Relativistic Fractional-Dimension Gravity
Abstract
:1. Introduction
2. Mathematical Theory for Spaces with Non-Integer Dimension and NFDG
3. Euler-Lagrange Equations for Spaces with Non-Integer Dimension
3.1. Rectangular Coordinates
3.2. Spherical Coordinates
3.3. Cylindrical Coordinates
4. Relativistic Equations for Spaces with Non-Integer Dimension
4.1. RFDG Field Equations
4.2. Cosmology and RFDG
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. RFDG Tensors for the FLRW Metric
1 | SI units will be used throughout this paper, unless otherwise noted. |
2 | |
3 | Dimensionless coordinates, such as , , etc., should be used in most equations in this section and in the following ones. For simplicity’s sake, in this paper we left standard coordinates (, r, R, etc.) in most equations, without transforming them into dimensionless, rescaled ones. |
4 | |
5 | Even using a combined weight, , does not seem to yield fully isotropic Friedmann equations for the cosmological problem. A more detailed study of cosmological weights, including possible radial factors or even direct modifications to the FLRW metric in terms of variable space-time dimensions, will be done in a future publication. |
6 | In RFDG, the connection with open (), flat (), and closed () universes is not simply related to the density parameter as in standard cosmology, due to the presence of the additional term in Equation (41). |
7 | Mathematica, Version 12.2.0.0, Wolfram Research Inc. |
References
- Varieschi, G.U. Newtonian Fractional-Dimension Gravity and MOND. Found. Phys. 2020, 50, 1608–1644. [Google Scholar] [CrossRef]
- Varieschi, G.U. Newtonian Fractional-Dimension Gravity and Disk Galaxies. Eur. Phys. J. Plus 2021, 136, 183. [Google Scholar] [CrossRef]
- Varieschi, G.U. Newtonian fractional-dimension gravity and rotationally supported galaxies. Mon. Not. R. Astron. Soc. 2021, 503, 1915–1931. [Google Scholar] [CrossRef]
- Varieschi, G.U. Newtonian Fractional-Dimension Gravity (NFDG). 2020. Available online: http://gvarieschi.lmu.build/NFDG2020.html (accessed on 16 October 2021).
- Lelli, F.; McGaugh, S.S.; Schombert, J.M. SPARC: Mass Models for 175 Disk Galaxies with Spitzer Photometry and Accurate Rotation Curves. Astron. J. 2016, 152, 157. [Google Scholar] [CrossRef] [Green Version]
- Varieschi, G.U. Applications of Fractional Calculus to Newtonian Mechanics. J. Appl. Math. Phys. 2018, 6, 1247–1257. [Google Scholar] [CrossRef] [Green Version]
- Calcagni, G. Fractal universe and quantum gravity. Phys. Rev. Lett. 2010, 104, 251301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calcagni, G. Quantum field theory, gravity and cosmology in a fractal universe. JHEP 2010, 3, 120. [Google Scholar] [CrossRef] [Green Version]
- Calcagni, G. Geometry of fractional spaces. Adv. Theor. Math. Phys. 2012, 16, 549–644. [Google Scholar] [CrossRef]
- Calcagni, G. Geometry and field theory in multi-fractional spacetime. JHEP 2012, 1, 65. [Google Scholar] [CrossRef] [Green Version]
- Calcagni, G. Multi-scale gravity and cosmology. JCAP 2013, 12, 41. [Google Scholar] [CrossRef] [Green Version]
- Calcagni, G. Multifractional theories: An unconventional review. JHEP 2017, 3, 138. [Google Scholar] [CrossRef] [Green Version]
- Calcagni, G. Multiscale spacetimes from first principles. Phys. Rev. D 2017, 95, 064057. [Google Scholar] [CrossRef]
- Calcagni, G. Towards multifractional calculus. Front. Phys. 2018, 6, 58. [Google Scholar] [CrossRef]
