Neutrino Mixing and Oscillations in Quantum Field Theory: A Comprehensive Introduction
Abstract
:1. Introduction
2. Neutrino Mixing in QFT
2.1. Mixing Transformation and Flavor Vacuum
2.2. Flavor Eigenstates, Charges and Neutrino Oscillations
3. Contradictions in the Quantum Mechanics Approach to Neutrino Mixing and Oscillations
3.1. The Pontecorvo Oscillation Formula
3.2. Two-Point Green’s Functions for Flavor Fields
4. Lepton Number Conservation in the Vertex
Flavor Charge Conservation in the Vertex
5. Neutrino Mixing and the Gauge Theory Structure
6. Entanglement and Neutrino Mixing in QFT
6.1. Neutrino Entanglement
6.2. Entangled Vacuum State
7. Flavor–Energy Uncertainty Relations
7.1. Time–Energy Uncertainty Relations for Neutrino Oscillations: Pontecorvo Flavor States
7.2. Time–Energy Uncertainty Relation for Neutrino Oscillations in QFT
8. Dynamical Generation of Field Mixing
8.1. Basic Facts
8.2. Dynamical Generation of Flavor Vacuum in Chirally-Symmetric Models
9. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Unitarily Inequivalent Representations of CAR and Fields with Different Masses
Appendix B. Three-Flavor Neutrino Mixing in Quantum Field Theory
Appendix C. First Quantized Oscillation Formula and Dirac Equation
References
- Gribov, V.N.; Pontecorvo, B. Neutrino astronomy and lepton charge. Phys. Lett. B 1969, 28, 493. [Google Scholar] [CrossRef]
- Bilenky, S.M.; Pontecorvo, B. Quark-Lepton Analogy and Neutrino Oscillations. Phys. Lett. B 1976, 61, 248. [Google Scholar] [CrossRef]
- Bilenky, S.M.; Pontecorvo, B. Again on Neutrino Oscillations. Lett. Nuovo Cim. 1976, 17, 569. [Google Scholar] [CrossRef]
- Bilenky, S.M.; Pontecorvo, B. Lepton Mixing and the Solar Neutrino Puzzle. Comments Nucl. Part. Phys. 1977, 7, 149–152. [Google Scholar]
- Alfinito, E.; Blasone, M.; Iorio, A.; Vitiello, G. Squeezed neutrino oscillations in quantum field theory. Phys. Lett. B 1995, 362, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Blasone, M.; Vitiello, G. Quantum field theory of fermion mixing. Ann. Phys. 1995, 244, 283–311, Erratum in Annals Phys. 1996, 249, 363–364. [Google Scholar] [CrossRef] [Green Version]
- Blasone, M.; Henning, P.A.; Vitiello, G. The Exact formula for neutrino oscillations. Phys. Lett. B 1999, 451, 140–145. [Google Scholar] [CrossRef] [Green Version]
- Giunti, C.; Kim, C. Fundamentals of Neutrino Physics and Astrophysics; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Formaggio, J.; Kaiser, D.; Murskyj, M.; Weiss, T. Violation of the Leggett-Garg Inequality in Neutrino Oscillations. Phys. Rev. Lett. 2016, 117, 012224. [Google Scholar] [CrossRef] [Green Version]
- Ahluwalia, D.V.; Labun, L.; Torrieri, G. Neutrino mixing in accelerated proton decays. Eur. Phys. J. A 2016, 52, 189. [Google Scholar] [CrossRef]
- Gangopadhyay, D.; Roy, A.S. Three-flavoured neutrino oscillations and the Leggett–Garg inequality. Eur. Phys. J. C 2017, 77, 260. [Google Scholar] [CrossRef] [Green Version]
- Blasone, M.; Lambiase, G.; Luciano, G.G.; Petruzziello, L. Role of neutrino mixing in accelerated proton decay. Phys. Rev. D 2018, 97, 105008. [Google Scholar] [CrossRef] [Green Version]
- Cozzella, G.; Fulling, S.A.; Landulfo, A.G.; Matsas, G.E.; Vanzella, D.A. Unruh effect for mixing neutrinos. Phys. Rev. D 2018, 97, 105022. [Google Scholar] [CrossRef] [Green Version]
- Blasone, M.; Smaldone, L.; Vitiello, G. Flavor neutrino states for pedestrians. J. Phys. Conf. Ser. 2019, 1275, 012023. [Google Scholar] [CrossRef]
- Blasone, M.; Lambiase, G.; Luciano, G.G.; Petruzziello, L. On the β-decay of the accelerated proton and neutrino oscillations: A three-flavor description with CP violation. Eur. Phys. J. C 2020, 80, 130. [Google Scholar] [CrossRef]
- Grimus, W. Revisiting the quantum field theory of neutrino oscillations in vacuum. J. Phys. G 2020, 47, 085004. [Google Scholar] [CrossRef] [Green Version]
- Buoninfante, L.; Luciano, G.G.; Petruzziello, L.; Smaldone, L. Neutrino oscillations in extended theories of gravity. Phys. Rev. D 2020, 101, 024016. [Google Scholar] [CrossRef] [Green Version]
- Chatelain, A.; Volpe, M.C. Neutrino decoherence in presence of strong gravitational fields. Phys. Lett. B 2020, 801, 135150. [Google Scholar] [CrossRef]
- Naumov, V.A.; Shkirmanov, D.S. Reactor Antineutrino Anomaly Reanalysis in Context of Inverse-Square Law Violation. Universe 2021, 7, 246. [Google Scholar] [CrossRef]
- Cabo, A.; Cabo Bizet, N. About the neutrino oscillation-like effects in general physical systems. Eur. Phys. J. