Dark Gravitational Field on Riemannian and Sasaki Spacetime
Abstract
:1. Introduction
2. Dark Gravity in the Riemannian Spacetime
2.1. Geodesics and Tidal Forces
2.2. Einstein Equations
2.3. Raychaudhuri Equation
2.4. Conformal Dark FLRW-Metric Structure
3. Gravity on the Sasaki Tangent Bundle
3.1. Deviation of Geodesics of a Sasaki Spacetime
3.2. Dark Gravity on the Tangent Bundle
4. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
Appendix A
The Curvature Tensor of a Sasaki Tangent Bundle
References
- Farnes, J.S. A unifying theory of dark energy and dark matter: Negative masses and matter creation within a modified ΛCDM framework. Astron. Astrophys. 2018, 620, A92. [Google Scholar] [CrossRef] [Green Version]
- Nadler, E.O.; Wechsler, R.H.; Bechtol, K.; Mao, Y.Y.; Green, G.; Drlica-Wagner, A.; McNanna, M.; Mau, S.; Pace, A.B.; Simon, J.D.; et al. Milky Way Satellite Census. II. Galaxy–Halo Connection Constraints Including the Impact of the Large Magellanic Cloud. Astrophys. J. 2020, 893, 48. [Google Scholar] [CrossRef] [Green Version]
- Ren, X.; Zhao, L.; Abdukerim, A.; Chen, X.; Chen, Y.; Cui, X.; Fang, D.; Fu, C.; Giboni, K.; Giuliani, F.; et al. Constraining Dark Matter Models with a Light Mediator at the PandaX-II Experiment. Phys. Rev. Lett. 2018, 121, 021304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dror, J.A.; Elor, G.; McGehee, R. Directly Detecting Signals from Absorption of Fermionic Dark Matter. Phys. Rev. Lett. 2020, 124, 181301. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, J.W.; Enzi, W.; Vegetti, S.; Auger, M.W.; Fassnacht, C.D.; Despali, G.; Koopmans, L.V.; McKean, J.P. SHARP—VII. New constraints on the dark matter free-streaming properties and substructure abundance from gravitationally lensed quasars. Mon. Not. R. Astron. Soc. 2020, 492, 3047–3059. [Google Scholar] [CrossRef] [Green Version]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef] [Green Version]
- Rigault, M.; Brinnel, V.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey, S.; Baltay, C.; Barbary, K.; Bongard, S.; Boone, K.; et al. Strong Dependence of Type Ia Supernova Standardization on the Local Specific Star Formation Rate. arXiv 2018, arXiv:1806.03849. [Google Scholar]
- Martinelli, M.; Tutusaus, I. CMB tensions with low-redshift H0 and S8 measurements: Impact of a redshift-dependent type-Ia supernovae intrinsic luminosity. Symmetry 2019, 11, 986. [Google Scholar] [CrossRef] [Green Version]
- Di Valentino, E.; Gariazzo, S.; Mena, O.; Vagnozzi, S. Soundness of Dark Energy Properties. J. Cosmol. Astropart. Phys. 2020. [Google Scholar] [CrossRef]
- Dhawan, S.; Jha, S.W.; Leibundgut, B. Measuring the Hubble constant with Type Ia supernovae as near-infrared standard candles. Astron. Astrophys. 2018, 609, A72. [Google Scholar] [CrossRef] [Green Version]
- Leibundgut, B.; Blondin, S. Evidence for dark energy from Type Ia supernovae. Nucl. Phys. B Proc. Suppl. 2005, 138, 10–15. [Google Scholar] [CrossRef]
- Krauss, L.M.; Jones-Smith, K.; Huterer, D. Dark energy, a cosmological constant, and type Ia supernovae. New J. Phys. 2007, 9, 141. [Google Scholar] [CrossRef] [Green Version]
- Perlmutter, S. Supernovae, Dark Energy, and the Accelerating Universe. Phys. Today 2003, 56, 53. [Google Scholar] [CrossRef] [Green Version]
- Riess, A.G. Type Ia supernova discoveries at z > 1 from the Hubble Space Telescope: Evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 2004, 607, 665–687. [Google Scholar] [CrossRef] [Green Version]
