A 1% Measurement of the Gravitomagnetic Field of the Earth with Laser-Tracked Satellites
Abstract
:1. Introduction
2. Lense-Thirring Effect and the Importance of an Accurate Measurement of the Gravitomagnetic Field
- intrinsic gravitomagnetism;
- strong fields and compact objects; and,
- Mach’s principle.
2.1. Intrinsic Gravitomagnetism
2.2. Strong Fields and Compact Objects
2.3. Mach’s Principle
3. On Past and Recent Measurements of the Lense-Thirring Effect
4. On the Accuracy of the Even Zonal Harmonics
5. The New Analyses
6. The Measurement of
7. A statistical Approach to the Measurement of
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Einstein, A. Die Grundlage der allgemeinen Relativitätstheorie. Ann. Phys. 1916, 354, 769–822. [Google Scholar] [CrossRef] [Green Version]
- Iorio, L. Editorial for the Special Issue 100 Years of Chronogeometrodynamics: The Status of the Einstein’s Theory of Gravitation in Its Centennial Year. Universe 2015, 1, 38–81. [Google Scholar] [CrossRef] [Green Version]
- Debono, I.; Smoot, G.F. General Relativity and Cosmology: Unsolved Questions and Future Directions. Universe 2016, 2, 23. [Google Scholar] [CrossRef]
- Cohen, J.M.; Mashhoon, B. Standard clocks, interferometry, and gravitomagnetism. Phys. Lett. A 1993, 181, 353–358. [Google Scholar] [CrossRef]
- Ciufolini, I.; Wheeler, J.A. Gravitation and Inertia; Princeton University Press: Princeton, NJ, USA, 1995. [Google Scholar]
- Iorio, L.; Lichtenegger, H.; Mashhoon, B. An alternative derivation of the gravitomagnetic clock effect. Class. Quantum Gravity 2002, 19, 39–49. [Google Scholar] [CrossRef]
- Mashhoon, B.; Hehl, F.W. Nonlocal Gravitomagnetism. Universe 2019, 5, 195. [Google Scholar] [CrossRef] [Green Version]
- Mashhonon, B. Gravitoelectromagnetism. arXiv 2001, arXiv:gr-qc/0311030. [Google Scholar]
- Ampère, A.M. Recueil d’Observations éLectro-Dynamiques; Nabu Press: London, UK, 1822. [Google Scholar]
- Damour, T. Black-hole eddy currents. Phys. Rev. D 1978, 18, 3598–3604. [Google Scholar] [CrossRef]
- Damour, T.; Hanni, R.S.; Ruffini, R.; Wilson, J.R. Regions of magnetic support of a plasma around a black hole. Phys. Rev. D 1978, 17, 1518–1523. [Google Scholar] [CrossRef]
- MacDonald, D.; Thorne, K.S. Black-hole electrodynamics-an absolute-space/universal-time formulation. Mon. Not. R. Astron. Soc. 1982, 198, 345–382. [Google Scholar] [CrossRef]
- Thorne, K.S.; Price, R.H.; MacDonald, D.A. Book-Review-Black-Holes-the Membrane Paradigm. Science 1986, 234, 224. [Google Scholar]
- Thorne, K.S. Gravitomagnetism, jets in quasars, and the Stanford Gyroscope Experiment. In Near Zero: New Frontiers of Physics; Fairbank, J.D., Deaver, J.B.S., Everitt, C.W.F., Michelson, P.F., Eds.; W. H. Freeman and Co.: New York, NY, USA, 1988; pp. 573–586. [Google Scholar]
- Remo, R.; Costantino, S. Nonlinear Gravitodynamics: The Lense-Thirring Effect; World Scientific Publishing Company: Singapore, 2003. [Google Scholar]
- Stella, L.; Possenti, A. Lense-Thirring Precession in the Astrophysical Context. Space Sci. Rev. 2009, 148, 105–121. [Google Scholar] [CrossRef]
- Deng, X.M. Preliminary investigation of the gravitomagnetic effects on the lunar orbit. In A Giant Step: From Milli- to Micro-Arcsecond Astrometry; Jin, W.J., Platais, I., Perryman, M.A.C., Eds.; Cambridge University Press: Cambridge, UK, 2008; Volume 248, pp. 399–400. [Google Scholar]
- Iorio, L. Analytically calculated post-Keplerian range and range-rate perturbations: The solar Lense-Thirring effect and BepiColombo. Mon. Not. R. Astron. Soc. 2018, 476, 1811–1825. [Google Scholar] [CrossRef] [Green Version]
- Farrugia, G.; Said, J.L.; Finch, A. Gravitoelectromagnetism, Solar System Tests, and Weak-Field Solutions in f (T,B) Gravity with Observational Constraints. Universe 2020, 6, 34. [Google Scholar] [CrossRef] [Green Version]
