Editorial to the Special Issue “Probing New Physics with Black Holes”
Abstract
:Funding
Conflicts of Interest
References
- Abbott, B.P. et al. [LIGO Scientific Collaboration and Virgo Collaboration]. GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Phys. Rev. X 2019, 9, 031040. [Google Scholar]
- Abbott, B.P. et al. [LIGO Scientific Collaboration and Virgo Collaboration]. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.-K.; Ball, D.; Balokovic, M.; Barrett, J.; Bintley, D.; et al. Event Horizon Telescope. Astrophys. J. 2019, 875, L1. [Google Scholar]
- Gillessen, S.; Eisenhauer, F.; Trippe, S.; Alexander, T.; Genzel, R.; Martins, F.; Ott, T. Monitoring stellar orbits around the Massive Black Hole in the Galactic Center. Astrophys. J. 2009, 692, 1075. [Google Scholar] [CrossRef] [Green Version]
- Giddings, S.B. Searching for Quantum Black Hole Structure with the Event Horizon Telescope. Universe 2019, 5, 201. [Google Scholar] [CrossRef] [Green Version]
- Moulin, F.; Barrau, A.; Martineau, K. An Overview of Quasinormal Modes in Modified and Extended Gravity. Universe 2019, 5, 202. [Google Scholar] [CrossRef] [Green Version]
- Arruga, D.; Ben Achour, J.; Noui, K. Deformed General Relativity and Quantum Black Holes Interior. Universe 2020, 6, 39. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A. Black Hole Evaporation: A Perspective from Loop Quantum Gravity. Universe 2020, 6, 21. [Google Scholar] [CrossRef] [Green Version]
- Abedi, J.; Afshordi, N.; Oshita, N.; Wang, Q. Quantum Black Holes in the Sky. Universe 2020, 6, 43. [Google Scholar] [CrossRef] [Green Version]
- Overduin, J.; Coplan, M.; Wilcomb, K.; Henry, R.C. Curvature Invariants for Charged and Rotating Black Holes. Universe 2020, 6, 22. [Google Scholar] [CrossRef] [Green Version]
- Kruglov, S.I. Non-Singular Model of Magnetized Black Hole Based on Nonlinear Electrodynamics. Universe 2019, 5, 225. [Google Scholar] [CrossRef] [Green Version]
- Iorio, L. What would happen if we were about 1 pc away from a supermassive black hole? Astrophys. J. 2020, 889, 152. [Google Scholar] [CrossRef]
- Bianchi, E.; Christodoulou, M.; D’Ambrosio, F.; Haggard, H.M.; Rovelli, C. White holes as remnants: A surprising scenario for the end of a black hole. Class. Quant. Grav. 2018, 35, 225003. [Google Scholar] [CrossRef] [Green Version]
1. | Actually, “direct” is a misleading concept: strictly speaking, no observation is direct. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrau, A. Editorial to the Special Issue “Probing New Physics with Black Holes”. Universe 2020, 6, 58. https://doi.org/10.3390/universe6040058
Barrau A. Editorial to the Special Issue “Probing New Physics with Black Holes”. Universe. 2020; 6(4):58. https://doi.org/10.3390/universe6040058
Chicago/Turabian StyleBarrau, Aurélien. 2020. "Editorial to the Special Issue “Probing New Physics with Black Holes”" Universe 6, no. 4: 58. https://doi.org/10.3390/universe6040058
APA StyleBarrau, A. (2020). Editorial to the Special Issue “Probing New Physics with Black Holes”. Universe, 6(4), 58. https://doi.org/10.3390/universe6040058