Exploring Light Sterile Neutrinos at Long Baseline Experiments: A Review
Abstract
:1. Introduction
2. Theoretical Framework
3. Description of the Experimental Setups
3.1. DUNE Setup
3.2. T2HK Setup
3.3. ESSSB Setup
4. Details of the Statistical Analysis
5. Mass Hierarchy Discovery Potential in the 3 + 1 Scheme
6. CP-violation Discovery Potential
7. Reconstruction of the CP Phases
8. Sterile Neutrinos and the Octant of
9. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Conversion Probability in Matter
References
- Fukuda, Y.; et al. [Super-Kamiokande Collaboration] Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 1998, 81, 1562–1567. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, Q.R.; et al. [SNO Collaboration] Measurement of the rate of νe + d → p + p + e− interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory. Phys. Rev. Lett. 2001, 87, 071301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, Q.R.; et al. [SNO Collaboration] Measurement of day and night neutrino energy spectra at SNO and constraints on neutrino mixing parameters. Phys. Rev. Lett. 2002, 89, 011302. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, Q.R.; et al. [SNO Collaboration] Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory. Phys. Rev. Lett. 2002, 89, 011301. [Google Scholar] [CrossRef] [PubMed]
- Eguchi, K.; et al. [KamLAND Collaboration] First results from KamLAND: Evidence for reactor anti-neutrino disappearance. Phys. Rev. Lett. 2003, 90, 021802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abazajian, K.N.; Acero, M.A.; Agarwalla, S.K.; Aguilar-Arevalo, A.A.; Albright, C.H.; Antusch, S.; Arguelles, C.A.; Balantekin, A.B.; Barenboim, G.; Barger, V.; et al. Light Sterile Neutrinos: A White Paper. arXiv 2012, arXiv:1204.5379. Available online: https://arxiv.org/abs/1204.5379 (accessed on 6 March 2020).
- Palazzo, A. Phenomenology of light sterile neutrinos: A brief review. Mod. Phys. Lett. A 2013, 28, 1330004. [Google Scholar] [CrossRef] [Green Version]
- Gariazzo, S.; Giunti, C.; Laveder, M.; Li, Y.F.; Zavanin, E.M. Light sterile neutrinos. J. Phys. G 2016, 43, 033001. [Google Scholar] [CrossRef] [Green Version]
- Giunti, C. Light Sterile Neutrinos: Status and Perspectives. Nucl. Phys. B 2016, 908, 336–353. [Google Scholar] [CrossRef] [Green Version]
- Giunti, C.; Lasserre, T. eV-scale Sterile Neutrinos. Ann. Rev. Nucl. Part. Sci. 2019, 69, 163–190. [Google Scholar] [CrossRef] [Green Version]
- Böser, S.; Buck, C.; Giunti, C.; Lesgourgues, J.; Ludhova, L.; Mertens, S.; Schukraft, A.; Wurm, M. Status of Light Sterile Neutrino Searches. Prog. Part. Nucl. Phys. 2019, 111, 103736. [Google Scholar] [CrossRef] [Green Version]
- Capozzi, F.; Giunti, C.; Laveder, M.; Palazzo, A. Joint short- and long-baseline constraints on light sterile neutrinos. Phys. Rev. D 2017, 95, 033006. [Google Scholar] [CrossRef] [Green Version]
- Gariazzo, S.; Giunti, C.; Laveder, M.; Li, Y.F. Updated Global 3 + 1 Analysis of Short-BaseLine Neutrino Oscillations. J. High Energy Phys. 2017, 2017, 135. [Google Scholar] [CrossRef] [Green Version]
- Dentler, M.; Hernandez-Cabezudo, A.; Kopp, J.; Machado, P.A.N.; Maltoni, M.; Martinez-Soler, I.; Schwetz, T. Updated Global Analysis of Neutrino Oscillations in the Presence of eV-Scale Sterile Neutrinos. J. High Energy Phys. 2018, 2018, 10. [Google Scholar] [CrossRef] [Green Version]
- Diaz, A.; Arguelles, C.A.; Collin, G.H.; Conrad, J.M.; Shaevitz, M.H. Where Are We With Light Sterile Neutrinos? arXiv 2019, arXiv:1906.00045. Available online: https://arxiv.org/abs/1906.00045 (accessed on 6 March 2020).