- Iorio, L. Juno, the angular momentum of Jupiter and the Lense-Thirring effect. New Astron. 2010, 15, 554–560. [Google Scholar] [CrossRef] [Green Version]
- Iorio, L.; Lichtenegger, H.I.M.; Ruggiero, M.L.; Corda, C. Phenomenology of the Lense-Thirring effect in the solar system. Astrophys. Space Sci. 2011, 331, 351–395. [Google Scholar] [CrossRef] [Green Version]
- Everitt, C.W.F.; Debra, D.B.; Parkinson, B.W.; Turneaure, J.P.; Conklin, J.W.; Heifetz, M.I.; Keiser, G.M.; Silbergleit, A.S.; Holmes, T.; Kolodziejczak, J.; et al. Gravity Probe B: Final Results of a Space Experiment to Test General Relativity. Phys. Rev. Lett. 2011, 106, 221101. [Google Scholar] [CrossRef]
- Everitt, C.W.F.; Muhlfelder, B.; DeBra, D.B.; Parkinson, B.W.; Turneaure, J.P.; Silbergleit, A.S.; Acworth, E.B.; Adams, M.; Adler, R.; Bencze, W.J.; et al. The Gravity Probe B test of general relativity. Class. Quantum Gravity 2015, 32, 224001. [Google Scholar] [CrossRef] [Green Version]
- De Sitter, W. On Einstein’s theory of gravitation and its astronomical consequences. Second paper. Mon. Not. R. Astron. Soc. 1916, 77, 155–184. [Google Scholar] [CrossRef] [Green Version]
- Pugh, G. Proposal for a satellite test of the Coriolis predictions of General Relativity. In Nonlinear Gravitodynamics, The Lense Thirring Effect, a Documentary Introduction to Current Research; World Scientific: London, UK, 2003; pp. 414–426. [Google Scholar]
- Schiff, L.I. Possible New Experimental Test of General Relativity Theory. Phys. Rev. Lett. 1960, 4, 215–217. [Google Scholar] [CrossRef]
- Schiff, L.I. Motion of a Gyroscope According to Einstein’s Theory of Gravitation. Proc. Natl. Acad. Sci. USA 1960, 46, 871–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiff, L.I. On Experimental Tests of the General Theory of Relativity. Am. J. Phys. 1960, 28, 340–343. [Google Scholar] [CrossRef]
- Everitt, C.W.F. The gyroscope experiment—I: General description and analysis of gyroscope performance. In Experimental Gravitation; Bertotti, B., Ed.; NASA: Greenbelt, MD, USA, 1974; p. 331. [Google Scholar]
- Ciufolini, I.; Lucchesi, D.; Vespe, F.; Mandiello, A. Measurement of dragging of inertial frames and gravitomagnetic field using laser-ranged satellites. Nuovo Cim. A 1996, 109, 575–590. [Google Scholar] [CrossRef]
- Ciufolini, I.; Lucchesi, D.; Vespe, F.; Chieppa, F. Measurement of gravitomagnetism. Europhys. Lett. 1997, 39, 359–364. [Google Scholar] [CrossRef]
- Ciufolini, I.; Pavlis, E.; Chieppa, F.; Fernandes-Vieira, E.; Perez-Mercader, J. Test of General Relativity and Measurement of the Lense-Thirring Effect with Two Earth Satellites. Science 1998, 279, 2100–2103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciufolini, I.; Pavlis, E.C. A confirmation of the general relativistic prediction of the Lense-Thirring effect. Nature 2004, 431, 958–960. [Google Scholar] [CrossRef]
- Ciufolini, I.; Pavlis, E.C.; Peron, R. Determination of frame-dragging using Earth gravity models from CHAMP and GRACE. New Astron. 2006, 11, 527–550. [Google Scholar] [CrossRef]
- Lucchesi, D.M. The Lense Thirring effect measurement and LAGEOS satellites orbit analysis with the new gravity field model from the CHAMP mission. Adv. Space Res. 2007, 39, 324–332. [Google Scholar] [CrossRef]
- Ciufolini, I.; Paolozzi, A.; Pavlis, E.C.; Koenig, R.; Ries, J.; Gurzadyan, V.; Matzner, R.; Penrose, R.; Sindoni, G.; Paris, C.; et al. A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model. Measurement of Earth’s dragging of inertial frames. Eur. Phys. J. C 2016, 76, 120. [Google Scholar] [CrossRef] [Green Version]
