Radiation from an Inertial Mirror Horizon
Abstract
:1. Introduction
2. Trajectory Motion
Rapidity, Speed, Acceleration
3. Energy Flux and Total Energy
3.1. Energy Flux
3.2. Total Energy
3.3. Negative Energy Flux
3.4. Sum Rule for Asymptotic Light-Like Horizon
4. Particle Spectrum
4.1. Limits of the Spectrum
4.2. Does the Energy Get Carried Away by the Particles?
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
RN | Reissner-Nordström |
NEF | Negative Energy Flux |
ABC | Accelerated Boundary Correspondence |
References
- Moore, G.T. Quantum Theory of the Electromagnetic Field in a Variable-Length One-Dimensional Cavity. J. Math. Phys. 1970, 11, 2679–2691. [Google Scholar] [CrossRef]
- DeWitt, B.S. Quantum field theory in curved spacetime. Phys. Rep. 1975, 19, 295–357. [Google Scholar] [CrossRef]
- Davies, P. Scalar particle production in Schwarzschild and Rindler metrics. J. Phys. A 1975, 8, 609–616. [Google Scholar] [CrossRef]
- Fulling, S.A.; Davies, P.C.W. Radiation from a moving mirror in two dimensional space-time: Conformal anomaly. Proc. R. Soc. Lond. A Math. Phys. Sci. 1976, 348, 393–414. [Google Scholar]
- Davies, P.; Fulling, S. Radiation from Moving Mirrors and from Black Holes. Proc. R. Soc. Lond. A Math. Phys. Sci. 1977, 356, 237–257. [Google Scholar]
- Birrell, N.; Davies, P. Quantum Fields in Curved Space; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
- Good, M.R.R.; Anderson, P.R.; Evans, C.R. Mirror Reflections of a Black Hole. Phys. Rev. D 2016, 94, 065010. [Google Scholar] [CrossRef] [Green Version]
- Good, M.R.R.; Ong, Y.C. Particle spectrum of the Reissner-Nordström black hole. arXiv 2020, arXiv:gr-qc/2004.03916. [Google Scholar]
- Good, M.R.; Foo, J.; Linder, E.V. Accelerating boundary analog of a Kerr black hole. arXiv 2020, arXiv:gr-qc/2006.01349. [Google Scholar]
- Good, M.R.R.; Zhakenuly, A.; Linder, E.V. The mirror at the edge of the universe: Reflections on an accelerated boundary correspondence with de Sitter cosmology. arXiv 2020, arXiv:gr-qc/2005.03850. [Google Scholar]
- Ford, L. Quantum Coherence Effects and the Second Law of Thermodynamics. Proc. R. Soc. Lond. A 1978, 364, 227–236. [Google Scholar]
- Davies, P. Can Moving Mirrors Violate the Second Law of Thermodynamics? Phys. Lett. B 1982, 113, 215–218. [Google Scholar] [CrossRef]
- Walker, W. Negative Energy Fluxes and Moving Mirrors in Curved Space. Class. Quant. Grav. 1985, 2, L37. [Google Scholar] [CrossRef]
- Ford, L. Constraints on negative energy fluxes. Phys. Rev. D 1991, 43, 3972–3978. [Google Scholar] [CrossRef]
- Ford, L.; Roman, T.A. The Quantum interest conjecture. Phys. Rev. D 1999, 60, 104018. [Google Scholar] [CrossRef] [Green Version]
- Ford, L.; Roman, T.A. Energy flux correlations and moving mirrors. Phys. Rev. D 2004, 70, 125008. [Google Scholar] [CrossRef] [Green Version]
- Liberati, S.; Rothman, T.; Sonego, S. Nonthermal nature of incipient extremal black holes. Phys. Rev. D 2000, 62, 024005. [Google Scholar] [CrossRef] [Green Version]
- Good, M.R.R. Extremal Hawking Radiation. Phys. Rev. D 2020, 101, 104050. [Google Scholar] [CrossRef]
- Rothman, T. Nonthermal nature of extremal Kerr black holes. Phys. Lett. A 2000, 273, 303–309. [Google Scholar] [CrossRef] [Green Version]
- Foo, J.; Good, M.R. Hawking radiation particle spectrum of a Kerr-Newman black hole. arXiv 2020, arXiv:gr-qc/2006.09681. [Google Scholar]
- Walker, W.R.; Davies, P.C.W. An exactly soluble moving-mirror problem. J. Phys. A Math. Gen. 1982, 15, L477–L480. [Google Scholar] [CrossRef]
- Good, M.R.; Linder, E.V.; Wilczek, F. Moving mirror model for quasithermal radiation fields. Phys. Rev. D 2020, 101, 025012. [Google Scholar] [CrossRef] [Green Version]
- Good, M.R.R.; Linder, E.V.; Wilczek, F. Finite thermal particle creation of Casimir light. Mod. Phys. Lett. A 2020, 35, 2040006. [Google Scholar] [CrossRef]
- Good, M.R.R.; Linder, E.V. Slicing the Vacuum: New Accelerating Mirror Solutions of the Dynamical Casimir Effect. Phys. Rev. D 2017, 96, 125010. [Google Scholar] [CrossRef] [Green Version]
- Good, M.R.R.; Anderson, P.R.; Evans, C.R. Time dependence of particle creation from accelerating mirrors. Phys. Rev. D 2013, 88, 025023. [Google Scholar] [CrossRef] [Green Version]
