Frame-Dragging: Meaning, Myths, and Misconceptions
Abstract
:Contents | ||
1 | Introduction | 2 |
2 | Distinct Effects under the Same Denomination | 3 |
2.1 Sagnac Effect and Dragging of the ZAMOs............. | 3 | |
2.2 Dragging of the Compass of Inertia: Gravitomagnetic Field and Lense-Thirring Effects.......................................................................................................... | 5 | |
2.3 Competing Effects—Circular Geodesics..................................................................................................................................................................... | 7 | |
2.4 Gravitomagnetic “Tidal” Effects: “Differential” Dragging and Force on Gyroscopes.......................................................................................................... | 8 | |
3 | Frame-Dragging Is Never “Draggy”8—No Body-Dragging | 11 |
3.1 Test Particles in Static Equilibrium around Spinning Black Holes................................................................................................................................... | 13 | |
3.1.1 Kerr-de Sitter Spacetime.................................................................................................................................................................. | 13 | |
3.1.2 Kerr–Newman Spacetime................................................................................................................................................................. | 14 | |
3.2 Bobbings” in Binary Systems...................................................................................................................................................................... | 14 | |
4 | Conclusions | 17 |
A | Inertial Forces–General Formulation | 19 |
A.1 Post-Newtonian Approximation Holes............................................................................................................................................. | 20 | |
A.2 Non.Geodesic Motion........................................................................................................................................................................... | 21 | |
A.3 Equations of Motion for Spinning Binaries....................................................................................................................................................................... | 21 | |
A.3.1 Extreme Kick Configuration......................................................................................................................................................................... | 22 | |
References | 23 |
1. Introduction
2. Distinct Effects under the Same Denomination
2.1. Sagnac Effect and Dragging of the ZAMOs
- •
- the “laboratory” observers, at rest in a frame fixed to the distant stars, have non-zero angular momentum (6) (measuring a Sagnac effect);
- •
- the zero angular momentum observers have non-zero angular velocity (8) in a coordinate system fixed to the distant stars (or as “viewed” from an observer at infinity).
2.2. Dragging of the Compass of Inertia: Gravitomagnetic Field and Lense-Thirring Effects
2.3. Competing Effects—Circular Geodesics
2.4. Gravitomagnetic “Tidal” Effects: “Differential” Dragging and Force on Gyroscopes
3. Frame-Dragging Is Never “Draggy”8—No Body-Dragging
3.1. Test Particles in Static Equilibrium around Spinning Black Holes
3.1.1. Kerr-de Sitter Spacetime