- Lucchesi, D.M.; Magnafico, C.; Peron, R.; Visco, M.; Anselmo, L.; Pardini, C.; Bassan, M.; Pucacco, G.; Stanga, R. The LARASE research program. State of the art on Modelling and Measurements of General Relativity effects in the field of the Earth: A preliminary measurement of the Lense-Thirring effect. In Proceedings of the 2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace), Padua, Italy, 21–23 June 2017; pp. 131–145. [Google Scholar]
- Lucchesi, D.M.; Magnafico, C.; Peron, R.; Visco, M.; Anselmo, L.; Pardini, C.; Bassan, M.; Pucacco, G.; Stanga, R. New Measurements of Gravitation in the Field of the Earth and the LARASE Experiment. In Proceedings of the 2018 5th IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace), Rome, Italy, 20–22 June 2018; pp. 209–215. [Google Scholar]
- Lucchesi, D.M.; Anselmo, L.; Bassan, M.; Pardini, C.; Peron, R.; Pucacco, G.; Visco, M. Testing gravitation with satellite laser ranging and the LARASE experiment. In The Fourteenth Marcel Grossmann Meeting; World Scientific: London, UK, 2017; pp. 3612–3626. [Google Scholar]
- Lucchesi, D.M.; Anselmo, L.; Bassan, M.; Magnafico, C.; Pardini, C.; Peron, R.; Pucacco, G.; Visco, M. General Relativity Measurements in the Field of Earth with Laser-Ranged Satellites: State of the Art and Perspectives. Universe 2019, 5, 141. [Google Scholar] [CrossRef] [Green Version]
- Lucchesi, D.M.; Visco, M.; Peron, R.; Bassan, M.; Pucacco, G.; Pardini, C.; Anselmo, L.; Magnafico, C. An improved measurement of the Lense-Thirring precession on the orbits of laser-ranged satellites with an accuracy approaching the 1% level. arXiv 2019, arXiv:1910.01941. [Google Scholar]
- Ciufolini, I.; Paolozzi, A.; Pavlis, E.C.; Sindoni, G.; Ries, J.; Matzner, R.; Koenig, R.; Paris, C.; Gurzadyan, V.; Penrose, R. An improved test of the general relativistic effect of frame-dragging using the LARES and LAGEOS satellites. Eur. Phys. J. C 2019, 79, 872. [Google Scholar] [CrossRef] [Green Version]
- Thirring, H. Über die Wirkung rotierender ferner Massen in der Einsteinschen Gravitationstheorie. Phys. Z. 1918, 19, 33–39. [Google Scholar]
- Lense, J.; Thirring, H. Über den Einfluss der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Phys. Z. 1918, 19, 156. [Google Scholar]
- Iorio, L. Some considerations on the present-day results for the detection of frame-dragging after the final outcome of GP-B. EPL (Europhys. Lett.) 2011, 96, 30001. [Google Scholar] [CrossRef]
- Lucchesi, D.M.; Anselmo, L.; Bassan, M.; Pardini, C.; Peron, R.; Pucacco, G.; Visco, M. Testing the gravitational interaction in the field of the Earth via satellite laser ranging and the Laser Ranged Satellites Experiment (LARASE). Class. Quantum Gravity 2015, 32, 155012. [Google Scholar] [CrossRef]
- Iorio, L. The Impact of the Static Part of the Earth’s Gravity Field on Some Tests of General Relativity with Satellite Laser Ranging. Celest. Mech. Dyn. Astron. 2003, 86, 277–294. [Google Scholar] [CrossRef]
- Iorio, L. The impact of the new Earth gravity models on the measurement of the Lense Thirring effect with a new satellite. New Astron. 2005, 10, 616–635. [Google Scholar] [CrossRef] [Green Version]
- Lucchesi, D.M. The Impact of the Even Zonal Harmonics Secular Variations on the Lense-Thirring Effect Measurement with the Two LAGEOS Satellites. Int. J. Mod. Phys. D 2005, 14, 1989–2023. [Google Scholar] [CrossRef]
- Renzetti, G. Are higher degree even zonals really harmful for the LARES/LAGEOS frame-dragging experiment? Can. J. Phys. 2012, 90, 883–888. [Google Scholar] [CrossRef]
- Iorio, L. A comment on “A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model”, by I. Ciufolini et al. Eur. Phys. J. C 2017, 77, 73. [Google Scholar] [CrossRef]
- Ciufolini, I.; Pavlis, E.C.; Ries, J.; Matzner, R.; Koenig, R.; Paolozzi, A.; Sindoni, G.; Gurzadyan, V.; Penrose, R.; Paris, C. Reply to “A comment on “A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model, by I. Ciufolini et al.””. Eur. Phys. J. C 2018, 78, 880. [Google Scholar] [CrossRef] [PubMed]