- Abbott, T.M.C.; Allam, S.; Andersen, P.; Angus, C.; Asorey, J.; Avelino, A.; Avila, S.; Bassett, B.A.; Bechtol, K.; Bernstein, G.M.; et al. First Cosmology Results using Type Ia Supernovae from the Dark Energy Survey: Constraints on Cosmological Parameters. Astrophys. J. Lett. 2019, 872, L30. [Google Scholar] [CrossRef]
- Kang, Y.; Lee, Y.W.; Kim, Y.L.; Chung, C.; Ree, C.H. Early-type Host Galaxies of Type Ia Supernovae. II. Evidence for Luminosity Evolution in Supernova Cosmology. arXiv 2019, arXiv:1912.04903. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, J.T.; Guffanti, A.; Sarkar, S. Marginal evidence for cosmic acceleration from Type Ia supernovae. Sci. Rep. 2016, 6, 35596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Valentino, E.; Melchiorri, A.; Linder, E.V.; Silk, J. Constraining dark energy dynamics in extended parameter space. Phys. Rev. D. 2017, 96, 023523. [Google Scholar] [CrossRef] [Green Version]
- Leibundgut, B.; Sullivan, M. Type Ia supernova cosmology. Space Sci. Rev. 2018, 214, 57. [Google Scholar] [CrossRef] [Green Version]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 1999, 517, 565. [Google Scholar] [CrossRef]
- Velten, H.; Gomes, S.; Busti, V.C. Gauging the cosmic acceleration with recent type Ia supernovae data sets. Phys. Rev. D. 2018, 97, 083516. [Google Scholar] [CrossRef] [Green Version]
- Hoscheit, B.L.; Barger, A.J. The KBC Void: Consistency with Supernovae Type Ia and the Kinematic SZ Effect in a ΛLTB Model. Astrophys. J. 2018, 854, 46. [Google Scholar] [CrossRef] [Green Version]
- Gariazzo, S.; Escudero, M.; Diamanti, R.; Mena, O. Cosmological searches for a noncold dark matter component. Phys. Rev. D 2017, 96, 043501. [Google Scholar] [CrossRef] [Green Version]
- Di Valentino, E.; Melchiorri, A.; Mena, O.; Vagnozzi, S. Nonminimal dark sector physics and cosmological tensions. Phys. Rev. D 2020, 101, 063502. [Google Scholar] [CrossRef] [Green Version]
- Collett, T.E.; Oldham, L.J.; Smith, R.J.; Auger, M.W.; Westfall, K.B.; Bacon, D.; Nichol, R.C.; Masters, K.L.; Koyama, K.; van den Bosch, R. A Precise Extragalactic Test of General Relativity. Science 2018, 360, 1342–1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartle, J.B. Gravity: An Introduction to Einstein’s General Relativity; Addison-Wesley: Boston, MA, USA, 2003. [Google Scholar]
- Borowiec, A.; Godłowski, W.; Szydłowski, M. Dark Matter and Dark Energy as Effects of Modified Gravity. Int. J. Geom. Methods Mod. Phys. 2007, 4, 183–196. [Google Scholar] [CrossRef] [Green Version]
- Persic, M.; Salucci, P.; Stel, F. The Universal Rotation Curve of Spiral Galaxies: I. the Dark Matter Connection. Mon. Not. R. Astron. Soc. 1995, 283, 27–47. [Google Scholar]
- Harko, T.; Lobo, F. Geodesic deviation, Raychaudhuri equation, and tidal forces in modified gravity with an arbitrary curvature-matter coupling. Phys. Rev. D. 2012, 86, 124034. [Google Scholar] [CrossRef] [Green Version]
- Harko, T.; Lobo, F. Generalized Curvature-Matter Couplings in Modified Gravity. Galaxies 2014, 2, 410–465. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, S. On the differential geometry of tangent bundles of Riemannian manifolds. Tohoku Math. J. 1958, 10, 338–354. [Google Scholar] [CrossRef]
