Rotation Effects in Relativity
Funding
Conflicts of Interest
References
- Pais, A. Subtle is the Lord: The Science and the Life of Albert Einstein; Oxford University Press: New York, NY, USA, 1982. [Google Scholar]
- Rubin, V.C.; Ford, W.K., Jr.; Thonnard, N. Extended rotation curves of high-luminosity spiral galaxies. IV-Systematic dynamical properties, SA through SC. Astrophys. J. 1978, 225, L107–L111. [Google Scholar] [CrossRef]
- Binney, J.; Tremaine, S. Galactic Dynamics; Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
- Rizzi, G.; Ruggiero, M.L. Relativity in Rotating Frames: Relativistic Physics in Rotating Reference Frames; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 135. [Google Scholar]
- Brans, C.; Dicke, R.H. Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 1961, 124, 925. [Google Scholar] [CrossRef]
- Putz, V. A Theory of Inertia Based on Mach’s Principle. Universe 2019, 5, 188. [Google Scholar] [CrossRef] [Green Version]
- Koks, D. Simultaneity and Precise Time in Rotation. Universe 2019, 5, 226. [Google Scholar] [CrossRef] [Green Version]
- Speake, C.C.; Ortolan, A. Measuring Electromagnetic Fields in Rotating Frames of Reference. Universe 2020, 6, 31. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.; Abernathy, M.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef]
- Ruggiero, M.L.; Ortolan, A. Gravito-magnetic resonance in the field of a gravitational wave. Phys. Rev. D 2020, 102, 101501. [Google Scholar] [CrossRef]
- Herrera, L. Gravitational Radiation, Vorticity And Super–Energy: A Conspicuous Threesome. Universe 2019, 5, 164. [Google Scholar] [CrossRef] [Green Version]
- Semerák, O.; Čížek, P. Rotating Disc around a Schwarzschild Black Hole. Universe 2020, 6, 27. [Google Scholar] [CrossRef] [Green Version]
- Stuchlík, Z.; Kološ, M.; Kovář, J.; Slaný, P.; Tursunov, A. Influence of Cosmic Repulsion and Magnetic Fields on Accretion Disks Rotating around Kerr Black Holes. Universe 2020, 6, 26. [Google Scholar] [CrossRef] [Green Version]
- Pétri, J. Electrodynamics and Radiation from Rotating Neutron Star Magnetospheres. Universe 2020, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Gödel, K. An Example of a New Type of Cosmological Solutions of Einstein’s Field Equations of Gravitation. Rev. Mod. Phys. 1949, 21, 447–450. [Google Scholar] [CrossRef] [Green Version]
- Korotky, V.A.; Masár, E.; Obukhov, Y.N. In the Quest for Cosmic Rotation. Universe 2020, 6, 14. [Google Scholar] [CrossRef] [Green Version]
- Iorio, L. A HERO for General Relativity. Universe 2019, 5, 165. [Google Scholar] [CrossRef] [Green Version]
- Acedo, L. Monitoring Jovian Orbital Resonances of a Spacecraft: Classical and Relativistic Effects. Universe 2019, 5, 222. [Google Scholar] [CrossRef] [Green Version]
- Schreiber, K.U.; Gebauer, A.; Kodet, J.; Anyi, C.L.; Wells, J.P.R. Rotation Sensing Lasers in General Relativity: Some Technical Notes and Current Advances. Universe 2019, 5, 190. [Google Scholar] [CrossRef] [Green Version]
- Bosi, F.; Cella, G.; Di Virgilio, A.; Ortolan, A.; Porzio, A.; Solimeno, S.; Cerdonio, M.; Zendri, J.P.; Allegrini, M.; Belfi, J.; et al. Measuring gravitomagnetic effects by a multi-ring-laser gyroscope. Phys. Rev. D 2011, 84, 122002. [Google Scholar] [CrossRef] [Green Version]
- Mashhoon, B.; Hehl, F.W. Nonlocal Gravitomagnetism. Universe 2019, 5, 195. [Google Scholar] [CrossRef] [Green Version]
- Ruggiero, M.L.; Tartaglia, A. Gravitomagnetic effects. Nuovo Cim. 2002, B117, 743–768. [Google Scholar]
- Mashhoon, B. Gravitoelectromagnetism: A Brief review. arXiv 2003, arXiv:gr-qc/0311030. [Google Scholar]
- Farrugia, G.; Said, J.L.; Finch, A. Gravitoelectromagnetism, Solar System Tests, and Weak-Field Solutions in f (T,B) Gravity with Observational Constraints. Universe 2020, 6, 34. [Google Scholar] [CrossRef] [Green Version]
- Dymnikova, I.; Galaktionov, E. Dynamics of Electromagnetic Fields and Structure of Regular Rotating Electrically Charged Black Holes and Solitons in Nonlinear Electrodynamics Minimally Coupled to Gravity. Universe 2019, 5, 205. [Google Scholar] [CrossRef] [Green Version]
- Hess, P.O.; López-Moreno, E. Kerr Black Holes within a Modified Theory of Gravity. Universe 2019, 5, 191. [Google Scholar] [CrossRef] [Green Version]
- O’Connell, R.F. Rotation and Spin and Position Operators in Relativistic Gravity and Quantum Electrodynamics. Universe 2020, 6, 24. [Google Scholar] [CrossRef] [Green Version]
- Papini, G. Gravitational Qubits. Universe 2019, 5, 123. [Google Scholar] [CrossRef] [Green Version]
- Lake, M.J.; Miller, M.; Liang, S.D. Generalised Uncertainty Relations for Angular Momentum and Spin in Quantum Geometry. Universe 2020, 6, 56. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruggiero, M.L. Rotation Effects in Relativity. Universe 2020, 6, 224. https://doi.org/10.3390/universe6120224
Ruggiero ML. Rotation Effects in Relativity. Universe. 2020; 6(12):224. https://doi.org/10.3390/universe6120224
Chicago/Turabian StyleRuggiero, Matteo Luca. 2020. "Rotation Effects in Relativity" Universe 6, no. 12: 224. https://doi.org/10.3390/universe6120224
APA StyleRuggiero, M. L. (2020). Rotation Effects in Relativity. Universe, 6(12), 224. https://doi.org/10.3390/universe6120224