- Lucchesi, D.M.; Peron, R. Accurate Measurement in the Field of the Earth of the General-Relativistic Precession of the LAGEOS II Pericenter and New Constraints on Non-Newtonian Gravity. Phys. Rev. Lett. 2010, 105, 231103. [Google Scholar] [CrossRef] [Green Version]
- Lucchesi, D.M.; Peron, R. LAGEOS II pericenter general relativistic precession (1993–2005): Error budget and constraints in gravitational physics. Phys. Rev. D 2014, 89, 082002. [Google Scholar] [CrossRef]
- Poisson, E.; Will, C.M. Gravity; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Will, C.M. Theory and Experiment in Gravitational Physics; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Pfister, H. On the history of the so-called Lense-Thirring effect. Gen. Relativ. Gravit. 2007, 39, 1735–1748. [Google Scholar] [CrossRef] [Green Version]
- Pfister, H. Editorial note to: Hans Thirring, On the formal analogy between the basic electromagnetic equations and Einstein’s gravity equations in first approximation. Gen. Relativ. Gravit. 2012, 44, 3217–3224. [Google Scholar] [CrossRef] [Green Version]
- Iorio, L. General relativistic spin-orbit and spin-spin effects on the motion of rotating particles in an external gravitational field. Gen. Relativ. Gravit. 2012, 44, 719–736. [Google Scholar] [CrossRef] [Green Version]
- Ciufolini, I. Frame-dragging, gravitomagnetism and Lunar Laser Ranging. New Astron. 2010, 15, 332–337. [Google Scholar] [CrossRef]
- Thorne, K.S. Quantum Optics, Experimental Gravity, and Measurement Theory; Chapter Experimental Gravity, Gravitational Waves, and Quantum Nondemolition: An Introduction; Springer US: Boston, MA, USA, 1983; pp. 325–346. [Google Scholar]
- Mach, E. Die Mechanik in ihrer Entwickelung Historisch-Kritisch Dargestellt (Brock-haus, Leipzig, 1912): Trans. T.J. McCormak with an introduction by Karl Menger as The Science of Mechanics (Open Court, La Salle, IL, 1960). Available online: https://bernd-paysan.de/mach.pdf (accessed on 31 August 2020).
- Einstein, A. The Meaning of Relativity: Four Lectures Delivered at Princeton University, May, 1921; Methuen: London, UK, 1921; pp. v, 123. [Google Scholar]
- Einstein, A. Ernst Mach. Phys. Z. 1916, 17, 101–104. [Google Scholar]
- Rindler, W. The Lense-Thirring effect exposed as anti-Machian. Phys. Lett. A 1994, 187, 236–238. [Google Scholar] [CrossRef]
- Bondi, H.; Samuel, J. The Lense-Thirring effect and Mach’s principle. Phys. Lett. A 1997, 228, 121–126. [Google Scholar] [CrossRef] [Green Version]
- Brans, C.; Dicke, R.H. Mach’s Principle and a Relativistic Theory of Gravitation. Phys. Rev. 1961, 124, 925–935. [Google Scholar] [CrossRef]
- Dicke, R.H. Mach’s Principle and Invariance under Transformation of Units. Phys. Rev. 1962, 125, 2163–2167. [Google Scholar] [CrossRef]
- Fearn, H. Mach’s Principle, Action at a Distance and Cosmology. J. Mod. Phys. 2015, 6, 260–272. [Google Scholar] [CrossRef] [Green Version]
- Pucacco, G.; Lucchesi, D.M.; Anselmo, L.; Bassan, M.; Magnafico, C.; Pardini, C.; Peron, R.; Stanga, R.; Visco, M. Earth gravity field modeling and relativistic measurements with laser-ranged satellites and the LARASE research program. In Proceedings of the EGU Conference, Vienna, Austria, 23–28 April 2017; Volume 19. [Google Scholar]
- Pucacco, G.; Lucchesi, D.M. Tidal effects on the LAGEOS-LARES satellites and the LARASE program. Celest. Mech. Dyn. Astron. 2018, 130, 66. [Google Scholar] [CrossRef]
- Lucchesi, D.M.; Anselmo, L.; Bassan, M.; Magnafico, C.; Pardini, C.; Peron, R.; Pucacco, G.; Visco, M. The key role of the Earth’s gravitational field models in Fundamental Physics measurements with laser-ranged satellites. In Proceedings of the EGU Conference, Vienna, Austria, 7–12 April 2019; Volume 21. [Google Scholar]