- Chamseddine, A.H.; Mukhanov, V. Resolving Cosmological Singularities. J. Cosmol. Astropart. Phys. 2017, 2017, 009. [Google Scholar] [CrossRef] [Green Version]
- Ball, P. Dark matter highlights extra dimensions. Nature 2005. [Google Scholar] [CrossRef]
- Kahil, M.; Harko, T. Is dark matter an extra-dimensional effect? Mod. Phys. Lett. A 2011, 24, 667–682. [Google Scholar] [CrossRef]
- Coimbra Araújo, C.H.; da Rocha, R. Gravity with Extra Dimensions and Dark Matter Interpretation: A Straightforward Approach. ISRN High Energy Phys. 2013, 2013, 713508. [Google Scholar] [CrossRef]
- Tanabashi, M. Particle Data Group. Phys. Rev. D 2018, 98, 030001. [Google Scholar] [CrossRef] [Green Version]
- Miller, K.S. On the Inverse of the Sum of Matrices. Math. Mag. 1981, 54, 67–72. [Google Scholar] [CrossRef]
- Capozziello, S.; Cardone, V.F.; Troisi, A. Dark Energy and Dark Matter as Curvature Effects? J. Cosmol. Astropart. Phys. 2006, 2006. [Google Scholar] [CrossRef]
- Raychaudhuri, A. Relativistic Cosmology. Phys. Rev. 1955, 98, 1123. [Google Scholar] [CrossRef]
- Hawking, S.; Ellis, G. The Large Scale Structure of Space-Time; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 1973. [Google Scholar]
- Kar, S.; Sengupta, S. The Raychaudhuri equations: A brief review. Pramana J. Phys. 2007, 69, 49–76. [Google Scholar] [CrossRef] [Green Version]
- Stavrinos, P.C.; Alexiou, M. Raychaudhuri equation in the Finsler–Randers space-time and generalized scalar-tensor theories. Int. J. Geom. Methods Mod. Phys. 2018, 15, 1850039. [Google Scholar] [CrossRef] [Green Version]
- Moreshi, O.; Boero, E.; Gallo, E.; Gesser, F. Dark matter description by non-conventional energy-momentum tensor. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2015; Volume 1647, pp. 35–43. [Google Scholar]
- Peebles, P.J.E. Fluid Dark Matter. Astrophys. J. 2000, 534, L127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arbey, A. Dark Fluid: A complex scalar field to unify dark energy and dark matter. Phys. Rev. D 2006, 74, 043516. [Google Scholar] [CrossRef] [Green Version]
- Kuzmichev, V.; Kuzmichev, V. Two-component perfect fluid in FRW universe. Acta Phys. Pol. Ser. B 2012, 43, 1899–1910. [Google Scholar] [CrossRef]
- Alvarenga, F.; Fracalossi, R.; Freitas, R.C.; Gonçalves, S. Classical and quantum cosmology with two perfect fluids: Stiff matter and radiation. Gen. Relativ. Gravit. 2016, 49, 136. [Google Scholar] [CrossRef] [Green Version]
- Ferrando, J.J.; Morales, J.A.; Portilla, M. Two-perfect fluid interpretation of an energy tensor. Gen. Relativ. Gravit. 1990, 22, 1021–1032. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, S.R. Model of two perfect fluids for an anisotropic and homogeneous universe. Phys. Rev. D 1989, 40, 3976. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Faraoni, V. F (R) Theor. Gravity. Rev. Mod. Phys. 2010, 82, 451–497. [Google Scholar] [CrossRef] [Green Version]
- De Felice, A.; Tsujikawa, S. F (R) Theories. Living Rev. Relativ. 2010, 13, 3. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; De Laurentis, M.; Francaviglia, M.; Mercadante, S. From Dark Energy & Dark Matter to Dark Metric. Found. Phys. 2009, 39, 1161–1176. [Google Scholar]
- Nojiri, S.; Odintsov, S.D. Dark energy, inflation and dark matter from modified F(R) gravity. arXiv 2008, arXiv:0807.0685. [Google Scholar]
- Tupper, B.O.J. Conformally Ricci-flat viscous fluids. J. Math. Phys. 1990, 31, 1704. [Google Scholar] [CrossRef]