- Aguilar-Arevalo, A.; et al. [LSND Collaboration] Evidence for neutrino oscillations from the observation of anti-neutrino(electron) appearance in a anti-neutrino(muon) beam. Phys. Rev. D 2001, 64, 112007. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Arevalo, A.A.; et al. [MiniBooNE Collaboration] Significant Excess of ElectronLike Events in the MiniBooNE Short-Baseline Neutrino Experiment. Phys. Rev. Lett. 2018, 121, 221801. [Google Scholar] [CrossRef] [Green Version]
- Mention, G.; Fechner, M.; Lasserre, T.; Mueller, T.; Lhuillier, D.; Cribier, M.; Letourneau, A. The Reactor Antineutrino Anomaly. Phys. Rev. D 2011, 83, 073006. [Google Scholar] [CrossRef] [Green Version]
- Hampel, W.; et al. [GALLEX Collaboration] Final results of the Cr-51 neutrino source experiments in GALLEX. Phys. Lett. B 1998, 420, 114–126. [Google Scholar] [CrossRef] [Green Version]
- Abdurashitov, J.N.; Gavrin, V.N.; Girin, S.V.; Gorbachev, V.V.; Gurkina, P.P.; Ibragimova, T.V.; Kalikhov, A.V.; Khairnasov, N.G.; Knodel, T.V.; Matveev, V.A. Measurement of the response of a Ga solar neutrino experiment to neutrinos from an Ar-37 source. Phys. Rev. C 2006, 73, 045805. [Google Scholar] [CrossRef] [Green Version]
- Adamson, P.; et al. [MINOS Collaboration] Search for Sterile Neutrinos Mixing with Muon Neutrinos in MINOS. Phys. Rev. Lett. 2016, 117, 151803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamson, P.; et al. [MINOS+ Collaboration] Search for sterile neutrinos in MINOS and MINOS+ using a two-detector fit. Phys. Rev. Lett. 2019, 122, 091803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamson, P.; et al. [The NOvA Collaboration] Search for active-sterile neutrino mixing using neutral-current interactions in NOvA. Phys. Rev. D 2017, 96, 072006. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; et al. [T2K Collaboration] Search for light sterile neutrinos with the T2K far detector Super-Kamiokande at a baseline of 295 km. Phys. Rev. D 2019, 99, 071103. [Google Scholar] [CrossRef] [Green Version]
- An, F.P.; et al. [Daya Bay Collaboration] Improved Search for a Light Sterile Neutrino with the Full Configuration of the Daya Bay Experiment. Phys. Rev. Lett. 2016, 117, 151802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamson, P.; et al. [Daya Bay Collaboration, MINOS Collaboration] Limits on Active to Sterile Neutrino Oscillations from Disappearance Searches in the MINOS, Daya Bay, and Bugey-3 Experiments. Phys. Rev. Lett. 2016, 117, 151801, [Addendum: Phys. Rev. Lett. 2016, 117, 209901]. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danilov, M. Recent results of the DANSS experiment. In Proceedings of the 2019 European Physical Society Conference on High Energy Physics (EPS-HEP2019), Ghent, Belgium, 10–17 July 2019. [Google Scholar]
- Ko, Y.J.; et al. [NEOS Collaboration] Sterile Neutrino Search at the NEOS Experiment. Phys. Rev. Lett. 2017, 118, 121802. [Google Scholar] [CrossRef] [Green Version]
- Serebrov, A.P.; Ivochkin, V.G.; Samoilov, R.M.; Fomin, A.K.; Polyushkin, A.O.; Zinoviev, V.G.; Neustroev, P.V.; Golovtsov, V.L.; Chernyj, A.V.; Zherebtsov, O.M.; et al. First Observation of the Oscillation Effect in the Neutrino-4 Experiment on the Search for the Sterile Neutrino. JETP Lett. 2019, 109, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Ashenfelter, J.; et al. [PROSPECT Collaboration] First search for short-baseline neutrino oscillations at HFIR with PROSPECT. Phys. Rev. Lett. 2018, 121, 251802. [Google Scholar] [CrossRef] [Green Version]
- Almazán Molina, H.; Bernard, L.; Blanchet, A.; Bonhomme, A.; Buck, C.; Amo Sánchez, P.; Atmani, I.E.; Haser, H.; Kandzia, F.; Kox, S.; et al. Improved Sterile Neutrino Constraints from the STEREO Experiment with 179 Days of Reactor-On Data. arXiv 2019, arXiv:1912.06582. Available online: https://cel.archives-ouvertes.fr/LPSC/hal-02423748v1 (accessed on 6 March 2020).
