Editorial for the Special Issue “Accretion Disks, Jets, Gamma-Ray Bursts and Related Gravitational Waves”
Funding
Conflicts of Interest
References
- Shakura, N.I.; Sunyaev, R.A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 1973, 24, 337–355. [Google Scholar]
- Chakrabarti, S.K.; Titarchuk, L.G. Spectral Properties of Accretion Disks Around Galactic and Extragalactic Black Hole. Astrophys. J. 1995, 455, 623. [Google Scholar] [CrossRef] [Green Version]
- Narayan, R.; Yi, I. Advection-dominated accretion: Underfed black holes and neutron stars. Astrophys. J. 1995, 452, 710. [Google Scholar] [CrossRef]
- Rajesh, S.R.; Mukhopadhyay, B. Two-temperature accretion around rotating black holes: A description of the general advective flow paradigm in the presence of various cooling processes to explain low to high luminous sources. Mon. Not. R. Astron. Soc. 2010, 402, 961–984. [Google Scholar] [CrossRef] [Green Version]
- Czerny, B. Slim Accretion Disks: Theory and Observational Consequences. Universe 2019, 5, 131. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekhar, S. The stability of non-dissipative Couette flow in hydromagnetics. Proc. Natl. Acad. Sci. USA 1960, 46, 253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velikhov, E. Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field. Zh. Eksp. Teor. Fiz. 1959, 36, 1398. [Google Scholar]
- Balbus, S.A.; Hawley, J.F. A powerful local shear instability in weakly magnetized disks. I-Linear analysis. II-Nonlinear evolution. Astrophys. J. 1991, 376, 214–233. [Google Scholar] [CrossRef]
- Bisnovatyi-Kogan, G.S. Accretion into Black Hole, and Formation of Magnetically Arrested Accretion Disks. Universe 2019, 5, 146. [Google Scholar] [CrossRef] [Green Version]
- Blandford, R.D.; Znajek, R.L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 1977, 179, 433–456. [Google Scholar] [CrossRef]
- Blandford, R.D.; Payne, D.G. Hydromagnetic flows from accretion discs and the production of radio jets. Mon. Not. R. Astron. Soc. 1982, 199, 883–903. [Google Scholar] [CrossRef] [Green Version]
- Penrose, R. Gravitational collapse: The role of general relativity. Nuovo Cimento Riv. Serie 1969, 34, 252. [Google Scholar]
- Tursunov, A.; Dadhich, N. Fifty Years of Energy Extraction from Rotating Black Hole: Revisiting Magnetic Penrose Process. Universe 2019, 5, 125. [Google Scholar] [CrossRef] [Green Version]
- Fendt, C. Approaching the Black Hole by Numerical Simulations. Universe 2019, 5, 99. [Google Scholar] [CrossRef] [Green Version]
- Chakrabarti, S.K. Are Gamma Ray Bursts the ‘Birth Cry’ of Black Holes? (Paper No. M-P17), at Gamma-Ray Bursts. In Proceedings of the Third Huntsville Symposium, Huntsville, AL, USA, 25–27 October 1995; Kouveliotou, C., Briggs, M., Fishman, J., Eds.; AIP Conference Proceedings 384. American Institute of Physics: New York, NY, USA, 1996. [Google Scholar]
- Joshi, P.S.; Dadhich, N.K.; Maartens, R. Gamma-ray bursts as the birth-cries of black holes. Mod. Phys. Lett. A 2000, 15, 991–995. [Google Scholar] [CrossRef] [Green Version]
- MacFadyen, A.I.; Woosley, S.E. Collapsars: Gamma-ray bursts and explosions in “failed supernovae”. Astrophys. J. 1999, 524, 262. [Google Scholar] [CrossRef] [Green Version]
- Rueda, J.A.; Ruffini, R.; Wang, Y. Induced Gravitational Collapse, Binary-Driven Hypernovae, Long Gramma-ray Bursts and Their Connection with Short Gamma-ray Bursts. Universe 2019, 5, 110. [Google Scholar] [CrossRef] [Green Version]
- Dey, L.; Gopakumar, A.; Valtonen, M.; Zola, S.; Susobhanan, A.; Hudec, R.; Pihajoki, P.; Pursimo, T.; Berdyugin, A.; Piirola, V.; et al. The Unique Blazar OJ 287 and Its Massive Binary Black Hole Central Engine. Universe 2019, 5, 108. [Google Scholar] [CrossRef] [Green Version]
- Bu, D.-F.; Xu, P.-Y.; Zhu, B.-C. Self-Similar Solution of Hot Accretion Flow with Anisotropic Pressure. Universe 2019, 5, 89. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukhopadhyay, B. Editorial for the Special Issue “Accretion Disks, Jets, Gamma-Ray Bursts and Related Gravitational Waves”. Universe 2020, 6, 242. https://doi.org/10.3390/universe6120242
Mukhopadhyay B. Editorial for the Special Issue “Accretion Disks, Jets, Gamma-Ray Bursts and Related Gravitational Waves”. Universe. 2020; 6(12):242. https://doi.org/10.3390/universe6120242
Chicago/Turabian StyleMukhopadhyay, Banibrata. 2020. "Editorial for the Special Issue “Accretion Disks, Jets, Gamma-Ray Bursts and Related Gravitational Waves”" Universe 6, no. 12: 242. https://doi.org/10.3390/universe6120242
APA StyleMukhopadhyay, B. (2020). Editorial for the Special Issue “Accretion Disks, Jets, Gamma-Ray Bursts and Related Gravitational Waves”. Universe, 6(12), 242. https://doi.org/10.3390/universe6120242