Uniqueness Criteria for the Fock Quantization of Dirac Fields and Applications in Hybrid Loop Quantum Cosmology
Abstract
:1. Introduction
2. Fock Quantization of the Dirac field
2.1. Background Spacetime and Dirac Equation
2.2. Fock Quantization, Unitarity, and Uniqueness
3. Dirac Fields in 2 + 1 Dimensions
3.1. Dirac Spinor in Conformally Ultrastatic Spacetimes
3.2. Fock Quantization and Unitary Evolution
3.3. Uniqueness of the Quantization
4. Fock Quantization of Dirac Fields in FLRW Cosmologies
4.1. Dirac Spinors in FLRW Cosmologies
4.2. Fock Quantization and Unitary Evolution
4.3. Uniqueness of the Quantization
5. Hamiltonian Backreaction of Dirac Perturbations in hLQC
5.1. Fermionic Perturbations in flat FLRW: Splitting of the Phase Space
5.2. Fermionic Hamiltonian: Restrictions on the Quantization
5.3. Hybrid Quantization: Fermionic Backreaction
- (i)
- The partial state is such that one can ignore transitions in the FLRW geometry mediated by the zero mode of the Hamiltonian constraint. Then, one can apply a kind of mean-field approximation and take the inner product of the constraint equation with , with respect to the Hilbert space .
- (ii)
- The contribution can be neglected when compared with . In other words, the contribution to the inflaton momentum of the fermionic partial state is negligible compared with the contribution of the homogeneous FLRW state. The self-consistency of this approximation can be explicitly checked using the constraint equation [73].
6. Fermionic Hamiltonian Diagonalization: Choice of Vacuum State
6.1. Hamiltonian Diagonalization in hLQC
6.2. Asymptotic Diagonalization
6.3. Uniqueness of the Vacuum: Minkowski and de Sitter Spacetimes
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Peskin, M.; Schroeder, D. An Introduction to Quantum Field Theory; Westview Press: Boulder, CO, USA, 1995. [Google Scholar]
- Weinberg, S. The Quantum Theory of Fields: Volume 1, Foundations; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Wald, R.M. Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics; Chicago University Press: Chicago, IL, USA, 1994. [Google Scholar]
- Galindo, A.; Pascual, P. Quantum Mechanics I; Springer: Berlin, Germany, 1990. [Google Scholar]
- Simon, B. Topics in Functional Analysis; Streater, R.F., Ed.; Academic Press: London, UK, 1972. [Google Scholar]
- Baez, J.C.; Segal, I.V.; Zhou, Z. Introduction to Algebraic and Constructive Quantum Field Theory; Princeton University Press: Princeton, NJ, USA, 1992. [Google Scholar]
- Shale, D. Linear symmetries of free boson fields. Trans. Am. Math. Soc. 1962, 103, 149. [Google Scholar] [CrossRef]
- Dereziński, J. Introduction to representations of the canonical commutation and anticommutation relations. In Large Coulomb Systems. Lecture Notes in Physics; Dereziński, J., Siedentop, H., Eds.; Springer: Heidelberg, Germany, 2006; Volume 695, pp. 65–145. [Google Scholar] [CrossRef] [Green Version]
- Kay, B.S. Linear spin-zero quantum fields in external gravitational and scalar fields I. A one particle structure for the stationary case. Commun. Math. Phys. 1978, 62, 55. [Google Scholar] [CrossRef]
- Cortez, J.; Mena Marugán, G.A.; Velhinho, J.M. Quantum unitary dynamics in cosmological spacetimes. Ann. Phys. 2015, 363, 36. [Google Scholar] [CrossRef] [Green Version]
- Cortez, J.; Mena Marugán, G.A. Feasibility of a unitary quantum dynamics in the Gowdy T3 cosmological model. Phys. Rev. D 2005, 72, 064020. [Google Scholar] [CrossRef] [Green Version]
- Corichi, A.; Cortez, J.; Mena Marugán, G.A. Quantum Gowdy T3 model: A unitary description. Phys. Rev. D 2006, 73, 084020. [Google Scholar] [CrossRef] [Green Version]
- Corichi, A.; Cortez, J.; Mena Marugán, G.A.; Velhinho, J.M. Quantum Gowdy T3 model: A uniqueness result. Class. Quantum Grav. 2006, 23, 6301. [Google Scholar] [CrossRef] [Green Version]
