Higher Dimensional Lie Algebroid Sigma Model with WZ Term
Abstract
:1. Introduction
2. Lie Algebroid Topological Sigma Model with Flux and WZ Term
3. Lie Algebroid and Compatible -Flux on Pre-Multisymplectic Manifold
3.1. Lie Algebroid
3.2. Lie Algebroid Differential
3.3. Compatible Condition of E-Differential form with Pre-Multisymplectic Form
- (M1)
- A sectionis a momentum section if the following holds:
- (M2)
- A momentum section μ is bracket-compatible if the following holds:
3.4. Lie -Algebroid and Higher Dirac Structure
4. Hamiltonian Formalism
5. Target Space Covariantization
6. Gauge Transformation
7. Manifestly Target Space Covariant Gauge Transformation
8. Conclusions and Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A. Geometry of Lie Algebroid
Appendix B. Computation of Equation (62)
References
- Grana, M.; Minasian, R.; Petrini, M.; Waldram, D. T-duality, Generalized Geometry and Non-Geometric Backgrounds. J. High Energy Phys. 2009, 4, 75. [Google Scholar] [CrossRef] [Green Version]
- Cavalcanti, G.R.; Gualtieri, M. Generalized complex geometry and T-duality. In A Celebration of the Mathematical Legacy of Raoul Bott (CRM Proceedings and Lecture Notes); American Mathematical Society: Providence, RI, USA, 2010; pp. 341–366. ISBN 0821847775. [Google Scholar]
- Blumenhagen, R.; Deser, A.; Plauschinn, E.; Rennecke, F. Bianchi Identities for Non-Geometric Fluxes-From Quasi-Poisson Structures to Courant Algebroids. Fortsch. Phys. 2012, 60, 1217–1228. [Google Scholar] [CrossRef] [Green Version]
- Asakawa, T.; Muraki, H.; Sasa, S.; Watamura, S. Poisson-generalized geometry and R-flux. Int. J. Mod. Phys. A 2015, 30, 1550097. [Google Scholar] [CrossRef] [Green Version]
- Ševera, P. Poisson–Lie T-Duality and Courant Algebroids. Lett. Math. Phys. 2015, 105, 1689–1701. [Google Scholar] [CrossRef] [Green Version]
- Heller, M.A.; Ikeda, N.; Watamura, S. Unified picture of non-geometric fluxes and T-duality in double field theory via graded symplectic manifolds. J. High Energy Phys. 2017, 2, 78. [Google Scholar] [CrossRef] [Green Version]
- Chatzistavrakidis, A.; Deser, A.; Jonke, L. T-duality without isometry via extended gauge symmetries of 2D sigma models. J. High Energy Phys. 2016, 1601, 154. [Google Scholar] [CrossRef] [Green Version]
- Chatzistavrakidis, A.; Deser, A.; Jonke, L.; Strobl, T. Strings in Singular Space-Times and their Universal Gauge Theory. Ann. Henri Poincare 2017, 18, 2641. [Google Scholar] [CrossRef] [Green Version]
- Chatzistavrakidis, A.; Deser, A.; Jonke, L.; Strobl, T. Beyond the standard gauging: Gauge symmetries of Dirac Sigma Models. J. High Energy Phys. 2016, 1608, 172. [Google Scholar] [CrossRef] [Green Version]
- Chatzistavrakidis, A.; Deser, A.; Jonke, L.; Strobl, T. Gauging as constraining: The universal generalised geometry action in two dimensions. PoS CORFU 2017, 2016, 87. [Google Scholar]
- Bouwknegt, P.; Bugden, M.; Klimcik, C.; Wright, K. Hidden isometry of “T-duality without isometry”. J. High Energy Phys. 2017, 08, 116. [Google Scholar] [CrossRef]
- Bugden, M. A Tour of T-duality: Geometric and Topological Aspects of T-dualities. arXiv 2019, arXiv:1904.03583. [Google Scholar]
- Wright, K. Lie Algebroid Gauging of Non-linear Sigma Models. J. Geom. Phys. 2019, 146, 103490. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, N. Momentum sections in Hamiltonian mechanics and sigma models. SIGMA 2019, 15, 76. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, N. Lectures on AKSZ Sigma Models for Physicists. In Noncommutative Geometry and Physics 4, Workshop on Strings, Membranes and Topological Field Theory; World Scientific: Singapore, 2017; pp. 79–169. [Google Scholar]
- Chatzistavrakidis, A.; Grewcoe, C.J.; Jonke, L.; Khoo, F.S.; Szabo, R.J. BRST symmetry of doubled membrane sigma-models. arXiv 2019, arXiv:1904.04857. [Google Scholar]
- Grewcoe, C.J.; Jonke, L. L∞-algebras and membrane sigma models. arXiv 2020, arXiv:2004.14087. [Google Scholar]
- Marotta, V.E.; Szabo, R.J. Algebroids, AKSZ Constructions and Doubled Geometry. arXiv 2021, arXiv:2104.07774. [Google Scholar]
- Siegel, W. Superspace duality in low-energy superstrings. Phys. Rev. D 1993, 48, 2826–2837. [Google Scholar] [CrossRef] [Green Version]
- Siegel, W. Two vierbein formalism for string inspired axionic gravity. Phys. Rev. D 1993, 47, 5453–5459. [Google Scholar] [CrossRef] [Green Version]
- Hull, C.; Zwiebach, B. Double Field Theory. J. High Energy Phys. 2009, 9, 99. [Google Scholar] [CrossRef]
- Hull, C.; Zwiebach, B. The Gauge algebra of double field theory and Courant brackets. J. High Energy Phys. 2009, 9, 90. [Google Scholar] [CrossRef] [Green Version]
- Chatzistavrakidis, A.; Jonke, L.; Khoo, F.S.; Szabo, R.J. Double Field Theory and Membrane Sigma-Models. J. High Energy Phys. 2018, 7, 15. [Google Scholar] [CrossRef] [Green Version]
- Chatzistavrakidis, A.; Jonke, L.; Khoo, F.S.; Szabo, R.J. The Algebroid Structure of Double Field Theory. PoS CORFU2018 2019. submitted. [Google Scholar]
- Grewcoe, C.J.; Jonke, L. Double field theory algebroid and curved L∞-algebras. J. Math. Phys. 2021, 62, 5. [Google Scholar] [CrossRef]
- Mackenzie, K. Lie Groupoids and Lie Algebroids in Differential Geometry; LMS Lecture Note Series; Cambridge U. Press: Cambridge, UK, 1987; Volume 124. [Google Scholar]
- Ikeda, N. Two-dimensional gravity and nonlinear gauge theory. Ann. Phys. 1994, 235, 435–464. [Google Scholar] [CrossRef] [Green Version]
- Schaller, P.; Strobl, T. Poisson structure induced (topological) field theories. Mod. Phys. Lett. A 1994, 9, 3129–3136. [Google Scholar] [CrossRef] [Green Version]
- Cattaneo, A.S.; Felder, G. A Path integral approach to the Kontsevich quantization formula. Commun. Math. Phys. 2000, 212, 591. [Google Scholar] [CrossRef] [Green Version]
- Klimcik, C.; Strobl, T. WZW-Poisson manifolds. J. Geom. Phys. 2002, 43, 341–344. [Google Scholar] [CrossRef] [Green Version]
- Park, J.S. Topological open p-branes. In Proceedings of the 4th KIAS Annual International Conference on Symplectic Geometry and Mirror Symmetry, Seoul, Korea, 14–18 August 2000. [Google Scholar]
- Ševera, P.; Weinstein, A. Poisson geometry with a 3 form background. Prog. Theor. Phys. Suppl. 2001, 144, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Chatzistavrakidis, A. Topological Field Theories induced by twisted R-Poisson structure in any dimension. arXiv 2021, arXiv:2106.01067. [Google Scholar]