- Abe, K.; et al. [Super-Kamiokande Collaboration] Limits on sterile neutrino mixing using atmospheric neutrinos in Super-Kamiokande. Phys. Rev. D 2015, 91, 052019. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.G.; et al. [IceCube Collaboration] Searches for Sterile Neutrinos with the IceCube Detector. Phys. Rev. Lett. 2016, 117, 071801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aartsen, M.G.; et al. [IceCube Collaboration] Search for sterile neutrino mixing using three years of IceCube DeepCore data. Phys. Rev. D 2017, 95, 112002. [Google Scholar] [CrossRef] [Green Version]
- Albert, A.; et al. [The ANTARES collaboration] Measuring the atmospheric neutrino oscillation parameters and constraining the 3 + 1 neutrino model with ten years of ANTARES data. J. High Energy Phys. 2019, 2019, 113. [Google Scholar] [CrossRef] [Green Version]
- Palazzo, A. Testing the very-short-baseline neutrino anomalies at the solar sector. Phys. Rev. D 2011, 83, 113013. [Google Scholar] [CrossRef] [Green Version]
- Palazzo, A. An estimate of θ14 independent of the reactor antineutrino flux determinations. Phys. Rev. D 2012, 85, 077301. [Google Scholar] [CrossRef] [Green Version]
- Giunti, C.; Li, Y.F. Matter Effects in Active-Sterile Solar Neutrino Oscillations. Phys. Rev. D 2009, 80, 113007. [Google Scholar] [CrossRef] [Green Version]
- Lasserre, T. Light Sterile Neutrinos in Particle Physics: Experimental Status. Phys. Dark Univ. 2014, 4, 81–85. [Google Scholar] [CrossRef] [Green Version]
- Nunokawa, H.; Peres, O.L.G.; Zukanovich Funchal, R. Probing the LSND mass scale and four neutrino scenarios with a neutrino telescope. Phys. Lett. B 2003, 562, 279–290. [Google Scholar] [CrossRef] [Green Version]
- Klop, N.; Palazzo, A. Imprints of CP violation induced by sterile neutrinos in T2K data. Phys. Rev. D 2015, 91, 073017. [Google Scholar] [CrossRef] [Green Version]
- Hollander, D.; Mocioiu, I. Minimal 3 + 2 sterile neutrino model at LBNE. Phys. Rev. D 2015, 91, 013002. [Google Scholar] [CrossRef] [Green Version]
- Berryman, J.M.; de Gouvêa, A.; Kelly, K.J.; Kobach, A. Sterile neutrino at the Deep Underground Neutrino Experiment. Phys. Rev. D 2015, 92, 073012. [Google Scholar] [CrossRef] [Green Version]
- Gandhi, R.; Kayser, B.; Masud, M.; Prakash, S. The impact of sterile neutrinos on CP measurements at long baselines. J. High Energy Phys. 2015, 2015, 39. [Google Scholar] [CrossRef] [Green Version]
- Agarwalla, S.K.; Chatterjee, S.S.; Palazzo, A. Physics Reach of DUNE with a Light Sterile Neutrino. J. High Energy Phys. 2016, 2016, 16. [Google Scholar] [CrossRef]
- Agarwalla, S.K.; Chatterjee, S.S.; Palazzo, A. Octant of θ23 in danger with a light sterile neutrino. Phys. Rev. Lett. 2017, 118, 031804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coloma, P.; Forero, D.V.; Parke, S.J. DUNE Sensitivities to the Mixing between Sterile and Tau Neutrinos. J. High Energy Phys. 2018, 2018, 79. [Google Scholar] [CrossRef] [Green Version]
- Choubey, S.; Dutta, D.; Pramanik, D. Imprints of a light Sterile Neutrino at DUNE, T2HK and T2HKK. Phys. Rev. D 2017, 96, 056026. [Google Scholar] [CrossRef] [Green Version]
- Choubey, S.; Dutta, D.; Pramanik, D. Measuring the Sterile Neutrino CP Phase at DUNE and T2HK. Eur. Phys. J. A 2017, 78, 339. [Google Scholar] [CrossRef]
- Agarwalla, S.K.; Chatterjee, S.S.; Palazzo, A. Signatures of a Light Sterile Neutrino in T2HK. J. High Energy Phys. 2018, 2018, 91. [Google Scholar] [CrossRef]
- Haba, N.; Mimura, Y.; Yamada, T. On θ23 Octant Measurement in 3 + 1 Neutrino Oscillations in T2HKK. arXiv 2018, arXiv:1812.10940. Available online: https://arxiv.org/abs/1812.10940 (accessed on 6 March 2020).