- Calcagni, G.; De Felice, A. Dark energy in multifractional spacetimes. Phys. Rev. D 2020, 102, 103529. [Google Scholar] [CrossRef]
- Calcagni, G. Quantum scalar field theories with fractional operators. Class. Quant. Grav. 2021, 38, 165006. [Google Scholar] [CrossRef]
- Calcagni, G. Multifractional theories: An updated review. Mod. Phys. Lett. A 2021, 36, 2140006. [Google Scholar] [CrossRef]
- Calcagni, G. Classical and quantum gravity with fractional operators. Class. Quant. Grav. 2021, 38, 165005, Erratum in 2021, 38, 169601. [Google Scholar] [CrossRef]
- Giusti, A. MOND-like Fractional Laplacian Theory. Phys. Rev. D 2020, 101, 124029. [Google Scholar] [CrossRef]
- Giusti, A.; Garrappa, R.; Vachon, G. On the Kuzmin model in fractional Newtonian gravity. Eur. Phys. J. Plus 2020, 135, 798. [Google Scholar] [CrossRef]
- Milgrom, M. A Modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 1983, 270, 365–370. [Google Scholar] [CrossRef]
- Milgrom, M. A Modification of the Newtonian dynamics: Implications for galaxies. Astrophys. J. 1983, 270, 371–383. [Google Scholar] [CrossRef]
- Milgrom, M. A modification of the Newtonian dynamics: Implications for galaxy systems. Astrophys. J. 1983, 270, 384–389. [Google Scholar] [CrossRef]
- McGaugh, S.; Lelli, F.; Schombert, J. Radial Acceleration Relation in Rotationally Supported Galaxies. Phys. Rev. Lett. 2016, 117, 201101. [Google Scholar] [CrossRef] [PubMed]
- Lelli, F.; McGaugh, S.S.; Schombert, J.M.; Pawlowski, M.S. One Law to Rule Them All: The Radial Acceleration Relation of Galaxies. Astrophys. J. 2017, 836, 152. [Google Scholar] [CrossRef] [Green Version]
- Chae, K.H.; Lelli, F.; Desmond, H.; McGaugh, S.S.; Li, P.; Schombert, J.M. Testing the Strong Equivalence Principle: Detection of the External Field Effect in Rotationally Supported Galaxies. Astrophys. J. 2020, 904, 51, Erratum in 2021, 81, 910. [Google Scholar] [CrossRef]
- Sadallah, M.; Muslih, S.I.; Baleanu, D. Equations of motion for Einstein’s field in non-integer dimensional space. Czechoslov. J. Phys. 2006, 56, 323–328. [Google Scholar] [CrossRef]
- Sadallah, M.; Muslih, S.I. Solution of the equations of motion for Einstein’s field in fractional D dimensional space-time. Int. J. Theor. Phys. 2009, 48, 3312–3318. [Google Scholar] [CrossRef]
- Collas, P. General relativity in two- and three-dimensional space-times. Am. J. Phys. 1977, 45, 833–837. [Google Scholar] [CrossRef]
- Romero, C.; Dahia, F. Theories of gravity in (2+1)-dimensions. Int. J. Theor. Phys. 1994, 33, 2091–2098. [Google Scholar] [CrossRef] [Green Version]
- Deser, S.; Jackiw, R.; ’t Hooft, G. Three-dimensional Einstein gravity: Dynamics of flat space. Ann. Phys. 1984, 152, 220–235. [Google Scholar] [CrossRef] [Green Version]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified gravity and cosmology. Phys. Rep. 2012, 513, 1–189. [Google Scholar] [CrossRef] [Green Version]
- Saridakis, E.N.; Lazkoz, R.; Salzano, V.; Moniz, P.V.; Capozziello, S.; Jiménez, J.B.; de Laurentis, M.; Olmo, G.J.; Akrami, Y.; Bahamonde, S.; et al. Modified Gravity and Cosmology: An Update by the CANTATA Network. arXiv 2021, arXiv:2105.12582. [Google Scholar]
- Will, C.M. The Confrontation between General Relativity and Experiment. Living Rev. Rel. 2014, 17, 4. [Google Scholar] [CrossRef] [Green Version]
- Sanders, R.H.; McGaugh, S.S. Modified Newtonian dynamics as an alternative to dark matter. Ann. Rev. Astron. Astrophys. 2002, 40, 263–317. [Google Scholar] [CrossRef] [Green Version]
