green Version]
- Prada, F.; Klypin, A.; Flix Molina, J.; Martinez, M.; Simonneau, E. Dark Matter Annihilation in the Milky Way Galaxy: Effects of Baryonic Compression. Phys. Rev. Lett. 2004, 93, 241301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gondolo, P.; Silk, J. Dark matter annihilation at the galactic center. Phys. Rev. Lett. 1999, 83, 1719–1722. [Google Scholar] [CrossRef] [Green Version]
- Bertone, G.; Merritt, D. Time-dependent models for dark matter at the galactic center. Phys. Rev. D 2005, 72, 103502. [Google Scholar] [CrossRef] [Green Version]
- Sandick, P.; Yamamoto, T.; Sinha, K. Black holes, dark matter spikes, and constraints on simplified models with t -channel mediators. Phys. Rev. D 2018, 98, 035004. [Google Scholar] [CrossRef] [Green Version]
- Lacroix, T. Dynamical constraints on a dark matter spike at the Galactic centre from stellar orbits. Astron. Astrophys. 2018, 619, A46. [Google Scholar] [CrossRef]
- Bennewitz, E.R.; Gaidau, C.; Baumgarte, T.W.; Shapiro, S.L. Dark matter heating of gas accreting onto Sgr A*. Mon. Not. R. Astron. Soc. Lett. 2019, 490, 3414–3425. [Google Scholar] [CrossRef] [Green Version]
- Fields, B.D.; Shapiro, S.L.; Shelton, J. Galactic Center Gamma-Ray Excess from Dark Matter Annihilation: Is There a Black Hole Spike? Phys. Rev. Lett. 2014, 113, 151302. [Google Scholar] [CrossRef] [Green Version]
- Iorio, L. Phenomenological constraints on accretion of non-annihilating dark matter on the PSR B1257+12 pulsar from orbital dynamics of its planets. J. Cosmol. Astropart. Phys. 2010, 1011, 046. [Google Scholar] [CrossRef] [Green Version]
- Bramante, J.; Fukushima, K.; Kumar, J.; Stopnitzky, E. Bounds on self-interacting fermion dark matter from observations of old neutron stars. Phys. Rev. D 2014, 89, 015010. [Google Scholar] [CrossRef] [Green Version]
- Bramante, J.; Linden, T. Detecting Dark Matter with Imploding Pulsars in the Galactic Center. Phys. Rev. Lett. 2014, 113, 191301. [Google Scholar] [CrossRef] [Green Version]
- Reitner, M.; Chalupa, P.; Del Re, L.; Springer, D.; Ciuchi, S.; Sangiovanni, G.; Toschi, A. Attractive Effect of a Strong Electronic Repulsion: The Physics of Vertex Divergences. Phys. Rev. Lett. 2020, 125, 196403. [Google Scholar] [CrossRef] [PubMed]
- Eatough, R.P.; Falcke, H.; Karuppusamy, R.; Lee, K.J.; Champion, D.J.; Keane, E.F.; Desvignes, G.; Schnitzeler, D.H.F.M.; Spitler, L.G.; Kramer, M.; et al. A strong magnetic field around the supermassive black hole at the centre of the Galaxy. Nature 2013, 501, 391–394. [Google Scholar] [CrossRef] [Green Version]
- Mori, K.; Gotthelf, E.V.; Zhang, S.; An, H.; Baganoff, K.F.; Barrière, N.M.; Beloborodov, A.M.; Boggs, S.E.; Christensen, F.E.; Craig, W.W.; et al. NuSTAR discovery of a 3.76-second transient magnetar near Sagittarius A*. Astrophys. J. 2013, 770, L23. [Google Scholar] [CrossRef] [Green Version]
- Kennea, J.A.; Burrows, D.N.; Kouveliotou, C.; Palmer, D.M.; Göğüş, E.; Kaneko, Y.; Evans, P.A.; Degenaar, N.; Reynolds, M.T.; Miller, J.M.; et al. Swift Discovery of a New Soft Gamma Repeater, SGR J1745-29, near Sagittarius A*. Astrophys. J. 2013, 770, L24. [Google Scholar] [CrossRef] [Green Version]
- Shannon, R.M.; Johnston, S. Radio properties of the magnetar near Sagittarius A* from observations with the Australia Telescope Compact Array. Mon. Not. R. Astron. Soc. 2013, 435, 29. [Google Scholar] [CrossRef]
- Pfahl, E.; Loeb, A. Probing the spacetime around Sgr A* with radio pulsars. Astrophys. J. 2004, 615, 253–258. [Google Scholar] [CrossRef]
- Wharton, R.S.; Chatterjee, S.; Cordes, J.M.; Deneva, J.S.; Lazio, T.J.W. Multiwavelength Constraints on Pulsar Populations in the Galactic Center. Astrophys. J. 2012, 753, 108. [Google Scholar] [CrossRef] [Green Version]
- Chennamangalam, J.; Lorimer, D.R. The Galactic centre pulsar population. Mon. Not. R. Astron. Soc. 2014, 440, 86. [Google Scholar] [CrossRef] [Green Version]
- Bower, G.C.; Chatterjee, S.; Cordes, J.; Demorest, P.; Deneva, J.S.; Dexter, J.; Kramer, M.; Lazio, J.; Ransom, S.; Shao, L.; et al. Galactic Center Pulsars with the ngVLA. arXiv 2018, arXiv:astro-ph.HE/1810.06623. [Google Scholar]