- Donini, A.; Meloni, D. The 2 + 2 and 3 + 1 four family neutrino mixing at the neutrino factory. Eur. Phys. J. C 2001, 22, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Donini, A.; Lusignoli, M.; Meloni, D. Telling three neutrinos from four neutrinos at the neutrino factory. Nucl. Phys. B 2002, 624, 405–422. [Google Scholar] [CrossRef] [Green Version]
- Donini, A.; Maltoni, M.; Meloni, D.; Migliozzi, P.; Terranova, F. 3 + 1 sterile neutrinos at the CNGS. J. High Energy Phys. 2007, 2007, 13. [Google Scholar] [CrossRef]
- Dighe, A.; Ray, S. Signatures of heavy sterile neutrinos at long baseline experiments. Phys. Rev. D 2007, 76, 113001. [Google Scholar] [CrossRef] [Green Version]
- Donini, A.; Fuki, K.I.; Lopez-Pavon, J.; Meloni, D.; Yasuda, O. The Discovery channel at the Neutrino Factory: Numu to nutau pointing to sterile neutrinos. J. High Energy Phys. 2009, 2009, 41. [Google Scholar] [CrossRef] [Green Version]
- Yasuda, O. Sensitivity to sterile neutrino mixings and the discovery channel at a neutrino factory. Physics beyond the standard models of particles, cosmology and astrophysics. In Proceedings of the 5th International Conference, Beyond 2010, Cape Town, South Africa, 1–6 February 2010; pp. 300–313. [Google Scholar]
- Meloni, D.; Tang, J.; Winter, W. Sterile neutrinos beyond LSND at the Neutrino Factory. Phys. Rev. D 2010, 82, 093008. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, B.; Thalapillil, A.M.; Wagner, C.E.M. Implications of sterile neutrinos for medium/long-baseline neutrino experiments and the determination of θ13. Phys. Rev. D 2012, 85, 073004. [Google Scholar] [CrossRef] [Green Version]
- Donini, A.; Hernandez, P.; Lopez-Pavon, J.; Maltoni, M.; Schwetz, T. The minimal 3 + 2 neutrino model versus oscillation anomalies. J. High Energy Phys. 2012, 2012, 161. [Google Scholar] [CrossRef] [Green Version]
- Gandhi, R.; Kayser, B.; Prakash, S.; Roy, S. What measurements of neutrino neutral current events can reveal. J. High Energy Phys. 2017, 2017, 202. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.S.; López Castro, G.; Sahoo, D. Constraints on a sub-eV scale sterile neutrino from nonoscillation measurements. Phys. Rev. D 2018, 98, 115021. [Google Scholar] [CrossRef] [Green Version]
- Giunti, C.; Li, Y.F.; Zhang, Y.Y. KATRIN bound on 3 + 1 active-sterile neutrino mixing and the reactor antineutrino anomaly. arXiv 2019, arXiv:1912.12956. Available online: https://arxiv.org/abs/1912.12956 (accessed on 6 March 2020).
- Goswami, S.; Rodejohann, W. Constraining mass spectra with sterile neutrinos from neutrinoless double beta decay, tritium beta decay and cosmology. Phys. Rev. D 2006, 73, 113003. [Google Scholar] [CrossRef] [Green Version]
- Girardi, I.; Meroni, A.; Petcov, S.T. Neutrinoless Double Beta Decay in the Presence of Light Sterile Neutrinos. J. High Energy Phys. 2013, 2013, 146. [Google Scholar] [CrossRef] [Green Version]
- De Salas, P.F.; Forero, D.V.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity. Phys. Lett. B 2018, 782, 633–640. [Google Scholar] [CrossRef]
- Capozzi, F.; Lisi, E.; Marrone, A.; Palazzo, A. Current unknowns in the three neutrino framework. Prog. Part. Nucl. Phys. 2018, 102, 48–72. [Google Scholar] [CrossRef] [Green Version]
- Esteban, I.; Gonzalez-Garcia, M.C.; Hernandez-Cabezudo, A.; Maltoni, M.; Schwetz, T. Global analysis of three-flavour neutrino oscillations: Synergies and tensions in the determination of θ23,δCP, and the mass ordering. J. High Energy Phys. 2019, 2019, 106. [Google Scholar] [CrossRef]
- Acciarri, R.; et al. [DUNE Collaboration] Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 1: The LBNF and DUNE Projects. arXiv 2016, arXiv:1601.054712016. Available online: https://cds.cern.ch/record/2126238 (accessed on 6 March 2020).
- Acciarri, R.; et al. [DUNE collaboration] Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE). arXiv 2015, arXiv:1512.06148. Available online: http://xxx.lanl.gov/abs/1512.06148 (accessed on 6 March 2020).
- Strait, J.; McCluskey, E.; Lundin, T.; Willhite, J.; Hamernik, T.; Papadimitriou, V.; Marchionni, A.; Kim, M.J.; Nessi, M.; Montanari, D.; et al. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 3: Long-Baseline Neutrino Facility for DUNE June 24, 2015. arXiv 2016, arXiv:1601.05823. Available online: https://arxiv.org/abs/1601.05823 (accessed on 6 March 2020).