- Hansraj, S.; Govinder, K.; Mewalal, N. Conformal Mappings in Relativistic Astrophysics. J. Appl. Math. 2013, 2013, 196385. [Google Scholar] [CrossRef]
- de Felice, F.; Clarke, C.J.S. Relativity on Curved Manifolds; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Carroll, S.M. Spacetime and Geometry: An Introduction to General Relativity; Addison-Wesley: Boston, MA, USA, 2004. [Google Scholar]
- Liddle, A.; Lyth, D. Cosmological Inflation and Large-Scale Structure; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Rund, H. The Differential Geometry of Finsler Spaces; Springer: Berlin/Heidelberg, Germany, 1959. [Google Scholar]
- Bejan, C.; Gül, I. Sasaki metric on the tangent bundle of a Weyl manifold. Publ. Inst. Math. 2018, 103, 25–32. [Google Scholar] [CrossRef]
- Kowalski, O. Curvature of the Induced Riemannian Metric on the Tangent Bundle of a Riemannian Manifold. J. Reine Angew. Math. 1971, 250, 124–129. [Google Scholar]
1 | For all three metric tensors a metric signature (−,+,+,+) shall be assumed in their respective space. |
2 | One must be careful that and do not function as Christoffel symbols for the unified space . |
3 | These symbols could be explicitly calculated using [37]. |
4 | The lower-indices denote an antisymmetrization (similarly, indices between parentheses shall denote symmetrization). |
5 | One must be careful that for the unified space there is but one curvature tensor; the unified . |
6 | For such operations we must always use the unified metric. |
7 | We will refrain from using specific Lagrangians neither for the ordinary nor for the dark matter sector due to the existence of a plethora of potential Lagrangians for ordinary matter and a possible need for a complicated Lagrangian in order to effectively reproduce the dark sector phenomenology [38]. |
8 | One can clearly see that . |
9 | We assume . |
10 | The same apply to any curves in general. |
11 | This is true only if the vector (or tensor) acted upon belongs to the space with metric . |
12 | This is true only if the vector (or tensor) acted upon belongs to the space with metric . |
13 | This operation does not constitute a covariant derivative as the symbols are not proper Christoffel symbols and there is no corresponding geometric space. |
14 | One must be careful that only is the covariant derivative of ; all other operations defined before represent arbitrary operators in the framework of the unified space and can only be treated otherwise if we restrict our study in the corresponding subspaces. |
15 | The velocities are also assumed to follow a conformal relation [54]. |
16 | These are the same as in Equation (11). |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stavrinos, P.; Savvopoulos, C. Dark Gravitational Field on Riemannian and Sasaki Spacetime. Universe 2020, 6, 138. https://doi.org/10.3390/universe6090138
Stavrinos P, Savvopoulos C. Dark Gravitational Field on Riemannian and Sasaki Spacetime. Universe. 2020; 6(9):138. https://doi.org/10.3390/universe6090138
Chicago/Turabian StyleStavrinos, Panayiotis, and Christos Savvopoulos. 2020. "Dark Gravitational Field on Riemannian and Sasaki Spacetime" Universe 6, no. 9: 138. https://doi.org/10.3390/universe6090138
APA StyleStavrinos, P., & Savvopoulos, C. (2020). Dark Gravitational Field on Riemannian and Sasaki Spacetime. Universe, 6(9), 138. https://doi.org/10.3390/universe6090138