- Visco, M.; Lucchesi, D.M. Review and critical analysis of mass and moments of inertia of the LAGEOS and LAGEOS II satellites for the LARASE program. Adv. Space Res. 2016, 57, 1928–1938. [Google Scholar] [CrossRef]
- Pardini, C.; Anselmo, L.; Lucchesi, D.M.; Peron, R. On the secular decay of the LARES semi-major axis. Acta Astronaut. 2017, 140, 469–477. [Google Scholar] [CrossRef]
- Visco, M.; Lucchesi, D.M. Comprehensive model for the spin evolution of the LAGEOS and LARES satellites. Phys. Rev. D 2018, 98, 044034. [Google Scholar] [CrossRef] [Green Version]
- Pardini, C.; Anselmo, L.; Lucchesi, D.M.; Peron, R. The impact of the drag due to the neutral atmosphere on the orbit of LARES. In Proceedings of the EGU Conference, Vienna, Austria, 7–12 April 2019; Volume 21. [Google Scholar]
- Lucchesi, D.M.; Anselmo, L.; Bassan, M.; Magnafico, C.; Pardini, C.; Peron, R.; Pucacco, G.; Stanga, R.; Visco, M. Relativistic effects and Space Geodesy with Laser Ranged Satellites: The LARASE research program. In Proceedings of the EGU Conference, Vienna, Austria, 8–13 April 2018; Volume 20. [Google Scholar]
- Tapley, B.D.; Reigber, C. The GRACE Mission: Status and Future Plans. In AGU Fall Meeting Abstracts; AGU: Prague, Czech Republic, 2001; p. C2. [Google Scholar]
- Lucchesi, D.M.; Visco, M.; Anselmo, L.; Bassan, M.; Magnafico, C.; Pardini, C.; Peron, R.; Pucacco, G. LAGEOS and LARES satellites attitude determination with the LASSOS spin model. In ILRS Technical Workshop. Session 3: Synergies and New Applications; ILRS: Geneva, Switzerland, 2019. [Google Scholar]
- Lucchesi, D.M.; Anselmo, L.; Bassan, M.; Lucente, M.; Magnafico, C.; Pardini, C.; Peron, R.; Pucacco, G.; Visco, M. Thermal thrust accelerations on LAGEOS satellites. In Proceedings of the EGU Conference, Vienna, Austria, 3–8 May 2020; Volume 20. [Google Scholar]
- Kozai, Y. The motion of a close earth satellite. Astron. J. 1959, 64, 367. [Google Scholar] [CrossRef]
- Kaula, W.M. Theory of Satellite Geodesy. Applications of Satellites to Geodesy; Blaisdell: Waltham, MA, USA, 1966. [Google Scholar]
- Cheng, M.K.; Shum, C.K.; Tapley, B.D. Determination of long-term changes in the Earth’s gravity field from satellite laser ranging observations. J. Geophys. Res. 1997, 102, 22377. [Google Scholar] [CrossRef]
- Cox, C.M.; Chao, B.F. Detection of a Large-Scale Mass Redistribution in the Terrestrial System Since 1998. Science 2002, 297, 831–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, M.; Tapley, B.D.; Ries, J.C. Deceleration in the Earth’s oblateness. J. Geophys. Res. Solid Earth 2013, 118, 740–747. [Google Scholar] [CrossRef]
- Cheng, M.; Ries, J.C. Decadal variation in Earth’s oblateness (J2) from satellite laser ranging data. Geophys. J. Int. 2018, 212, 1218–1224. [Google Scholar] [CrossRef]
- Reigber, C.; Lühr, H.; Schwintzer, P. CHAMP mission status. Adv. Space Res. 2002, 30, 129–134. [Google Scholar] [CrossRef]
- Reigber, C.; Schwintzer, P.; Neumayer, K.H.; Barthelmes, F.; König, R.; Förste, C.; Balmino, G.; Biancale, R.; Lemoine, J.-M.; Loyer, S.; et al. The CHAMP-only earth gravity field model EIGEN-2. Adv. Space Res. 2003, 31, 1883–1888. [Google Scholar] [CrossRef]
- Reigber, C.; Schmidt, R.; Flechtner, F.; König, R.; Meyer, U.; Neumayer, K.-H.; Schwintzer, P.; Zhu, S.Y. An Earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S. J. Geodyn. 2005, 39, 1–10. [Google Scholar] [CrossRef]
- Lemoine, F.G.; Kenyon, S.; Factor, J.K.; Trimmer, R.G.; Pavlis, N.K.; Chinn, D.S.; Cox, C.M.; Klosko, S.M.; Luthcke, S.B.; Torrence, M.H.; et al. The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96; Technical Paper 206861; NASA: Greenbelt, MD, USA, 1998.