- Acciarri, R.; et al. [DUNE Collaboration] Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report, Volume 4 The DUNE Detectors at LBNF. arXiv 2016, arXiv:1601.02984. Available online: https://arxiv.org/abs/1601.02984 (accessed on 6 March 2020).
- Adams, C.; et al. [LBNE Collaboration] Scientific Opportunities with the Long-Baseline Neutrino Experiment; Fermi National Accelerator Lab. (FNAL): Batavia, IL, USA, 2013. [Google Scholar]
- Agarwalla, S.K.; Li, T.; Rubbia, A. An Incremental approach to unravel the neutrino mass hierarchy and CP violation with a long-baseline Superbeam for large θ13. J. High Energy Phys. 2012, 2012, 154. [Google Scholar] [CrossRef] [Green Version]
- Bishai, M.; Brookhaven National Laboratory, Upton, NY 11973, USA. Personal communication, 2012.
- Abe, K.; Abe, T.; Aihara, H.; Fukuda, Y.; Hayato, Y.; Huang, K.; Ichikawa, A.K.; Ikeda, M.; Inoue, K.; Ishino, H.; et al. Letter of Intent: The Hyper-Kamiokande Experiment—Detector Design and Physics Potential. arXiv 2011, arXiv:1109.3262. Available online: https://arxiv.org/abs/1109.3262 (accessed on 6 March 2020).
- Abe, K.; et al. [Hyper-Kamiokande Working Group] A Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande. arXiv 2014, arXiv:1412.4673. Available online: https://arxiv.org/abs/1412.4673 (accessed on 6 March 2020).
- Abe, K.; et al. [Hyper-Kamiokande Proto-Collaboration] Physics potential of a long-baseline neutrino oscillation experiment using a J-PARC neutrino beam and Hyper-Kamiokande. Prog. Theor. Exp. Phys. 2015, 2015, 053C02. [Google Scholar]
- Para, A.; Szleper, M. Neutrino oscillations experiments using off-axis NuMI beam. arXiv 2001, arXiv:hep-ex/0110032. Available online: https://arxiv.org/abs/hep-ex/0110032 (accessed on 6 March 2020).
- Abe, K.; et al. [Hyper-Kamiokande proto-Collaboration] Physics potentials with the second Hyper-Kamiokande detector in Korea. Prog. Theor. Exp. Phys. 2018, 2018, 063C01. [Google Scholar]
- Baussan, E.; Blennow, B.; Bogomilov, M.; Bouquerel, E.; Caretta, O.; Cederkäll, J.; Christiansen, P.; Coloma, P.; Cupial, P.; Danared, H.; et al. A very intense neutrino super beam experiment for leptonic CP violation discovery based on the European spallation source linac. Nucl. Phys. B 2014, 885, 127–149. [Google Scholar] [CrossRef]
- Dracos, M. The ESSνSB Project for Leptonic CP Violation Discovery based on the European Spallation Source Linac. Nucl. Part. Phys. Proc. 2016, 273, 1726–1731. [Google Scholar] [CrossRef] [Green Version]
- Dracos, M. The European Spallation Source neutrino Super Beam. In Proceedings of the Prospects in Neutrino Physics (NuPhys2017), London, UK, 20–22 December 2017; pp. 33–41. [Google Scholar]
- Dracos, M.; Ekelof, T. Neutrino CP Violation with the ESS neutrino Super Beam (ESSνSB). PoS 2019, 12, 524. [Google Scholar]
- Martinez, E.F.; IFT, Madrid, Spain. Personal communication, 2013.
- Agostino, L.; Buizza-Avanzini, M.; Dracos, M.; Duchesneau, D.; Marafini, M.; Mezzetto, M.; Mosca, L.; Patzak, T.; Tonazzo, A.; Vassilopoulos, N. Study of the performance of a large scale water-Cherenkov detector (MEMPHYS). J. Cosmol. Astropart. Phys. 2013, 2013, 24. [Google Scholar] [CrossRef] [Green Version]
- Agostino, L.; LPNHE Paris, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris 75252, France. Personal communication, 2013.
