Comparison of Strain Effect between Aluminum and Palladium Gated MOS Quantum Dot Systems
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Loss, D.; DiVincenzo, D.P. Quantum computation with quantum dots. Phys. Rev. A 1998, 57, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Angus, S.J.; Ferguson, A.J.; Dzurak, A.S.; Clark, R.G. Gate-defined quantum dots in intrinsic silicon. Nano Lett. 2007, 7, 2051–2055. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.H.; Zwanenburg, F.A.; Huebl, H.; Möttönen, M.; Chan, K.W.; Morello, A.; Dzurak, A.S. Observation of the single-electron regime in a highly tunable silicon quantum dot. Appl. Phys. Lett. 2009, 95, 242102. [Google Scholar] [CrossRef] [Green Version]
- Tracy, L.A.; Nordberg, E.P.; Young, R.W.; Borras Pinilla, C.; Stalford, H.L.; Ten Eyck, G.A.; Eng, K.; Childs, K.D.; Wendt, J.R.; Grubbs, R.K.; et al. Double quantum dot with tunable coupling in an enhancement-mode silicon metal-oxide semiconductor device with lateral geometry. Appl. Phys. Lett. 2010, 97, 192110. [Google Scholar] [CrossRef] [Green Version]
- Lai, N.S.; Lim, W.H.; Yang, C.H.; Zwanenburg, F.A.; Coish, W.A.; Qassemi, F.; Morello, A.; Dzurak, A.S. Pauli spin blockade in a highly tunable silicon double quantum dot. Sci. Rep. 2011, 1, 110. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.H.; Rossi, A.; Ruskov, R.; Lai, N.S.; Mohiyaddin, F.A.; Lee, S.; Tahan, C.; Klimeck, G.; Morello, A.; Dzurak, A.S. Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting. Nat. Commun. 2013, 4, 2069. [Google Scholar] [CrossRef] [Green Version]
- Liles, S.D.; Li, R.; Yang, C.H.; Hudson, F.E.; Veldhorst, M.; Dzurak, A.S.; Hamilton, A.R. Spin and orbital structure of the first six holes in a silicon metal-oxide-semiconductor quantum dot. Nat. Commun. 2018, 9, 3255. [Google Scholar] [CrossRef]
- Thorbeck, T.; Zimmerman, N.M. Formation of strain-induced quantum dots in gated semiconductor nanostructures. AIP Adv. 2015, 5, 087107. [Google Scholar] [CrossRef] [Green Version]
- Fang, W.; Lo, C.Y. On the thermal expansion coefficients of thin films. Sens. Actuators A: Phys. 2000, 84, 310–314. [Google Scholar] [CrossRef]
- Maune, B.M.; Borselli, M.G.; Huang, B.; Ladd, T.D.; Deelman, P.W.; Holabird, K.S.; Kiselev, A.A.; Alvarado-Rodriguez, I.; Ross, R.S.; Schmitz, A.E.; et al. Coherent singlet-triplet oscillations in a silicon-based double quantum dot. Nature 2012, 481, 344–347. [Google Scholar] [CrossRef]
- Ono, K.; Mori, T.; Moriyama, S. High-temperature operation of a silicon qubit. Sci. Rep. 2019, 9, 469. [Google Scholar] [CrossRef] [PubMed]
- Brauns, M.; Amitonov, S.V.; Spruijtenburg, P.C.; Zwanenburg, F.A. Palladium gates for reproducible quantum dots in silicon. Sci. Rep. 2018, 8, 5690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordberg, E.P.; Stalford, H.L.; Young, R.; Ten Eyck, G.A.; Eng, K.; Tracy, L.A.; Childs, K.D.; Wendt, J.R.; Grubbs, R.K.; Stevens, J.; et al. Charge sensing in enhancement mode double-top-gated metal-oxide-semiconductor quantum dots. Appl. Phys. Lett. 2009, 90, 202102. [Google Scholar] [CrossRef] [Green Version]
- Baptista, A.; Silva, F.; Porteiro, J.; Míguez, J.; Pinto, G. Sputtering physical vapour deposition (PVD) coatings: A critical review on process improvement and market trend demands. Coatings 2018, 8, 402. [Google Scholar] [CrossRef] [Green Version]
- Rossi, A.; Tanttu, T.; Hudson, F.E.; Sun, Y.; Möttönen, M.; Dzurak, A.S. Silicon metal-oxide-semiconductor quantum dots for single-electron pumping. J. Vis. Exp. 2015, 100, 52852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- German, R.M. Sintering simplified: Surface area, density, and grain size relations. Mater. Sci. Forum 2016, 835, 50–75. [Google Scholar] [CrossRef]
- Spruijtenburg, P.C.; Amitonov, S.V.; Mueller, F.; van der Wiel, W.G.; Zwanenburg, F.A. Passivation and charaterization of charge defects in ambipolar silicon quantum dot. Sci. Rep. 2016, 6, 38127. [Google Scholar] [CrossRef]
- Pla, J.J.; Tan, K.Y.; Dehollain, J.P.; Lim, W.H.; Morton, J.J.L.; Jamieson, D.N.; Dzurak, A.S.; Morello, A. A single-atom electron spin qubit in silicon. Nature 2012, 489, 541–545. [Google Scholar] [CrossRef]