3.1.2. Kerr–Newman Spacetime
3.2. “Bobbings” in Binary Systems
The Origin of the Bobbing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Inertial Forces—General Formulation
Appendix A.1. Post-Newtonian Approximation
Appendix A.2. Non-Geodesic Motion
Appendix A.3. Equations of Motion for Spinning Binaries
Appendix A.3.1. Extreme Kick Configuration
1 | The future-pointing condition is , where is the vector tangent to the photon’s worldline. |
2 | Actually, the weaker condition that the congruence of observers at rest (2) is inertial at infinity suffices. |
3 | Computing the Christoffel symbols , , and , where . |
4 | In [32] a different convention was used, in that (and the term “inertial force”) therein actually refers to the inertial force per unit mass (i.e., the inertial “acceleration” , in the notation herein). |
5 | Indeed, the vorticity of a congruence of observers corresponds precisely to the angular velocity of rotation of the connecting vectors between neighboring observers with respect to axes Fermi–Walker transported, see e.g., footnote in p. 7 of [34]. |
6 | The innermost circular geodesics, in each direction, are the photon orbits whose radius is [16], and so . |
7 | In a perhaps less straightforward manner though, and with unnecessary restrictions. Namely, in [19], it is assumed that (besides being momentary comoving) the gyroscopes at L and have the same acceleration. This is not necessary, as shown here; in order for (25) to hold, one needs only , i.e., that gyroscope 2 has momentarily zero “Fermi relative velocity” [63] with respect to gyroscopes at L. Moreover, the results therein hold only for vacuum, as the magnetic part of the Weyl tensor is used instead of . |
8 | Inspired on the title of the session PT5
— “Dragging is never draggy: MAss and CHarge flows
in GR” (where “draggy”
had however no such meaning), held at the sixteenth Marcel Grossmann
Meeting (MG16), July 5-10 2021. |
9 | |
10 | |
11 | For the expressions for the Christoffel symbols, see e.g., Equations (8.15) of [25], identifying , in the notation therein. |
References
- Einstein, A. Letter to E. Mach, Zurich, 25 June 1913; Freeman: San Francisco, CA, USA, 1973; see Ref. 10, page 544 (Figure 21.5). [Google Scholar]
- Mashhoon, B.; Hehl, F.W.; Theiss, D.S. On the Gravitational effects of rotating masses - The Thirring-Lense Papers. Gen. Rel. Gravit. 1984, 16, 711–750. [Google Scholar] [CrossRef]
- Cohen, J. Dragging of inertial frames by rotating masses. In Lectures in applied Mathematics, Relativity Theory and Astrophysics, 1. Relativity and Cosmology; American Mathematical Society: Providence, RI, USA, 1965; Volume VIII, pp. 200–202. [Google Scholar]
- Pugh, G.E. Proposal for a Satellite test of the Coriolis predictions of General Relativity. In Nonlinear Gravitodynamics—The Lense-Thirring Effect (2003); Ruffini, R., Sigismondi, C., Eds.; World Scientific: London, UK, 1959; pp. 414–426. [Google Scholar] [CrossRef] [Green Version]
- Schiff, L.I. Motion of a gyroscope according to Einstein’s theory of gravitation. Proc. Natl. Acad. Sci. USA 1960, 46, 871–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massa, E.; Zordan, C. Relative kinematics in general relativity the Thomas and Fokker precessions. Meccanica 1975, 10, 27–31. [Google Scholar] [CrossRef]
- Ciufolini, I.; Wheeler, J.A. Gravitation and Inertia; Princeton Series in Physics: Princeton, NJ, USA, 1995. [Google Scholar]