- Good, M.R.; Linder, E.V. Eternal and evanescent black holes and accelerating mirror analogs. Phys. Rev. D 2018, 97, 065006. [Google Scholar] [CrossRef] [Green Version]
- Good, M.R.; Linder, E.V. Finite Energy but Infinite Entropy Production from Moving Mirrors. Phys. Rev. D 2019, 99, 025009. [Google Scholar] [CrossRef] [Green Version]
- Good, M.R.R.; Yelshibekov, K.; Ong, Y.C. On Horizonless Temperature with an Accelerating Mirror. JHEP 2017, 3, 013. [Google Scholar] [CrossRef] [Green Version]
- Good, M.R.; Ong, Y.C.; Myrzakul, A.; Yelshibekov, K. Information preservation for null shell collapse: A moving mirror model. Gen. Rel. Grav. 2019, 51, 92. [Google Scholar] [CrossRef] [Green Version]
- Good, M.R. Spacetime Continuity and Quantum Information Loss. Universe 2018, 4, 122. [Google Scholar] [CrossRef] [Green Version]
- Myrzakul, A.; Good, M.R. Unitary evaporation via modified Regge-Wheeler coordinate. In Proceedings of the 15th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories, Rome, Italy, 1–7 July 2018. [Google Scholar]
- Good, M.R.R.; Ong, Y.C. Signatures of Energy Flux in Particle Production: A Black Hole Birth Cry and Death Gasp. J. High Energy Phys. 2015, 1507, 145. [Google Scholar] [CrossRef]
- Good, M.R.R. Reflecting at the Speed of Light; Memorial Volume for Kerson Huang; World Scientific Publishing: Singapore, 2017; pp. 113–116. [Google Scholar]
- Ford, L. Quantum field theory in curved space-time. In Proceedings of the 9th Jorge Andre Swieca Summer School: Particles and Fields, Sao Paulo, Brazil, 16–28 February 1997; pp. 345–388. [Google Scholar]
- Hotta, M.; Shino, M.; Yoshimura, M. Moving mirror model of Hawking evaporation. Prog. Theor. Phys. 1994, 91, 839–870. [Google Scholar] [CrossRef]
- Walker, W.R. Particle and energy creation by moving mirrors. Phys. Rev. D 1985, 31, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Ford, L.; Roman, T.A. Averaged energy conditions and quantum inequalities. Phys. Rev. D 1995, 51, 4277–4286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bianchi, E.; Smerlak, M. Entanglement entropy and negative energy in two dimensions. Phys. Rev. D 2014, 90, 041904. [Google Scholar] [CrossRef] [Green Version]
- Cong, W.; Qian, C.; Good, M.R.; Mann, R.B. Effects of Horizons on Entanglement Harvesting. arXiv 2020, arXiv:gr-qc/2006.01720. [Google Scholar]
- Chen, P.; Yeom, D.H. Entropy evolution of moving mirrors and the information loss problem. Phys. Rev. D 2017, 96, 025016. [Google Scholar] [CrossRef] [Green Version]
- Carlitz, R.D.; Willey, R.S. Reflections on moving mirrors. Phys. Rev. D 1987, 36, 2327–2335. [Google Scholar] [CrossRef]
- Sorge, F. Casimir Effect and Free Fall in a Schwarzschild Black Hole. In Proceedings of the 15th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories, Rome, Italy, 1–7 July 2018. [Google Scholar]
- Sorge, F.; Wilson, J.H. Casimir effect in free fall towards a Schwarzschild black hole. Phys. Rev. D 2019, 100, 105007. [Google Scholar] [CrossRef] [Green Version]
- Hawking, S. Particle Creation by Black Holes. Commun. Math. Phys. 1975, 43, 199–220. [Google Scholar] [CrossRef]
1 | We also stress we do not wish to have any run-ins with the mirror; our observer is at and so we require any nascent horizon to be future directed toward avoiding collision and associated divergences in energy flux. |
2 | Unitary evolution still implies NEF, regardless. This conclusion from the sum rule, Equation (25), remains unchanged. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Good, M.; Abdikamalov, E. Radiation from an Inertial Mirror Horizon. Universe 2020, 6, 131. https://doi.org/10.3390/universe6090131
Good M, Abdikamalov E. Radiation from an Inertial Mirror Horizon. Universe. 2020; 6(9):131. https://doi.org/10.3390/universe6090131
Chicago/Turabian StyleGood, Michael, and Ernazar Abdikamalov. 2020. "Radiation from an Inertial Mirror Horizon" Universe 6, no. 9: 131. https://doi.org/10.3390/universe6090131
APA StyleGood, M., & Abdikamalov, E. (2020). Radiation from an Inertial Mirror Horizon. Universe, 6(9), 131. https://doi.org/10.3390/universe6090131