- Huebl, H.; Stegner, A.R.; Stutzmann, M.; Brandt, M.S.; Vogg, G.; Bensch, F.; Rauls, E.; Gerstmann, U. Phosphorus donors in highly strained silicon. Phys. Rev. Lett. 2006, 97, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Al-Mufti, W.M.; Hashim, U.; Tijjani, A. Current trend in simulation: Review nanostructures using comsol multiphysics. J. Appl. Sci. Res. 2012, 8, 5579–5582. [Google Scholar]
- Migwi, C.M.; Darby, M.I.; Wostenholm, G.H.; Yates, B.; Moss, M.; Duffy, R. A method of determining the shear modulus and Poisson’s ratio of polymer materials. J. Mater. Sci. 1994, 29, 3430–3432. [Google Scholar] [CrossRef]
- White, G.K.; Pawlowicz, A.T. Thermal expansion of rhodium, iridium, and palladium at low temperatures. J. Low Temp. Phys. 1970, 2, 631–639. [Google Scholar] [CrossRef]
- Eriguchi, K.; Harada, Y.; Niwa, M. Influence of 1 nm-thick structural “strained-layer” near SiO2//Si interface on sub-4 nm-thick gate oxide reliability. In Proceedings of the International Electron Devices Meeting 1998, Technical Digest, San Francisco, CA, USA, 6–9 December 1998. [Google Scholar]
- Fischetti, M.V.; Laux, S.E. Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys. J. Appl. Phys. 1996, 80, 2234. [Google Scholar] [CrossRef]
- Jellison, G.E., Jr. Examination of thin SiO2 films on Si using spectroscopic polarization modulation ellipsometry. J. Appl. Phys. 1991, 69, 7627. [Google Scholar] [CrossRef]
- Xu, Y.B.; Yang, H.G. Capacitance extraction method for a gate-induced quantum dot in silicon nanowire metal–oxide–semiconductor field-effect transistors. Chin. Phys. B 2017, 26, 127302. [Google Scholar] [CrossRef]
Material | Density, ρ (kg/m3) | Young’s Modulus, E (GPa) | Poisson’s Ratio, v (kg/m3) | Coefficient of Thermal Expansion, α (× 10−6/K) | Reference |
---|---|---|---|---|---|
Palladium | 12,020 | 73 | 0.44 | 11.8 | [22] |
Aluminum | 2700 | 70 | 0.35 | 23 | [8] |
Aluminum Oxide | 3900 | 300 | 0.22 | 5.4 | |
Silicon | 2300 | 130 | 0.27 | 2.6 | |
Silicon Dioxide | 2200 | 73 | 0.17 | 0.49 |
SiO2 (nm) | |a| + |b| (meV) | |d| +|e| (meV) | |e| + |f| (meV) | |h| + |i| (meV) | Average (meV) |
---|---|---|---|---|---|
10 - Al | 7.90 | 9.92 | 10.6 | 8.57 | 9.25 |
10 - Pd | 5.22 | 5.12 | 5.55 | 5.24 | 5.28 |
∆ 10 (Al-Pd) | 2.68 | 4.8 | 4.95 | 3.33 | 3.97 |
30 - Al | 1.39 | 1.71 | 1.87 | 1.32 | 1.57 |
30 - Pd | 0.52 | 0.98 | 1.08 | 0.64 | 0.81 |
∆ 30 (Al-Pd) | 0.87 | 0.73 | 0.79 | 0.68 | 0.76 |
50 - Al | 0.92 | 0.45 | 0.19 | 0.95 | 0.63 |
50 - Pd | 0.5 | 0.28 | 0.12 | 0.52 | 0.36 |
∆ 50 (Al-Pd) | 0.42 | 0.17 | 0.07 | 0.43 | 0.27 |
SiO2 (nm) | |a| + |b| (meV) | |d| +|e| (meV) | |e| + |f| (meV) | |h| + |i| (meV) | Average (meV) |
---|---|---|---|---|---|
10 - Al | 12.06 | 12.25 | 12.49 | 10.88 | 11.92 |
10 - Pd | 5.71 | 6.52 | 6.61 | 4.92 | 5.94 |
∆ 10 (Al-Pd) | 6.35 | 5.73 | 5.88 | 5.96 | 5.98 |
30 - Al | 1.92 | 1.47 | 1.28 | 1.00 | 2.84 |
30 - Pd | 0.84 | 0.84 | 0.69 | 0.51 | 0.72 |
∆ 30 (Al-Pd) | 1.08 | 0.63 | 0.59 | 0.49 | 2.12 |
50 - Al | 0.53 | 0.2 | 0.23 | 0.42 | 0.35 |
50 - Pd | 0.26 | 0.12 | 0.13 | 0.21 | 0.18 |
∆ 50 (Al-Pd) | 0.27 | 0.08 | 0.10 | 0.21 | 0.17 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mooy, B.C.H.; Tan, K.Y.; Lai, N.S. Comparison of Strain Effect between Aluminum and Palladium Gated MOS Quantum Dot Systems. Universe 2020, 6, 51. https://doi.org/10.3390/universe6040051
Mooy BCH, Tan KY, Lai NS. Comparison of Strain Effect between Aluminum and Palladium Gated MOS Quantum Dot Systems. Universe. 2020; 6(4):51. https://doi.org/10.3390/universe6040051
Chicago/Turabian StyleMooy, Brian Chi Ho, Kuan Yen Tan, and Nai Shyan Lai. 2020. "Comparison of Strain Effect between Aluminum and Palladium Gated MOS Quantum Dot Systems" Universe 6, no. 4: 51. https://doi.org/10.3390/universe6040051
APA StyleMooy, B. C. H., Tan, K. Y., & Lai, N. S. (2020). Comparison of Strain Effect between Aluminum and Palladium Gated MOS Quantum Dot Systems. Universe, 6(4), 51. https://doi.org/10.3390/universe6040051