- Lazio, T.J.W.; Cordes, J.M. Hyperstrong radio-wave scattering in the galactic center. 2. A likelihood analysis of free electrons in the galactic center. Astrophys. J. 1998, 505, 715. [Google Scholar] [CrossRef]
- Faucher-Giguere, C.A.; Loeb, A. Pulsar-Black Hole Binaries in the Galactic Center. Mon. Not. R. Astron. Soc. 2011, 415, 3951. [Google Scholar] [CrossRef] [Green Version]
- Rajwade, K.M.; Lorimer, D.R.; Anderson, L.D. Detecting pulsars in the Galactic Centre. Mon. Not. R. Astron. Soc. Lett. 2017, 471, 730–739. [Google Scholar] [CrossRef] [Green Version]
- Murphy, E.J.; Bolatto, A.; Chatterjee, S.; Casey, C.M.; Chomiuk, L.; Dale, D.; Pater, I.D.; Dickinson, M.; Francesco, J.D.; Hallinan, G.; et al. Science with an ngVLA: The ngVLA Science Case and Associated Science Requirements. ASP Conf. Ser. 2018, 517, 3. [Google Scholar]
- Keane, E.; Bhattacharyya, B.; Kramer, M.; Stappers, B.; Keane, E.F.; Bhattacharyya, B.; Kramer, M.; Stappers, B.W.; Bates, S.D.; Burgay, M. A Cosmic Census of Radio Pulsars with the SKA. In Proceedings of the Advancing Astrophysics with the Square Kilometre Array (AASKA14), Giardini Naxos, Italy, 9–13 June 2014. [Google Scholar]
- Luminet, J.P. An Illustrated History of Black Hole Imaging: Personal Recollections (1972–2002). arXiv 2019, arXiv:astro-ph.HE/1902.11196. [Google Scholar]
- Engineer, S.; Srinivasan, K.; Padmanabhan, T. A Formal analysis of two-dimensional gravity. Astrophys. J. 1999, 512, 1. [Google Scholar] [CrossRef] [Green Version]
- Watts, A.L.; Andersson, N.; Chakrabarty, D.; Feroci, M.; Hebeler, K.; Israel, G.; Lamb, F.K.; Miller, M.C.; Morsink, S.; Özel, F.; et al. Colloquium: Measuring the neutron star equation of state using x-ray timing. Rev. Mod. Phys. 2016, 88, 021001. [Google Scholar] [CrossRef] [Green Version]
- Ho, W.C.G.; Espinoza, C.M.; Antonopoulou, D.; Andersson, N. Pinning down the superfluid and measuring masses using pulsar glitches. Sci. Adv. 2015, 1, e1500578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barcons, X.; Barret, D.; Decourchelle, A.; den Herder, J.W.; Dotani, T.; Fabian, A.C.; Fraga-Encinas, R.; Kunieda, H.; Lumb, D.; Matt, G.; et al. Athena (Advanced Telescope for High ENergy Astrophysics) Assessment Study Report for ESA Cosmic Vision 2015–2025. arXiv 2012, arXiv:1207.2745. [Google Scholar]
- Nandra, K.; Barret, D.; Barcons, X.; Fabian, A.; den Herder, J.W.; Piro, L.; Watson, M.; Adami, C.; Aird, J.; Afonso, J.M.; et al. The Hot and Energetic Universe: A White Paper presenting the science theme motivating the Athena+ mission. arXiv 2013, arXiv:astro-ph.HE/1306.2307. [Google Scholar]
- Watts, A.L.; Yu, W.F.; Poutanen, J.; Zhang, S.; Bhattacharyya, S.; Bogdanov, S.; Ji, L.; Patruno, A.; Riley, T.E.; Bakala, P.; et al. Dense matter with eXTP. Sci. China Phys. Mech. Astron. 2019, 62, 29503. [Google Scholar] [CrossRef] [Green Version]
- Konar, S.; Bagchi, M.; Bandyopadhyay, D.; Banik, S.; Bhattacharya, D.; Bhattacharyya, S.; Gangadhara, R.T.; Gopakumar, A.; Gupta, Y.; Joshi, C.; et al. Neutron Star Physics in the Square Kilometer Array Era: An Indian Perspective. J. Astrophys. Astron. 2016, 37, 36. [Google Scholar] [CrossRef] [Green Version]
- Gendreau, K.C.; Arzoumanian, Z.; Okajima, T. The Neutron star Interior Composition ExploreR (NICER): An Explorer mission of opportunity for soft x-ray timing spectroscopy. In Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray; SPIE: Bellingham, WA, USA, 2012. [Google Scholar]
1. | Mirror matter, with this definition, falls into a peculiar case of thus defined ADM. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del Popolo, A.; Le Delliou, M.; Deliyergiyev, M. Neutron Stars and Dark Matter. Universe 2020, 6, 222. https://doi.org/10.3390/universe6120222
Del Popolo A, Le Delliou M, Deliyergiyev M. Neutron Stars and Dark Matter. Universe. 2020; 6(12):222. https://doi.org/10.3390/universe6120222
Chicago/Turabian StyleDel Popolo, Antonino, Morgan Le Delliou, and Maksym Deliyergiyev. 2020. "Neutron Stars and Dark Matter" Universe 6, no. 12: 222. https://doi.org/10.3390/universe6120222
APA StyleDel Popolo, A., Le Delliou, M., & Deliyergiyev, M. (2020). Neutron Stars and Dark Matter. Universe, 6(12), 222. https://doi.org/10.3390/universe6120222