- Petit, G.; Luzum, B. IERS Conventions (2010). In IERS Technical Note 36, IERS, Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie; IERS: Frankfurt, Germany, 2010. [Google Scholar]
- Chen, J.L.; Wilson, C.R.; Ries, J.C.; Tapley, B.D. Rapid ice melting drives Earth’s pole to the east. Geophys. Res. Lett. 2013, 40, 2625–2630. [Google Scholar] [CrossRef]
- Pavlis, D.E.; Luo, S.; Dahiroc, P.; McCarthy, J.J.; Luthke, S.B. GEODYN II Operations Manual; NASA GSFC: Greenbelt, MD, USA, 1998.
- Putney, B.; Kolenkiewicz, R.; Smith, D.; Dunn, P.; Torrence, M.H. Precision orbit determination at the NASA Goddard Space Flight Center. Adv. Space Res. 1990, 10, 197–203. [Google Scholar] [CrossRef]
- Sinclair, A.T. Data Screening and Normal Point Formation—Re–Statement of Herstmonceux Normal Point Recommendation; Technical Report; ILR School: Geneva, Switzerland, 1997. [Google Scholar]
- Huang, C.; Ries, J.C.; Tapley, B.D.; Watkins, M.M. Relativistic effects for near-earth satellite orbit determination. Celest. Mech. Dyn. Astron. 1990, 48, 167–185. [Google Scholar]
- Lucchesi, D.M. Reassessment of the error modelling of non-gravitational perturbations on LAGEOS II and their impact in the Lense-Thirring derivation-Part II. Plan. Space Sci. 2002, 50, 1067–1100. [Google Scholar] [CrossRef]
- Kucharski, D.; Lim, H.C.; Kirchner, G.; Hwang, J.Y. Spin parameters of LAGEOS-1 and LAGEOS-2 spectrally determined from Satellite Laser Ranging data. Adv. Space Res. 2013, 52, 1332–1338. [Google Scholar] [CrossRef]
- Tapley, B.D.; Flechtner, F.; Bettadpur, S.V.; Watkins, M.M. The Status and Future Prospect for GRACE after the First Decade. 2013. Available online: https://ui.adsabs.harvard.edu/abs/2013AGUFM.G32A..01T/abstract (accessed on 31 August 2020).
- Altamimi, Z.; Rebischung, P.; Métivier, L.; Collilieux, X. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J. Geophys. Res. (Solid Earth) 2016, 121, 6109–6131. [Google Scholar] [CrossRef] [Green Version]
- Akyilmaz, O.; Ustun, A.; Aydin, C.; Arslan, N.; Doganalp, S.; Guney, C.; Mercan, H.; Uygur, S.O.; Uz, M.; Yagci, O.; et al. ITU_GRACE16 The global gravity field model including GRACE data up to degree and order 180 of ITU and other collaborating institutions. GFZ Data Serv. 2016. [Google Scholar]
- Chen, Q.; Shen, Y.; Chen, W.; Zhang, X. Tongji-Grace02s, a static unconstrained GRACE-only gravity field model. GFZ Data Serv. 2017. [Google Scholar]
- Chen, Q.; Shen, Y.; Francis, O.; Chen, W.; Zhang, X.; Hsu, H. Tongji-Grace02s and Tongji-Grace02k: High-Precision Static GRACE-Only Global Earth’s Gravity Field Models Derived by Refined Data Processing Strategies. J. Geophys. Res. (Solid Earth) 2018, 123, 6111–6137. [Google Scholar] [CrossRef]
- Colombo, O.L. Altimetry, Orbits and Tides. 1984. Available online: https://ntrs.nasa.gov/citations/19850009095 (accessed on 26 August 2020).