- Gödel, K. Lecture on Rotating Universes. In Kurt Gödel Collected Works Volume III; Feferman, S., Ed.; Oxford U. P.: Oxford, UK, 1995; pp. 269–289. [Google Scholar]
- Costa, L.F.; Natário, J. The Coriolis field. Am. J. Phys. 2016, 84, 388. [Google Scholar] [CrossRef] [Green Version]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; W. H. Freeman: San Francisco, CA, USA, 1973. [Google Scholar]
- Ciufolini, I. Dragging of inertial frames. Nature 2007, 449, 41–47. [Google Scholar] [CrossRef]
- Thorne, K.S. Relativistic Stars, Black Holes, and Gravitational Waves. In General Relativity and Cosmology, Proceedings of the International School of Physics “Enrico Fermi”, Course_47, Varenna, Italy, 30 June–12 July 1971; Academic Press: New York, NY, USA, 1971; pp. 237–283. [Google Scholar]
- Thorne, K.S.; Price, R.H.; Macdonald, D.A. (Eds.) Black Holes: The Membrane Paradigm; Yale University Press: New Haven, UK, 1986. [Google Scholar]
- Thorne, K.S. Gravitomagnetism, jets in quasars, and the Stanford Gyroscope Experiment. In Near Zero: New Frontiers of Physics; Fairbank, J.D., Deaver, B.S.J., Everitt, C.W.F., Michelson, P.F., Eds.; W. H. Freeman and Company: New York, NY, USA, 1988; pp. 573–586. [Google Scholar]
- Schaefer, G. Gravitomagnetic effects. Gen. Rel. Gravit. 2004, 36, 2223. [Google Scholar] [CrossRef] [Green Version]
- Bardeen, J.M.; Press, W.H.; Teukolsky, S.A. Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation. Astrophys. J. 1972, 178, 347–370. [Google Scholar] [CrossRef]
- Elvang, H.; Figueras, P. Black saturn. J. High Energy Phys. 2007, 2007, 050. [Google Scholar] [CrossRef]
- Čížek, P.; Semerák, O. Perturbation of a Schwarzschild Black Hole Due to a Rotating Thin Disk. Astrophys. J. Suppl. Ser. 2017, 232, 14. [Google Scholar] [CrossRef] [Green Version]
- Nichols, D.A.; Owen, R.; Zhang, F.; Zimmerman, A.; Brink, J.; Chen, Y.; Kaplan, J.D.; Lovelace, G.; Matthews, K.D.; Scheel, M.A.; et al. Visualizing Spacetime Curvature via Frame-Drag Vortexes and Tidal Tendexes I. General Theory and Weak-Gravity Applications. Phys. Rev. D 2011, 84, 124014. [Google Scholar] [CrossRef] [Green Version]
- Damour, T.; Soffel, M.; Xu, C.M. General relativistic celestial mechanics. 1. Method and definition of reference systems. Phys. Rev. D 1991, 43, 3272–3307. [Google Scholar] [CrossRef]
- Harris, S. Conformally stationary spacetimes. Class. Quantum Gravit. 1992, 9, 1823–1827. [Google Scholar] [CrossRef]
- Ohanian, H.C.; Ruffini, R. Gravitation and Spacetime, 3rd ed.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar] [CrossRef]
- Ruggiero, M.L.; Tartaglia, A. Gravitomagnetic effects. Nuovo Cim. B 2002, 117, 743–768. [Google Scholar]
- Gralla, S.E.; Harte, A.I.; Wald, R.M. Bobbing and Kicks in Electromagnetism and Gravity. Phys. Rev. D 2010, 81, 104012. [Google Scholar] [CrossRef] [Green Version]
- Poisson, E.; Will, C.M. Gravity: Newtonian, Post-Newtonian, Relativistic; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. The Classical Theory of Fields, 4rd ed.; Course of Theoretical Physics; Butterworth-Heinemann: Oxford, UK, 1975; Volume 2. [Google Scholar]
- Lynden-Bell, D.; Nouri-Zonoz, M. Classical monopoles: Newton, NUT space, gravomagnetic lensing, and atomic spectra. Rev. Mod. Phys. 1998, 70, 427–445. [Google Scholar] [CrossRef] [Green Version]
- Jantzen, R.T.; Carini, P.; Bini, D. The Many faces of gravitoelectromagnetism. Ann. Phys. 1992, 215, 1–50. [Google Scholar] [CrossRef] [Green Version]
- Massa, E. Space tensors in general relativity II: Physical applications. Gen. Relativ. Gravit. 1974, 5, 573–591. [Google Scholar] [CrossRef]
- Cattaneo, C. General relativity: Relative standard mass, momentum, energy and gravitational field in a general system of reference. Il Nuovo Cimento (1955–1965) 1958, 10, 318–337. [Google Scholar] [CrossRef]
- Natário, J. Quasi-Maxwell interpretation of the spin–curvature coupling. Gen. Relativ. Gravit. 2007, 39, 1477–1487. [Google Scholar] [CrossRef] [Green Version]
- Costa, L.F.O.; Natário, J. Gravito-electromagnetic analogies. Gen. Relativ. Gravit. 2014, 46, 1792. [Google Scholar] [CrossRef] [Green Version]
- Gharechahi, R.; Koohbor, J.; Nouri-Zonoz, M. General relativistic analogs of Poisson’s equation and gravitational binding energy. Phys. Rev. D 2019, 99, 084046. [Google Scholar] [CrossRef] [Green Version]
- Costa, L.F.O.; Natário, J.; Santos, N.O. Gravitomagnetism in the Lewis cylindrical metrics. Class. Quant. Gravit. 2021, 38, 055003. [Google Scholar] [CrossRef]
- Rizzi, G.; Ruggiero, M.L. The Relativistic Sagnac effect: Two derivations. In Relativity in Rotating Frames; Rizzi, G., Ruggiero, M.L., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; pp. 179–220. [Google Scholar] [CrossRef] [Green Version]
- Schiff, L.I. Possible New Experimental Test of General Relativity Theory. Phys. Rev. Lett. 1960, 4, 215–217. [Google Scholar] [CrossRef]
- Rindler, W. The case against space dragging. Phys. Lett. A 1997, 233, 25–29. [Google Scholar] [CrossRef]
- Katz, J.; Lynden-Bell, D.; Bičák, J. Centrifugal force induced by relativistically rotating spheroids and cylinders. Class. Quantum Gravit. 2011, 28, 065004. [Google Scholar] [CrossRef]
- Post, E.J. Sagnac Effect. Rev. Mod. Phys. 1967, 39, 475–493. [Google Scholar] [CrossRef]
- Chow, W.W.; Gea-Banacloche, J.; Pedrotti, L.M.; Sanders, V.E.; Schleich, W.; Scully, M.O. The ring laser gyro. Rev. Mod. Phys. 1985, 57, 61–104. [Google Scholar] [CrossRef]
- Ashtekar, A.; Magnon, A. The Sagnac effect in general relativity. J. Math. Phys. 1975, 16, 341–344. [Google Scholar] [CrossRef]
- Tartaglia, A. General relativistic corrections to the Sagnac effect. Phys. Rev. D 1998, 58, 064009. [Google Scholar] [CrossRef] [Green Version]
- Kajari, E.; Buser, M.; Feiler, C.; Schleich, W.P. Rotation in relativity and the propagation of light. Riv. Nuovo Cim. 2009, 32, 339–438. [Google Scholar] [CrossRef]
- Semerák, O. Circular Orbits in Stationary Axisymmetric Spacetimes. Gen. Relativ. Gravit. 1998, 30, 1203–1215. [Google Scholar] [CrossRef]
- Will, C.M. Perturbation of a Slowly Rotating Black Hole by a Stationary Axisymmetric Ring of Matter. I. Equilibrium Configurations. Astrophys. J. 1974, 191, 521–532. [Google Scholar] [CrossRef]
- Pfister, H. On the history of the so-called Lense-Thirring effect. Gen. Relativ. Gravit. 2007, 39, 1735–1748. [Google Scholar] [CrossRef] [Green Version]
- Mathisson, M. Neue mechanik materieller systemes. Acta Phys. Polon. 1937, 6, 163, Reprinted in Gen. Relativ. Gravit. 2010, 42, 1011. [Google Scholar] [CrossRef]
- Papapetrou, A. Spinning test particles in general relativity. 1. Proc. R. Soc. Lond. 1951, A209, 248–258. [Google Scholar] [CrossRef]
- Dixon, W.G. Dynamics of extended bodies in general relativity. I. Momentum and angular momentum. Proc. R. Soc. Lond. 1970, A314, 499–527. [Google Scholar] [CrossRef]
- Costa, L.F.O.; Natário, J.; Zilhão, M. Spacetime dynamics of spinning particles: Exact electromagnetic analogies. Phys. Rev. D 2016, 93, 104006. [Google Scholar] [CrossRef] [Green Version]
- Pirani, F.A.E. On the physical significance of the Riemann tensor. Acta Phys. Polon. 1956, 15, 389–405, Reprinted in Gen. Relativ. Gravit. 2009, 41, 1215. [Google Scholar] [CrossRef]
- Herrera, L.; Gonzalez, G.A.; Pachon, L.A.; Rueda, J.A. Frame dragging, vorticity and electromagnetic fields in axially symmetric stationary spacetimes. Class. Quantum Gravit. 2006, 23, 2395–2408. [Google Scholar] [CrossRef] [Green Version]
- Herrera, L.; Carot, J.; Di Prisco, A. Frame dragging and super-energy. Phys. Rev. D 2007, 76, 044012. [Google Scholar] [CrossRef] [Green Version]
- Datta, S.; Mukherjee, S. Possible connection between the reflection symmetry and existence of equatorial circular orbit. Phys. Rev. D 2021, 103, 104032. [Google Scholar] [CrossRef]
- Cohen, J.M.; Mashhoon, B. Standard clocks, interferometry, and gravitomagnetism. Phys. Lett. A 1993, 181, 353–358. [Google Scholar] [CrossRef]
- Bonnor, W.B.; Steadman, B.R. The gravitomagnetic clock effect. Class. Quantum Gravit. 1999, 16, 1853. [Google Scholar] [CrossRef]
- Bini, D.; Jantzen, R.T.; Mashhoon, B. Gravitomagnetism and relative observer clock effects. Class. Quantum Gravit. 2001, 18, 653–670. [Google Scholar] [CrossRef] [Green Version]
- Iorio, L.; Lichtenegger, H.I.M.; Mashhoon, B. An Alternative derivation of the gravitomagnetic clock effect. Class. Quantum Gravit. 2002, 19, 39–49. [Google Scholar] [CrossRef]
- Schutz, B. Gravity from the Ground Up: An Introductory Guide to Gravity and General Relativity; Cambridge University Press: Cambridge, UK, 2003; pp. 246–251. [Google Scholar] [CrossRef]
- Feynman, R.P.; Leighton, R.B.; Sands, M. The Feynman Lectures on Physics, Volume II; Addison Wesley: Reading, MA, USA, 1964. [Google Scholar]
- Ruggiero, M.L.; Ortolan, A. Gravitomagnetic resonance in the field of a gravitational wave. Phys. Rev. D 2020, 102, 101501. [Google Scholar] [CrossRef]
- Thorne, K.; Blandford, R. Modern Classical Physics: Optics, Fluids, Plasmas, Elasticity, Relativity, and Statistical Physics; Princeton University Press: Princeton, NJ, USA, 2017. [Google Scholar]
- Bolos, V.J. Intrinsic definitions of ’relative velocity’ in general relativity. Commun. Math. Phys. 2007, 273, 217–236. [Google Scholar] [CrossRef] [Green Version]
- Synge, J.L. Relativity: The General Theory; North Holland Publishing Co.: Amsterdam, the Netherlands, 1960. [Google Scholar]
- Ni, W.T.; Zimmermann, M. Inertial and gravitational effects in the proper reference frame of an accelerated, rotating observer. Phys. Rev. D 1978, 17, 1473–1476. [Google Scholar] [CrossRef]
- Filipe Costa, L.; Herdeiro, C.A.R. Gravitoelectromagnetic analogy based on tidal tensors. Phys. Rev. D 2008, 78, 024021. [Google Scholar] [CrossRef] [Green Version]
- Costa, L.F.O.; Natario, J. Gravito-Electromagnetic Analogies. arXiv 2014, arXiv:1207.0465v3. [Google Scholar] [CrossRef] [Green Version]
- Mashhoon, B.; Paik, H.J.; Will, C.M. Detection of the gravitomagnetic field using an orbiting superconducting gravity gradiometer. Theoretical principles. Phys. Rev. D 1989, 39, 2825–2838. [Google Scholar] [CrossRef] [Green Version]
- Costa, L.F.O.; Wylleman, L.; Natário, J. Gravitomagnetism and the significance of the curvature scalar invariants. arXiv 2021, arXiv:1603.03143. [Google Scholar]
- Raine, D.; Thomas, E. Black Holes: An Introduction, 2nd ed.; Imperial College Press: London, UK, 2010. [Google Scholar]
- Iorio, L.; Lichtenegger, H.I.M.; Ruggiero, M.L.; Corda, C. Phenomenology of the Lense-Thirring effect in the Solar System. Astrophys. Space Sci. 2011, 331, 351–395. [Google Scholar] [CrossRef] [Green Version]
- Hod, S. Dragging of inertial frames in the composed black-hole–ring system. Eur. Phys. J. C 2015, 75, 541. [Google Scholar] [CrossRef] [Green Version]
- Hawking, S.W. Black holes in general relativity. Commun. Math. Phys. 1972, 25, 152–166. [Google Scholar] [CrossRef]
- Natário, J. An Introduction to Mathematical Relativity; Springer International Publishing: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Wald, R.M. General Relativity; The University of Chicago Press: Chicago, IL, USA, 1984. [Google Scholar]
- Bardeen, J.M. Rapidly rotating stars, disks, and black holes. In Black Holes, les Astres Occlus, Ecole d’ete de Physique Theorique Les Houches; DeWitt, C., DeWitt, B.S., Eds.; Gordon and Breach: New York, NY, USA, 1973; pp. 241–289. [Google Scholar]
- Veselý, J.; Žofka, M. The Kerr–Newman–(anti-)de Sitter spacetime: Extremal configurations and electrogeodesics. Gen. Rel. Gravit. 2019, 51, 156. [Google Scholar] [CrossRef]
- Stuchlik, Z.; Slany, P. Equatorial circular orbits in the Kerr-de Sitter space-times. Phys. Rev. D 2004, 69, 064001. [Google Scholar] [CrossRef] [Green Version]
- Aguirregabiria, J.M.; Chamorro, A.; Nayak, K.R.; Suinaga, J.; Vishveshwara, C.V. Equilibrium of a charged test particle in the Kerr - Newman spacetime: Force analysis. Class. Quantum Gravit. 1996, 13, 2179–2189. [Google Scholar] [CrossRef]
- Campanelli, M.; Lousto, C.O.; Zlochower, Y.; Merritt, D. Large merger recoils and spin flips from generic black-hole binaries. Astrophys. J. Lett. 2007, 659, L5–L8. [Google Scholar] [CrossRef] [Green Version]
- Lovelace, G.; Chen, Y.; Cohen, M.; Kaplan, J.D.; Keppel, D.; Matthews, K.D.; Nichols, D.A.; Scheel, M.A.; Sperhake, U. Momentum flow in black-hole binaries. II. Numerical simulations of equal-mass, head-on mergers with antiparallel spins. Phys. Rev. D 2010, 82, 064031. [Google Scholar] [CrossRef] [Green Version]
- Pretorius, F. Binary Black Hole Coalescence. In Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence; Colpi, M., Casella, P., Gorini, V., Moschella, U., Possenti, A., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2009; pp. 305–369. [Google Scholar] [CrossRef]
- Faye, G.; Blanchet, L.; Buonanno, A. Higher-order spin effects in the dynamics of compact binaries. I. Equations of motion. Phys. Rev. D 2006, 74, 104033. [Google Scholar] [CrossRef] [Green Version]
- Keppel, D.; Nichols, D.A.; Chen, Y.; Thorne, K.S. Momentum Flow in Black Hole Binaries. I. Post-Newtonian Analysis of the Inspiral and Spin-Induced Bobbing. Phys. Rev. D 2009, 80, 124015. [Google Scholar] [CrossRef] [Green Version]
- Wald, R.M. Gravitational spin interaction. Phys. Rev. D 1972, 6, 406–413. [Google Scholar] [CrossRef]
- Thorne, K.S.; Hartle, J.B. Laws of motion and precession for black holes and other bodies. Phys. Rev. D 1984, 31, 1815–1837. [Google Scholar] [CrossRef] [Green Version]
- Costa, L.F.O.; Franco, R.; Cardoso, V. Gravitational Magnus effect. Phys. Rev. D 2018, 98, 024026. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, J.D.; Nichols, D.A.; Thorne, K.S. Post-Newtonian approximation in Maxwell-like form. Phys. Rev. D 2009, 80, 124014. [Google Scholar] [CrossRef] [Green Version]
- Ciufolini, I.; Pavlis, E.C. A confirmation of the general relativistic prediction of the Lense-Thirring effect. Nature 2004, 431, 958–960. [Google Scholar] [CrossRef] [PubMed]
- Ciufolini, I.; Pavlis, E.; Peron, R. Determination of frame-dragging using Earth gravity models from CHAMP and GRACE. New Astron. 2006, 11, 527–550. [Google Scholar] [CrossRef]
- Ciufolini, I.; Paolozzi, A.; Pavlis, E.C.; Sindoni, G.; Ries, J.; Matzner, R.; Koenig, R.; Paris, C.; Gurzadyan, V.; Penrose, R. An Improved Test of the General Relativistic Effect of Frame-Dragging Using the LARES and LAGEOS Satellites. Eur. Phys. J. C 2019, 79, 872. [Google Scholar] [CrossRef] [Green Version]
- Nordtvedt, K. Gravitomagnetic interaction and laser ranging to Earth satellites. Phys. Rev. Lett. 1988, 61, 2647–2649. [Google Scholar] [CrossRef]
- Murphy, T.W.; Nordtvedt, K.; Turyshev, S.G. Gravitomagnetic Influence on Gyroscopes and on the Lunar Orbit. Phys. Rev. Lett. 2007, 98, 071102. [Google Scholar] [CrossRef] [Green Version]
- Soffel, M.; Klioner, S.; Muller, J.; Biskupek, L. Gravitomagnetism and lunar laser ranging. Phys. Rev. D 2008, 78, 024033. [Google Scholar] [CrossRef]
- Everitt, C.W.F.; DeBra, D.B.; Parkinson, B.W.; Turneaure, J.P.; Conklin, J.W.; Heifetz, M.I.; Keiser, G.M.; Silbergleit, A.S.; Holmes, T.; Kolodziejczak, J.; et al. Gravity Probe B: Final Results of a Space Experiment to Test General Relativity. Phys. Rev. Lett. 2011, 106, 221101. [Google Scholar] [CrossRef]
- Lucchesi, D.; Visco, M.; Peron, R.; Bassan, M.; Pucacco, G.; Pardini, C.; Anselmo, L.; Magnafico, C. A 1% Measurement of the Gravitomagnetic Field of the Earth with Laser-Tracked Satellites. Universe 2020, 6, 139. [Google Scholar] [CrossRef]
- Kopeikin, S.M. Comment on “Gravitomagnetic Influence on Gyroscopes and on the Lunar Orbit”. Phys. Rev. Lett. 2007, 98, 229001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, T.W.; Nordtvedt, K.; Turyshev, S.G. Murphy, Nordtvedt, and Turyshev Reply. Phys. Rev. Lett. 2007, 98, 229002. [Google Scholar] [CrossRef] [Green Version]
- Iorio, L. A comment on “A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model”. Eur. Phys. J. C 2017, 77, 73. [Google Scholar] [CrossRef]
- Ciufolini, I.; Pavlis, E.C.; Ries, J.; Matzner, R.; Koenig, R.; Paolozzi, A.; Sindoni, G.; Gurzadyan, V.; Paris, R.; Paris, C. Reply to “A comment on “A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model”, by I. Ciufolini et al.”. Eur. Phys. J. C 2018, 78, 880. [Google Scholar] [CrossRef] [PubMed]
- Apostolatos, T.A.; Cutler, C.; Sussman, G.J.; Thorne, K.S. Spin induced orbital precession and its modulation of the gravitational wave forms from merging binaries. Phys. Rev. D 1994, 49, 6274–6297. [Google Scholar] [CrossRef]
- Lang, R.N.; Hughes, S.A. Measuring coalescing massive binary black holes with gravitational waves: The Impact of spin-induced precession. Phys. Rev. D 2006, 74, 122001, Erratum in Phys. Rev. D 2008, 77, 109901. [Google Scholar] [CrossRef] [Green Version]
- Hannam, M. Modelling gravitational waves from precessing black-hole binaries: Progress, challenges and prospects. Gen. Rel. Gravit. 2014, 46, 1767. [Google Scholar] [CrossRef] [Green Version]
- Vecchio, A. LISA observations of rapidly spinning massive black hole binary systems. Phys. Rev. D 2004, 70, 042001. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, P.; Ohme, F.; Hannam, M. Towards models of gravitational waveforms from generic binaries II: Modelling precession effects with a single effective precession parameter. Phys. Rev. D 2015, 91, 024043. [Google Scholar] [CrossRef] [Green Version]
- Bini, D.; Carini, P.; Jantzen, R.T. The Intrinsic derivative and centrifugal forces in general relativity. 1. Theoretical foundations. Int. J. Mod. Phys. D 1997, 6, 143–198. [Google Scholar] [CrossRef] [Green Version]
- Will, C.M. Theory and Experiment in Gravitational Physics; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Bini, D.; Carini, P.; Jantzen, R.T.; Wilkins, D. Thomas precession in post-Newtonian gravitoelectromagnetism. Phys. Rev. D 1994, 49, 2820–2827. [Google Scholar] [CrossRef]
- Einstein, A. The Meaning of Relativity, 5th ed.; Princeton University Press: Princeton, NJ, USA, 1970. [Google Scholar]
- Davidson, W. General Relativity and Mach’s Principle. Mon. Not. R. Astron. Soc. 1957, 117, 212–224. [Google Scholar] [CrossRef] [Green Version]
- Grøn, O.; Eriksen, E. Translational inertial dragging. Gen. Relativ. Gravit. 1989, 21, 105–124. [Google Scholar] [CrossRef]
- Lynden-Bell, D.; Bičák, J.; Katz, J. On Fast Linear Gravitational Dragging. Class. Quantum Gravit. 2012, 29, 017001. [Google Scholar] [CrossRef]
- Lynden-Bell, D.; Bičák, J.; Katz, J. On accelerated inertial frames in gravity and electromagnetism. Annals Phys. 1999, 271, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Nordtvedt, K. Existence of the Gravitomagnetic Interaction. Int. J. Theor. Phys. 1988, 27, 1395–1404. [Google Scholar] [CrossRef]
- Pfister, H.; Frauendiener, J.; Hengge, S. A Model for linear dragging. Class. Quantum Gravit. 2005, 22, 4743–4761. [Google Scholar] [CrossRef]
- Costa, L.F.O.; Lukes-Gerakopoulos, G.; Semerák, O. Spinning particles in general relativity: Momentum-velocity relation for the Mathisson-Pirani spin condition. Phys. Rev. D 2018, 97, 084023. [Google Scholar] [CrossRef] [Green Version]
- Costa, L.F.O.; Natário, J. Center of Mass, Spin Supplementary Conditions, and the Momentum of Spinning Particles. In Equations of Motion in Relativistic Gravity; Puetzfeld, D., Lämmerzahl, C., Schutz, B., Eds.; Springer: Cham, Switzerland, 2015; pp. 215–258, [Fund. Theor. Phys. 179, 215]. [Google Scholar] [CrossRef] [Green Version]
- Kyrian, K.; Semerak, O. Spinning test particles in a Kerr field – II. Mon. Not. Roy. Astron. Soc. 2007, 382, 1922. [Google Scholar] [CrossRef] [Green Version]
Levels of Gravitomagnetism/“Frame-Dragging” | |
---|---|
Governing gravitomagnetic object | Physical effect |
(gravitomagnetic vector potential) | Dragging of the ZAMOs:
|
(gravitomagnetic field ) | Dragging of the compass of inertia:
|
(gravitomagnetic tidal tensor ) |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, L.F.O.; Natário, J. Frame-Dragging: Meaning, Myths, and Misconceptions. Universe 2021, 7, 388. https://doi.org/10.3390/universe7100388
Costa LFO, Natário J. Frame-Dragging: Meaning, Myths, and Misconceptions. Universe. 2021; 7(10):388. https://doi.org/10.3390/universe7100388
Chicago/Turabian StyleCosta, L. Filipe. O., and José Natário. 2021. "Frame-Dragging: Meaning, Myths, and Misconceptions" Universe 7, no. 10: 388. https://doi.org/10.3390/universe7100388
APA StyleCosta, L. F. O., & Natário, J. (2021). Frame-Dragging: Meaning, Myths, and Misconceptions. Universe, 7(10), 388. https://doi.org/10.3390/universe7100388