- Famaey, B.; McGaugh, S. Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions. Living Rev. Relat. 2012, 15, 10. [Google Scholar] [CrossRef] [Green Version]
- Barrow, J.D. Dimensionality. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1983, 310, 337–346. [Google Scholar]
- Ehrenfest, P. Welche Rolle spielt die Dreidimensionalität des Raumes in den Grundgesetzen der Physik? Ann. Phys. 1920, 366, 440–446. [Google Scholar] [CrossRef] [Green Version]
- Callender, C. Answers in search of a question: ‘proofs’ of the tri-dimensionality of space. Stud. Hist. Philos. Mod. Phys. 2005, 36, 113–136. [Google Scholar] [CrossRef]
- Bollini, C.G.; Giambiagi, J.J. Dimensional Renormalization: The Number of Dimensions as a Regularizing Parameter. Nuovo Cim. 1972, B12, 20–26. [Google Scholar] [CrossRef]
- ’t Hooft, G.; Veltman, M.J.G. Regularization and Renormalization of Gauge Fields. Nucl. Phys. 1972, B44, 189–213. [Google Scholar] [CrossRef] [Green Version]
- Wilson, K.G. Quantum field theory models in less than four-dimensions. Phys. Rev. 1973, D7, 2911–2926. [Google Scholar] [CrossRef]
- Peskin, M.E.; Schroeder, D.V. An Introduction to Quantum Field Theory; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Stillinger, F.H. Axiomatic basis for spaces with noninteger dimension. J. Math. Phys. 1977, 18, 1224–1234. [Google Scholar] [CrossRef]
- Svozil, K. Quantum field theory on fractal spacetime: A new regularisation method. J. Phys. A Math. Gen. 1987, 20, 3861–3875. [Google Scholar] [CrossRef]
- Palmer, C.; Stavrinou, P.N. Equations of motion in a non-integer-dimensional space. J. Phys. A Math. Gen. 2004, 37, 6987–7003. [Google Scholar] [CrossRef]
- Tarasov, V. Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media; Springer Science & Business Media: Berlin, Germany, 2011. [Google Scholar]
- Zubair, M.; Mughal, M.; Naqvi, Q. Electromagnetic Fields and Waves in Fractional Dimensional Space; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar] [CrossRef]
- Tarasov, V.E. Anisotropic fractal media by vector calculus in non-integer dimensional space. J. Math. Phys. 2014, 55, 083510. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, V.E. Vector calculus in non-integer dimensional space and its applications to fractal media. Commun. Nonlinear Sci. Numer. Simul. 2015, 20, 360–374. [Google Scholar] [CrossRef] [Green Version]
- Morse, P.; Feshbach, H. Methods of Theoretical Physics; International Series in Pure and Applied Physics; McGraw-Hill: New York, NY, USA, 1953. [Google Scholar]
- Carroll, S.M. Spacetime and Geometry; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Tsujikawa, S. Quintessence: A Review. Class. Quant. Grav. 2013, 30, 214003. [Google Scholar] [CrossRef] [Green Version]
- Carroll, S.M. The Cosmological constant. Living Rev. Relat. 2001, 4, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varieschi, G.U. Relativistic Fractional-Dimension Gravity. Universe 2021, 7, 387. https://doi.org/10.3390/universe7100387
Varieschi GU. Relativistic Fractional-Dimension Gravity. Universe. 2021; 7(10):387. https://doi.org/10.3390/universe7100387
Chicago/Turabian StyleVarieschi, Gabriele U. 2021. "Relativistic Fractional-Dimension Gravity" Universe 7, no. 10: 387. https://doi.org/10.3390/universe7100387
APA StyleVarieschi, G. U. (2021). Relativistic Fractional-Dimension Gravity. Universe, 7(10), 387. https://doi.org/10.3390/universe7100387