- Agarwalla, S.K.; Choubey, S.; Prakash, S. Probing Neutrino Oscillation Parameters using High Power Superbeam from ESS. J. High Energy Phys. 2014, 2014, 20. [Google Scholar] [CrossRef] [Green Version]
- Kumar Agarwalla, S.; Chatterjee, S.S.; Palazzo, A. Physics Potential of ESSνSB in the presence of a Light Sterile Neutrino. J. High Energy Phys. 2019, 2019, 174. [Google Scholar] [CrossRef] [Green Version]
- Huber, P.; Lindner, M.; Winter, W. Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator). Comput. Phys. Commun. 2005, 167, 195. [Google Scholar] [CrossRef] [Green Version]
- Huber, P.; Kopp, J.; Lindner, M.; Rolinec, M.; Winter, W. New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator. Comput. Phys. Commun. 2007, 177, 432–438. [Google Scholar] [CrossRef] [Green Version]
- Dziewonski, A.M.; Anderson, D.L. Preliminary Reference Earth Model. Phys. Earth Planet. Inter. 1981, 25, 297–356. [Google Scholar] [CrossRef]
- Huber, P.; Lindner, M.; Winter, W. Superbeams versus neutrino factories. Nucl. Phys. B 2002, 645, 3–48. [Google Scholar] [CrossRef] [Green Version]
- Fogli, G.L.; Lisi, E.; Marrone, A.; Montanino, D.; Palazzo, A. Getting the most from the statistical analysis of solar neutrino oscillations. Phys. Rev. D 2002, 66, 053010. [Google Scholar] [CrossRef] [Green Version]
- Blennow, M.; Coloma, P.; Huber, P.; Schwetz, T. Quantifying the sensitivity of oscillation experiments to the neutrino mass ordering. J. High Energy Phys. 2014, 2014, 28. [Google Scholar] [CrossRef] [Green Version]
- Agarwalla, S.K.; Chatterjee, S.S.; Dasgupta, A.; Palazzo, A. Discovery Potential of T2K and NOvA in the Presence of a Light Sterile Neutrino. J. High Energy Phys. 2016, 2016, 111. [Google Scholar] [CrossRef] [Green Version]
- Mohapatra, R.; Smirnov, A. Neutrino Mass and New Physics. Ann. Rev. Nucl. Part. Sci. 2006, 56, 569–628. [Google Scholar] [CrossRef] [Green Version]
- Albright, C.H.; Chen, M.C. Model Predictions for Neutrino Oscillation Parameters. Phys. Rev. D 2006, 74, 113006. [Google Scholar] [CrossRef] [Green Version]
- Altarelli, G.; Feruglio, F. Discrete Flavor Symmetries and Models of Neutrino Mixing. Rev. Mod. Phys. 2010, 82, 2701–2729. [Google Scholar] [CrossRef]
- King, S.F.; Merle, A.; Morisi, S.; Shimizu, Y.; Tanimoto, M. Neutrino Mass and Mixing: From Theory to Experiment. New J. Phys. 2014, 16, 045018. [Google Scholar] [CrossRef]
- King, S.F. Models of Neutrino Mass, Mixing and CP Violation. J. Phys. G 2015, 42, 123001. [Google Scholar] [CrossRef]
- Merle, A.; Morisi, S.; Winter, W. Common origin of reactor and sterile neutrino mixing. J. High Energy Phys. 2014, 2014, 39. [Google Scholar] [CrossRef] [Green Version]
- Rivera-Agudelo, D.C.; Pérez-Lorenzana, A. Generating θ13 from sterile neutrinos in μ − τ symmetric models. Phys. Rev. D 2015, 92, 073009. [Google Scholar] [CrossRef] [Green Version]
- Fukuyama, T.; Nishiura, H. Mass matrix of Majorana neutrinos. arXiv 1997, arXiv:hep-ph/9702253v1. Available online: https://arxiv.org/abs/hep-ph/9702253v1 (accessed on 6 March 2020).
- Mohapatra, R.N.; Nussinov, S. Bimaximal neutrino mixing and neutrino mass matrix. Phys. Rev. D 1999, 60, 013002. [Google Scholar] [CrossRef] [Green Version]
- Lam, C. A 2-3 symmetry in neutrino oscillations. Phys. Lett. B 2001, 507, 214–218. [Google Scholar] [CrossRef] [Green Version]
- Harrison, P.; Scott, W. mu-tau reflection symmetry in lepton mixing and neutrino oscillations. Phys. Lett. B 2002, 547, 219–228. [Google Scholar] [CrossRef] [Green Version]
- Kitabayashi, T.; Yasue, M. S(2L) permutation symmetry for left-handed mu and tau families and neutrino oscillations in an SU(3)-L×SU(1)-N gauge model. Phys. Rev. D 2003, 67, 015006. [Google Scholar] [CrossRef] [Green Version]
- Grimus, W.; Lavoura, L. A Discrete symmetry group for maximal atmospheric neutrino mixing. Phys. Lett. B 2003, 572, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Koide, Y. Universal texture of quark and lepton mass matrices with an extended flavor 2->3 symmetry. Phys. Rev. D 2004, 69, 093001. [Google Scholar] [CrossRef] [Green Version]
- Mohapatra, R.; Rodejohann, W. Broken mu-tau symmetry and leptonic CP violation. Phys. Rev. D 2005, 72, 053001. [Google Scholar] [CrossRef] [Green Version]
- Ma, E. Plato’s fire and the neutrino mass matrix. Mod. Phys. Lett. A 2002, 17, 2361–2370. [Google Scholar] [CrossRef] [Green Version]
- Ma, E.; Rajasekaran, G. Softly broken A(4) symmetry for nearly degenerate neutrino masses. Phys. Rev. D 2001, 64, 113012. [Google Scholar] [CrossRef] [Green Version]
- Babu, K.; Ma, E.; Valle, J. Underlying A(4) symmetry for the neutrino mass matrix and the quark mixing matrix. Phys. Lett. B 2003, 552, 207–213. [Google Scholar] [CrossRef] [Green Version]
- Grimus, W.; Lavoura, L. S(3)×Z(2) model for neutrino mass matrices. J. High Energy Phys. 2005, 2005, 13. [Google Scholar] [CrossRef] [Green Version]
- Ma, E. Tetrahedral family symmetry and the neutrino mixing matrix. Mod. Phys. Lett. A 2005, 20, 2601–2606. [Google Scholar] [CrossRef] [Green Version]
- Raidal, M. Relation between the neutrino and quark mixing angles and grand unification. Phys. Rev. Lett. 2004, 93, 161801. [Google Scholar] [CrossRef] [Green Version]
- Minakata, H.; Smirnov, A.Y. Neutrino mixing and quark-lepton complementarity. Phys. Rev. D 2004, 70, 073009. [Google Scholar] [CrossRef] [Green Version]
- Ferrandis, J.; Pakvasa, S. Quark-lepton complenmentarity relation and neutrino mass hierarchy. Phys. Rev. D 2005, 71, 033004. [Google Scholar] [CrossRef] [Green Version]
- Antusch, S.; King, S.F.; Mohapatra, R.N. Quark-lepton complementarity in unified theories. Phys. Lett. 2005, B618, 150–161. [Google Scholar] [CrossRef] [Green Version]
- Hall, L.J.; Murayama, H.; Weiner, N. Neutrino mass anarchy. Phys. Rev. Lett. 2000, 84, 2572–2575. [Google Scholar] [CrossRef] [Green Version]
- De Gouvea, A.; Murayama, H. Neutrino Mixing Anarchy: Alive and Kicking. Phys. Lett. 2015, B747, 479–483. [Google Scholar] [CrossRef] [Green Version]
- Fogli, G.L.; Lisi, E. Tests of three-flavor mixing in long-baseline neutrino oscillation experiments. Phys. Rev. D 1996, 54, 3667–3670. [Google Scholar] [CrossRef] [Green Version]
- Barger, V.; Marfatia, D.; Whisnant, K. Breaking eight-fold degeneracies in neutrino CP violation, mixing, and mass hierarchy. Phys. Rev. D 2002, 65, 073023. [Google Scholar] [CrossRef] [Green Version]
- Minakata, H.; Nunokawa, H. Exploring neutrino mixing with low energy superbeams. J. High Energy Phys. 2001, 2001, 1. [Google Scholar] [CrossRef] [Green Version]
- Hiraide, K.; Minakata, H.; Nakaya, T.; Nunokawa, H.; Sugiyama, H.; Teves, W.J.C.; Zukanovich Funchal, R. Resolving θ23 degeneracy by accelerator and reactor neutrino oscillation experiments. Phys. Rev. D 2006, 73, 093008. [Google Scholar] [CrossRef] [Green Version]
- Burguet-Castell, J.; Gavela, M.; Gomez-Cadenas, J.; Hernandez, P.; Mena, O. Superbeams plus neutrino factory: The Golden path to leptonic CP violation. Nucl. Phys. B 2002, 646, 301–320. [Google Scholar] [CrossRef] [Green Version]
- Agarwalla, S.K.; Prakash, S.; Sankar, S.U. Resolving the octant of theta23 with T2K and NOvA. J. High Energy Phys. 2013, 2013, 131. [Google Scholar] [CrossRef] [Green Version]
- Machado, P.A.N.; Minakata, H.; Nunokawa, H.; Zukanovich Funchal, R. What can we learn about the lepton CP phase in the next 10 years? J. High Energy Phys. 2014, 2014, 109. [Google Scholar] [CrossRef] [Green Version]