- Ray, R.D. A Global Ocean Tide Model from TOPEX/POSEIDON Altimetry: GOT99.2; Technical Paper NASA/TM-1999-209478; Goddard Space Flight Center: Greenbelt, MD, USA, 1999.
- ILRS Recommendations: Data Corrections. 2018. Available online: https://ilrs.cddis.eosdis.nasa.gov/network/site_information/ (accessed on 26 August 2020).
- Otsubo, T.; Appleby, G.M. System-dependent center-of-mass correction for spherical geodetic satellites. J. Geophys. Res. (Solid Earth) 2003, 108, 2201. [Google Scholar] [CrossRef]
- Ciufolini, I. On a new method to measure the gravitomagnetic field using two orbiting satellites. Nuovo Cim. A 1996, 109, 1709–1720. [Google Scholar] [CrossRef]
- Shapiro, I.I. Solar system tests of general relativity: Recent results and present plans. In General Relativity and Gravitation, 1989: Proceedings of the 12th International Conference on General Relativity and Gravitation; Ashby, N., Bartlett, D.F., Wyss, W., Eds.; Cambridge University Press: Cambridge, UK, 1990; pp. 313–330. [Google Scholar]
- Lucchesi, D.M.; Balmino, G. The LAGEOS satellites orbital residuals determination and the Lense Thirring effect measurement. Plan. Space Sci. 2006, 54, 581–593. [Google Scholar] [CrossRef]
1 | |
2 | In a laboratory the gyroscopes are used to define the axes of a locally inertial frame. |
3 | |
4 | In the papers by Thirring and by Lense & Thirring, as well as in many other subsequent papers on the argument, the angular momentum of the central body is assumed aligned with its z-axis. For the general case see [59]. |
5 | These are characterized by several periodic effects with, mainly, annual and inter-annual periodicities. |
6 | In [40], we linearly fitted the quadrupole coefficient that was obtained from GRACE monthly solutions and we used this fitted value in the data reduction of the satellites orbit. Furthermore, in that paper and for the GGM05S model, with regard to the Lense-Thirring effect measurement, we have also analyzed and compared the error related to the knowledge of the octupole coefficient with respect to the hexapole one, . |
7 | International Centre for Global Earth Models (ICGEM): Gravity Field Solutions for dedicated Time Periods: Release 05 and Release 06, http://icgem.gfz-potsdam.de/series. In the case of Release 06, no significant differences are present for the first 10 even zonal harmonics as compared to Release 05. Some small differences are present for the harmonics with degree , but with no significant impact in the POD of the satellites. |
8 | Center for Space Research (CSR), University of Texas at Austin; GeoForschungsZentrum (GFZ), German Research Centre for Geosciences, Potsdam; Jet Propulsion Laboratory (JPL), California Institute of Technology, Pasadena. |
9 | The even zonal harmonics between degree and degree play a minor role, with no appreciable difference in the results. For the quadrupole coefficient, we also considered a more complete non-linear fit to the time behavior outlined by GRACE, with the inclusion of two periodic terms, one with a yearly frequency and one at twice this frequency. However, the final results have not shown a noticeable difference with respect to those obtained with a simpler linear fit. |
10 | Usually, these trends were those suggested by IERS Conventions [91], but were not always compatible with the results from GRACE monthly solutions. In the literature of the past measurements of the Lense-Thirring effect it has never been specified whether harmonics of degree higher than were modeled according to linear trends. Within the ILRS community, and since a few years, some harmonics are modeled up to degree 6 with secular trends, and very recently up to degree 12 in the case of the JCET Analysis Center. |
11 | |
12 | |
13 | For the maximum degree ℓ of the field, we used an expansion up to degree and order 30 for the two LAGEOS and up to degree and order 90 for LARES, because of its smaller semi-major axis with respect to that of the two LAGEOS. In the case of LAGEOS satellites, the IERS Conventions [91] suggest at least an expansion up to degree and order 20. We have verified that for the two LAGEOS—considering an expansion up to degree and order 20, or 30, or 90—no significant difference in the POD of the satellites is produced. |