- Corichi, A.; Cortez, J.; Mena Marugán, G.A.; Velhinho, J.M. Quantum Gowdy T3 model: Schrödinger representation with unitary dynamics. Phys. Rev. D 2007, 76, 124031. [Google Scholar] [CrossRef] [Green Version]
- Cortez, J.; Mena Marugán, G.A.; Velhinho, J.M. Uniqueness of the Fock quantization of the Gowdy T3 model. Phys. Rev. D 2007, 75, 084027. [Google Scholar] [CrossRef] [Green Version]
- Cortez, J.; Mena Marugán, G.A.; Velhinho, J.M. Uniqueness of the Fock representation of the Gowdy S1 × S2 and S3 models. Class. Quantum Grav. 2008, 25, 105005. [Google Scholar] [CrossRef] [Green Version]
- Cortez, J.; Mena Marugán, G.A.; Velhinho, J.M. Fock quantization of a scalar field with time dependent mass on the three-sphere: Unitarity and uniqueness. Phys. Rev. D 2010, 81, 044037. [Google Scholar] [CrossRef] [Green Version]
- Cortez, J.; Mena Marugán, G.A.; Serôdio, R.; Velhinho, J.M. Uniqueness of the Fock quantization of a free scalar field on S1 with time dependent mass. Phys. Rev. D 2009, 79, 084040. [Google Scholar] [CrossRef] [Green Version]
- Cortez, J.; Mena Marugán, G.A.; Olmedo, J.; Velhinho, J.M. A unique Fock quantization for fields in non-stationary spacetimes. J. Cosmol. Astropart. Phys. 2010, 10, 030. [Google Scholar] [CrossRef]
- Cortez, J.; Mena Marugán, G.A.; Olmedo, J.; Velhinho, J.M. Uniqueness of the Fock quantization of fields with unitary dynamics in nonstationary spacetimes. Phys. Rev. D 2011, 83, 025002. [Google Scholar] [CrossRef] [Green Version]
- Cortez, J.; Mena Marugán, G.A.; Olmedo, J.; Velhinho, J.M. A uniqueness criterion for the Fock quantization of scalar fields with time dependent mass. Class. Quantum Grav. 2011, 28, 172001. [Google Scholar] [CrossRef] [Green Version]
- Cortez, J.; Mena Marugán, G.A.; Olmedo, J.; Velhinho, J.M. Criteria for the determination of time dependent scalings in the Fock quantization of scalar fields with a time dependent mass in ultrastatic spacetimes. Phys. Rev. D 2012, 86, 104003. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Méndez, M.; Mena Marugán, G.A.; Olmedo, J.; Velhinho, J.M. Unique Fock quantization of scalar cosmological perturbations. Phys. Rev. D 2012, 85, 103525. [Google Scholar] [CrossRef] [Green Version]
- Castelló Gomar, L.; Cortez, J.; Martín-de Blas, D.; Mena Marugán, G.A.; Velhinho, J.M. Uniqueness of the Fock quantization of scalar fields in spatially flat cosmological spacetimes. J. Cosmol. Astropart. Phys. 2012, 1211, 001. [Google Scholar] [CrossRef] [Green Version]
- Castelló Gomar, L.; Cortez, J.; Martín-de Blas, D.; Mena Marugán, G.A.; Velhinho, J.M. Unitary evolution and uniqueness of the Fock quantization in flat cosmologies with compact spatial sections. Electron. J. Theor. Phys. 2014, 11, 43. [Google Scholar]
- Cortez, J.; Fonseca, L.; Martín-de Blas, D.; Mena Marugán, G.A. Uniqueness of the Fock quantization of scalar fields under mode preserving canonical transformations varying in time. Phys. Rev. D 2013, 87, 044013. [Google Scholar] [CrossRef] [Green Version]
- Cortez, J.; Martín-de Blas, D.; Mena Marugán, G.A.; Velhinho, J.M. Massless scalar field in de Sitter spacetime: Unitary quantum time evolution. Class. Quantum Grav. 2013, 30, 075015. [Google Scholar] [CrossRef] [Green Version]
- Castelló Gomar, L.; Mena Marugán, G.A. Uniqueness of the Fock quantization of scalar fields and processes with signature change in cosmology. Phys. Rev. D 2014, 89, 084052. [Google Scholar] [CrossRef] [Green Version]
- Cortez, J.; Elizaga Navascués, B.; Martín-Benito, M.; Mena Marugán, G.A.; Olmedo, J.; Velhinho, J.M. Uniqueness of the Fock quantization of scalar fields in a Bianchi I cosmology with unitary dynamics. Phys. Rev. D 2016, 94, 105019. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A.; Agullo, I. Unitarity and ultraviolet regularity in cosmology. Phys. Rev. D 2015, 91, 124010. [Google Scholar] [CrossRef] [Green Version]