- Minakata, H.; Parke, S.J. Correlated, precision measurements of θ23 and δ using only the electron neutrino appearance experiments. Phys. Rev. D 2013, 87, 113005. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, A.; Ghoshal, P.; Goswami, S.; Raut, S.K. Octant sensitivity for large theta(13) in atmospheric and long baseline neutrino experiments. J. High Energy Phys. 2013, 2013, 10. [Google Scholar] [CrossRef] [Green Version]
- Agarwalla, S.K.; Prakash, S.; Uma Sankar, S. Exploring the three flavor effects with future superbeams using liquid argon detectors. J. High Energy Phys. 2014, 2014, 87. [Google Scholar] [CrossRef] [Green Version]
- Bass, M.; Bishai, M.; Cherdack, D.; Diwan, M.; Djurcic, Z.; Hernandez, J.; Lundberg, B.; Paolone, V.; Qian, X.; Rameika, R.; et al. Baseline optimization for the measurement of CP violation, mass hierarchy, and θ23 octant in a long-baseline neutrino oscillation experiment. Phys. Rev. D 2015, 91, 052015. [Google Scholar] [CrossRef] [Green Version]
- Bora, K.; Dutta, D.; Ghoshal, P. Determining the octant of θ23 at LBNE in conjunction with reactor experiments. Mod. Phys. Lett. A 2015, 30, 1550066. [Google Scholar] [CrossRef] [Green Version]
- Das, C.R.; Maalampi, J.; Pulido, J.; Vihonen, S. Determination of the θ23 octant in LBNO. J. High Energy Phys. 2015, 2015, 48. [Google Scholar] [CrossRef] [Green Version]
- Nath, N.; Ghosh, M.; Goswami, S. The physics of antineutrinos in DUNE and determination of octant and δCP. Nucl. Phys. B 2016, 913, 381–404. [Google Scholar] [CrossRef] [Green Version]
1 | We also mention the work [26], where the combination of MINOS, Daya-Bay, and Bugey-3 was considered. |
2 | The line-averaged constant Earth matter density has been computed using the Preliminary Reference Earth Model (PREM) [92]. |
3 | Note that we consider both CC and NC background events in our analysis and the NC background is independent of oscillation parameters. |
4 | In the 3 + 1 scheme, these plots were first introduced in Reference [96] for the discussion of T2K and NOA. |
5 | Note that both and are cyclic variables. Therefore, the union of the four corners in the top right panel of Figure 6 gives rise to a single connected region. |
6 | As shown in [102,103], in 4 flavors, the condition implies an approximate realization of symmetry, similar to what occurs in the standard 3-flavor scenario. Therefore, discovering that is maximal (non-maximal) would imply that symmetry is unbroken (broken), independently of the existence of a light sterile neutrino. |
7 | We stress that this should be taken only as formal analogy. In fact, the real NSI are mediated by heavy particles. In contrast, in the case of sterile neutrinos, there is no heavy mediator and the NSI-like structure of the Hamiltonian is connected to the circumstance that we are working in the new basis introduced in Equation (A7), which is rotated with respect to the original flavor basis. We mention that a similar analogy has been noticed in the field of solar neutrino conversion in the presence of sterile states [36]. |
Parameter | True Value | Marginalization Range |
---|---|---|
0.304 | Not marginalized | |
Not marginalized | ||
0.50 | [0.34, 0.68] | |
0.025 | Not marginalized | |
0.025 | Not marginalized | |
0, 0.025, 0.25 | Not marginalized | |
[–180,180] | [–180,180] | |
[–180,180] | [–180,180] | |
[–180,180] | [–180,180] | |
7.50 | Not marginalized | |
(NH) | 2.475 | Not marginalized |
(IH) | –2.4 | Not marginalized |
1.0 | Not marginalized |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palazzo, A. Exploring Light Sterile Neutrinos at Long Baseline Experiments: A Review. Universe 2020, 6, 41. https://doi.org/10.3390/universe6030041
Palazzo A. Exploring Light Sterile Neutrinos at Long Baseline Experiments: A Review. Universe. 2020; 6(3):41. https://doi.org/10.3390/universe6030041
Chicago/Turabian StylePalazzo, Antonio. 2020. "Exploring Light Sterile Neutrinos at Long Baseline Experiments: A Review" Universe 6, no. 3: 41. https://doi.org/10.3390/universe6030041
APA StylePalazzo, A. (2020). Exploring Light Sterile Neutrinos at Long Baseline Experiments: A Review. Universe, 6(3), 41. https://doi.org/10.3390/universe6030041