- Alexandrov, M.; Kontsevich, M.; Schwartz, A.; Zaboronsky, O. The Geometry of the master equation and topological quantum field theory. Int. J. Mod. Phys. A 1997, 12, 1405. [Google Scholar] [CrossRef] [Green Version]
- Cattaneo, A.S.; Felder, G. On the AKSZ formulation of the Poisson sigma model. Lett. Math. Phys. 2001, 56, 163–179. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, N. Deformation of BF theories, topological open membrane and a generalization of the star deformation. J. High Energy Phys. 2001, 7, 37. [Google Scholar] [CrossRef] [Green Version]
- Roytenberg, D. AKSZ-BV formalism and Courant algebroid-induced topological field theories. Lett. Math. Phys. 2007, 79, 143. [Google Scholar] [CrossRef] [Green Version]
- Batalin, I.A.; Vilkovisky, G.A. Relativistic S Matrix of Dynamical Systems with Boson and Fermion Constraints. Phys. Lett. B 1977, 69, 309. [Google Scholar] [CrossRef]
- Batalin, I.A.; Fradkin, E.s. A Generalized Canonical Formalism and Quantization of Reducible Gauge Theories. Phys. Lett. B 1983, 122, 157. [Google Scholar] [CrossRef]
- Batalin, I.A.; Vilkovisky, G.A. Gauge Algebra and Quantization. Phys. Lett. B 1981, 102, 27–31. [Google Scholar] [CrossRef]
- Batalin, I.A.; Vilkovisky, G.A. Quantization of Gauge Theories with Linearly Dependent Generators. Phys. Rev. D 1983, 28, 2567–2582, Erratum in 1984, 30, 508. [Google Scholar] [CrossRef]
- Ikeda, N.; Strobl, T. BV and BFV for the H-twisted Poisson sigma model. Ann. Henri Poincare 2021, 22, 1267–1316. [Google Scholar] [CrossRef]
- Vaintrob, A. Lie algebroids and homological vector fields. Uspekhi Mat. Nauk. 1997, 52, 161–162. [Google Scholar] [CrossRef]
- Blohmann, C.; Weinstein, A. Hamiltonian Lie algebroids. arXiv 2018, arXiv:1811.11109. [Google Scholar]
- Kotov, A.; Strobl, T. Lie algebroids, gauge theories, and compatible geometrical structures. Rev. Math. Phys. 2018, 31, 1950015. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, N. Momentum section on Courant algebroid and constrained Hamiltonian mechanics. J. Geom. Phys. 2021, 170, 104350. [Google Scholar] [CrossRef]
- Schwarz, A. Geometry of Batalin-Vilkovisky quantization. Commun. Math. Phys. 1993, 155, 249. [Google Scholar] [CrossRef] [Green Version]
- Blaom, A.D. Geometric structures as deformed infinitesimal symmetries. Trans. Amer. Math. Soc. 2006, 358, 3651. [Google Scholar] [CrossRef]
- Ikeda, N.; Strobl, T. From BFV to BV and spacetime covariance. J. High Energy Phys. 2020, 12, 141. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ikeda, N. Higher Dimensional Lie Algebroid Sigma Model with WZ Term. Universe 2021, 7, 391. https://doi.org/10.3390/universe7100391
Ikeda N. Higher Dimensional Lie Algebroid Sigma Model with WZ Term. Universe. 2021; 7(10):391. https://doi.org/10.3390/universe7100391
Chicago/Turabian StyleIkeda, Noriaki. 2021. "Higher Dimensional Lie Algebroid Sigma Model with WZ Term" Universe 7, no. 10: 391. https://doi.org/10.3390/universe7100391
APA StyleIkeda, N. (2021). Higher Dimensional Lie Algebroid Sigma Model with WZ Term. Universe, 7(10), 391. https://doi.org/10.3390/universe7100391