- Parker, L. Quantized fields and particle creation in expanding universes. I. Phys. Rev. 1969, 183, 1057. [Google Scholar] [CrossRef]
- Birrell, N.D.; Davies, P.C.W. Quantum Fields in Curved Space; Cambridge University Press: Cambridge, UK, 1982. [Google Scholar]
- Allen, B. Vacuum states in de Sitter space. Phys. Rev. D 1985, 32, 3136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fulling, S.A. Aspects of Quantum Field Theory in Curved Spacetime; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Elizaga Navascués, B.; Martín-Benito, M.; Mena Marugán, G.A. Hybrid models in loop quantum cosmology. Int. J. Mod. Phys. D 2016, 25, 1642007. [Google Scholar] [CrossRef] [Green Version]
- Elizaga Navascués, B.; Mena Marugán, G.A. Hybrid loop quantum cosmology: An overview. arXiv 2020, arXiv:2011.04559. [Google Scholar]
- Elizaga Navascués, B.; Martín-Benito, M.; Mena Marugán, G.A. Fermions in hybrid loop quantum cosmology. Phys. Rev. D 2017, 96, 044023. [Google Scholar] [CrossRef] [Green Version]
- Elizaga Navascués, B.; Mena Marugán, G.A.; Prado Loy, S. Backreaction of fermionic perturbations in the Hamiltonian of hybrid loop quantum cosmology. Phys. Rev. D 2018, 98, 063535. [Google Scholar] [CrossRef] [Green Version]
- Elizaga Navascués, B.; Mena Marugán, G.A.; Prado, S. Asymptotic diagonalization of the fermionic Hamiltonian in hybrid loop quantum cosmology. Phys. Rev. D 2019, 99, 063535. [Google Scholar] [CrossRef]
- Elizaga Navascués, B.; Mena Marugán, G.A.; Thiemann, T. Hamiltonian diagonalization in hybrid quantum cosmology. Class. Quantum Grav. 2019, 36, 185010. [Google Scholar] [CrossRef] [Green Version]
- Bunch, T.S.; Davies, P.C.W. Quantum field theory in de Sitter space: Renormalization by point-splitting. Proc. R. Soc. Lond. A 1978, 360, 117. [Google Scholar] [CrossRef]
- Lawson, H.B.; Michelson, M.L. Spin Geometry; Princeton University Press: Princeton, NJ, USA, 1989. [Google Scholar]
- Geroch, R. Spinor structure of space-times in General Relativity. I. J. Math. Phys. 1968, 9, 1739. [Google Scholar] [CrossRef]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; W.H. Freeman: San Francisco, CA, USA, 1973. [Google Scholar]
- Dimock, J. Dirac quantum fields on a manifold. Trans. Am. Math. Soc. 1982, 269, 133. [Google Scholar] [CrossRef]
- Wald, R.M. Existence of the S-matrix in quantum field theory in curved space-time. Ann. Phys. 1979, 118, 490. [Google Scholar] [CrossRef]
- Kuchař, K. Canonical quantization of cylindrical gravitational waves. Phys. Rev. D 1971, 4, 955. [Google Scholar] [CrossRef]
- Kuchař, K. Canonical quantization of gravity. In Relativity, Astrophysics and Cosmology; Israel, W., Ed.; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1973; pp. 237–288. [Google Scholar]
- Corichi, A.; Cortez, J.; Mena Marugán, G.A. Unitary evolution in Gowdy cosmology. Phys. Rev. D 2006, 73, 041502. [Google Scholar] [CrossRef] [Green Version]
- Mena Marugán, G.A.; Martín-de Blas, D.; Castelló Gomar, L. Unitary evolution and uniqueness of the Fock quantization in flat cosmologies. J. Phys. Conf. Ser. 2013, 410, 012151. [Google Scholar] [CrossRef] [Green Version]
- Cortez, J.; Mena Marugán, G.A.; Velhinho, J. Quantum linear scalar fields with time dependent potentials: Overview and applications to cosmology. Mathematics 2020, 8, 115. [Google Scholar] [CrossRef] [Green Version]
- Cortez, J.; Elizaga Navascués, B.; Martín-Benito, M.; Mena Marugán, G.A.; Velhinho, J.M. Uniqueness of the Fock quantization of Dirac fields in 2+1 dimensions. Phys. Rev. D 2017, 96, 025024. [Google Scholar] [CrossRef]
- Cortez, J.; Elizaga Navascués, B.; Martín-Benito, M.; Mena Marugán, G.A.; Velhinho, J.M. Unitary evolution and uniqueness of the Fock representation of Dirac fields in cosmological spacetimes. Phys. Rev. D 2015, 92, 105013. [Google Scholar] [CrossRef] [Green Version]