14 | From here on, when we refer generically to one of these solutions for the Earth’s gravitational field, we will always imply the modified solution for the first 10 even zonal harmonics, as described in the text. |
15 | |
16 | In this system of Equations we are neglecting the contributions from the mismodeling of the higher harmonics. Their contribution, however, is explicitly considered in the evaluation of the systematic errors, i.e., in the overall error budget of the measurement. |
17 | The orbital parameters are known with a very small relative uncertainty, such that the K coefficients can be considered, for our purposes, as error-free. |
18 | We directly provide the result for and not, as done in previous measurements of the Lense-Thirring effect, for the combined rate of the RAAN of the three satellites. This combination corresponds to a precession of 50.17 mas/yr. |
19 | We underline that the solution obtained for is independent of a possible imprint of the Lense-Thirring effect in the gravitational field coefficients. In fact, if this imprint were present, it would be mainly contained in the quadrupole coefficient, which is however eliminated by the combination that provides the Lense-Thirring parameter. However, from the tests we have performed in the past, there is no evidence of such a possibility. |
20 | In particular, the mismodeling of the gravitational perturbations, and the unmodeling of the thermal thrust effects in the case of the non-gravitational perturbations. |
21 | Where represents the ecliptic longitude of the Earth around the Sun. |
22 | We reiterate that the Lense-Thirring parameter obtained from the solution of the system of Equation (7) is independent of any static and dynamic error that characterizes the first two even zonal harmonics. The parameter obtained is however influenced by any error related to the even zonal harmonics with degree . The correlations described in the text are strictly those between the relativistic parameter and the corrections to the first two even zonal harmonics with respect to their a priori values used in the POD. |
23 | This estimate was obtained applying the errors suggested by IERS Conventions (2010) to the amplitudes of the ocean tides of the GOT99.2 model. Anyway, in [71] we have shown that using more recent models for the ocean tides (as FES2004 and GOT4.7), the errors are of comparable magnitude with those of GOT99.2. |
24 | In this particular case, also the starting distribution was very close to a Gaussian one. |
25 | The ≈1% error for the periodic errors provided in Section 6 was obtained on the basis of a non-linear fit to the integrated residuals in the case of the GGM05S model. |
Element | Unit | Symbol | LAGEOS | LAGEOS II | LARES |
---|---|---|---|---|---|
semi-major axis | [km] | a | 12,270.00 | 12,162.07 | 7820.31 |
eccentricity | e | 0.0044 | 0.0138 | 0.0012 | |
inclination | [deg] | i | 109.84 | 52.66 | 69.49 |
Rate in the Element | LAGEOS | LAGEOS II | LARES |
---|---|---|---|
+30.67 | +31.50 | +118.48 | |
+31.23 | −57.31 | −334.68 |
+1.000 | +0.082 | +0.071 | |
+1.000 | −0.179 | ||
+1.000 |
Model | |
---|---|
GGM05S | |
EIGEN-GRACE02S | |
ITU_GRACE16 | |
Tonji-Grace02s |
Model | |
---|---|
GGM05S | |
EIGEN-GRACE02S | |
ITU_GRACE16 | |
Tonji-Grace02s |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucchesi, D.; Visco, M.; Peron, R.; Bassan, M.; Pucacco, G.; Pardini, C.; Anselmo, L.; Magnafico, C. A 1% Measurement of the Gravitomagnetic Field of the Earth with Laser-Tracked Satellites. Universe 2020, 6, 139. https://doi.org/10.3390/universe6090139
Lucchesi D, Visco M, Peron R, Bassan M, Pucacco G, Pardini C, Anselmo L, Magnafico C. A 1% Measurement of the Gravitomagnetic Field of the Earth with Laser-Tracked Satellites. Universe. 2020; 6(9):139. https://doi.org/10.3390/universe6090139
Chicago/Turabian StyleLucchesi, David, Massimo Visco, Roberto Peron, Massimo Bassan, Giuseppe Pucacco, Carmen Pardini, Luciano Anselmo, and Carmelo Magnafico. 2020. "A 1% Measurement of the Gravitomagnetic Field of the Earth with Laser-Tracked Satellites" Universe 6, no. 9: 139. https://doi.org/10.3390/universe6090139
APA StyleLucchesi, D., Visco, M., Peron, R., Bassan, M., Pucacco, G., Pardini, C., Anselmo, L., & Magnafico, C. (2020). A 1% Measurement of the Gravitomagnetic Field of the Earth with Laser-Tracked Satellites. Universe, 6(9), 139. https://doi.org/10.3390/universe6090139