- Cortez, J.; Elizaga Navascués, B.; Martín-Benito, M.; Mena Marugán, G.A.; Velhinho, J.M. Unique Fock quantization of a massive fermion field in a cosmological scenario. Phys. Rev. D 2016, 93, 084053. [Google Scholar] [CrossRef] [Green Version]
- Cortez, J.; Elizaga Navascués, B.; Martín-Benito, M.; Mena Marugán, G.A.; Velhinho, J.M. Dirac fields in flat FLRW cosmology: Uniqueness of the Fock quantization. Ann. Phys. 2017, 376, 76. [Google Scholar] [CrossRef] [Green Version]
- Cortez, J.; Rodrigues, I.I.; Martín-Benito, M.; Velhinho, J. On the uniqueness of the Fock quantization of the Dirac field in the closed FRW cosmology. Adv. Math. Phys. 2018, 2018, 2450816. [Google Scholar] [CrossRef]
- Stiefel, E. Richtungsfelder und fernparallelismus in mannigfaltigkeiten. Comm. Math. Helv. 1936, 8, 3. [Google Scholar]
- Isham, C.J. Modern Differential Geometry for Physicists, 2nd ed.; World Scientific: Singapore, 1999. [Google Scholar]
- Roe, J. Elliptic Operators, Topology and Asymptotic Methods, 2nd ed.; Chapman & Hall/CRC: Boca Raton, MA, USA, 1999. [Google Scholar]
- Casalbuoni, R. On the quantization of systems with anticommuting variables. Nuovo Cimento A 1976, 33, 115. [Google Scholar] [CrossRef]
- Nelson, J.E.; Teitelboim, C. Hamiltonian formulation of the theory of interacting gravitational and electron fields. Ann. Phys. 1978, 116, 86. [Google Scholar] [CrossRef]
- D’Eath, P.D.; Halliwell, J.J. Fermions in quantum cosmology. Phys. Rev. D 1987, 35, 1100. [Google Scholar] [CrossRef]
- Bär, C. The Dirac operator on homogeneous spaces and its spectrum on 3-dimensional lens spaces. Arch. Math. 1992, 59, 65. [Google Scholar] [CrossRef]
- Homma, Y. A representation of Spin(4) on the eigenspinors of the Dirac operator on S3. Tokyo J. Math. 2000, 23, 453. [Google Scholar] [CrossRef]
- Friedrich, T. Zur abhängigkeit des Dirac-operators von der spin-struktur. Colloq. Math. 1984, 48, 57. [Google Scholar] [CrossRef]
- Ginoux, N. The Dirac Spectrum; Springer: Heidelberg, Germany, 2009. [Google Scholar]
- Hopf, H.; Rinow, W. Ueber den begriff der vollständigen differentialgeometrischen fläche. Comment. Math. Helv. 1931, 3, 209. [Google Scholar] [CrossRef]
- Eisberg, R.; Resnick, R. Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles, 2nd ed.; Wiley: New York, NY, USA, 1985. [Google Scholar]
- Dirac, P.A.M. Lectures on Quantum Mechanics; Belfer Graduate School of Science, Yeshiva University: New York, NY, USA, 1964. [Google Scholar]
- Wallach, N.R. Harmonic Analysis on Homogeneous Spaces; Marcel Dekker: New York, NY, USA, 1973. [Google Scholar]
- Kirillov, A.A. Elements of the Theory of Representations; Springer: New York, NY, USA, 1976. [Google Scholar]
- Halzen, F.; Martin, A.D. Quarks and Leptons: An Introductory Course in Modern Particle Physics; John Wiley & Sons: New York, NY, USA, 1984. [Google Scholar]
- Castelló Gomar, L.; Martín-Benito, M.; Mena Marugán, G.A. Gauge-invariant perturbations in hybrid quantum cosmology. J. Cosmol. Astropart. Phys. 2015, 1506, 045. [Google Scholar] [CrossRef] [Green Version]
- Carrier, G.F.; Pearson, C.E. Partial Differential Equations: Theory and Technique; Academic Press: New York, NY, USA, 1976. [Google Scholar]
- Elizaga Navascués, B.; Mena Marugán, G.A.; Prado, S. Unique fermionic vacuum in de Sitter spacetime from hybrid quantum cosmology. Phys. Rev. D 2020, 101, 123530. [Google Scholar] [CrossRef]
- Andrews, G.E.; Askey, R.; Roy, R. Special Functions; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Abramovitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Revised 9th ed.; National Bureau of Standards Applied Math Series No. 55; U.S. Government Publishing Office: Washington, DC, USA, 1970.
- Allen, B.; Lütken, C.A. Spinor two-point functions in maximally symmetric spaces. Commun. Math. Phys. 1986, 106, 201. [Google Scholar] [CrossRef]
- Collins, H. Fermionic α-vacua. Phys. Rev. D 2005, 71, 024002. [Google Scholar] [CrossRef] [Green Version]
- Parker, L.; Fulling, S.A. Adiabatic regularization of the energy-momentum tensor of a quantized field in homogeneous spaces. Phys. Rev. D 1974, 9, 341. [Google Scholar] [CrossRef]
- Anderson, P.R.; Parker, L. Adiabatic regularization in closed Robertson-Walker universes. Phys. Rev. D 1987, 36, 2963. [Google Scholar] [CrossRef]
- Lüders, C.; Roberts, J.E. Local quasiequivalence and adiabatic vacuum states. Commun. Math. Phys. 1990, 134, 29. [Google Scholar] [CrossRef]
- Hollands, S. The Hadamard condition for Dirac fields and adiabatic states on Robertson-Walker spacetimes. Commun. Math. Phys. 2001, 216, 635. [Google Scholar] [CrossRef] [Green Version]
- Barbero, G.J.F.; Ferreiro, A.; Navarro-Salas, J.; Villasen˜or, E.J.S. Adiabatic expansions for Dirac fields, renormalization, and anomalies. Phys. Rev. D 2018, 98, 025016. [Google Scholar] [CrossRef]
- Elizaga Navascués, B.; Mena Marugán, G.A.; Prado, S. Fock quantization of the Dirac field in hybrid quantum cosmology: Relation with adiabatic states. Phys. Rev. D 2019, 100, 125003. [Google Scholar] [CrossRef]
1. | |
2. | These spin structures determine the periodicity or antiperiodicity of the Dirac field in each of the orthogonal directions that define . If, in harmony with spatial isotropy, one imposes the same global behavior for the field in all these directions, the choice of spin structure is restricted to either or for all j. |
3. | Except for the index on the right-hand side of the second relation in Equation (56). |
4. | The case is slightly different, although straightforward to handle. |
5. | The zero modes of the metric and scalar field can be conveniently isolated and accounted for in the scale factor and homogeneous inflaton, owing to the compactness of the spatial sections. |
6. | Henceforth, to simplify the terminology and shorten the notation we will refer to the variables that describe this homogeneous and isotropic background as FLRW variables, even when they are not evaluated on classical solutions. In fact, in this section they are rather generic canonical variables, subject to being represented as quantum operators in a Hilbert space. |
7. | One can generalize the analysis to coefficients that are functions also of the inflaton and its momentum, thus allowing for a dependence on all the degrees of freedom of the FLRW background. However, this generalization is not necessary for our discussion, except at some point in Section 6, where we comment on it explicitly. |
8. | Alternatively, a sufficiently large number of physical states annihilated by the (dual) action of the constraint may live in the dual space of a certain dense subset of the kinematical space. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortez, J.; Navascués, B.E.; Mena Marugán, G.A.; Prado, S.; Velhinho, J.M. Uniqueness Criteria for the Fock Quantization of Dirac Fields and Applications in Hybrid Loop Quantum Cosmology. Universe 2020, 6, 241. https://doi.org/10.3390/universe6120241
Cortez J, Navascués BE, Mena Marugán GA, Prado S, Velhinho JM. Uniqueness Criteria for the Fock Quantization of Dirac Fields and Applications in Hybrid Loop Quantum Cosmology. Universe. 2020; 6(12):241. https://doi.org/10.3390/universe6120241
Chicago/Turabian StyleCortez, Jerónimo, Beatriz Elizaga Navascués, Guillermo A. Mena Marugán, Santiago Prado, and José M. Velhinho. 2020. "Uniqueness Criteria for the Fock Quantization of Dirac Fields and Applications in Hybrid Loop Quantum Cosmology" Universe 6, no. 12: 241. https://doi.org/10.3390/universe6120241
APA StyleCortez, J., Navascués, B. E., Mena Marugán, G. A., Prado, S., & Velhinho, J. M. (2020). Uniqueness Criteria for the Fock Quantization of Dirac Fields and Applications in Hybrid Loop Quantum Cosmology. Universe, 6(12), 241. https://doi.org/10.3390/universe6120241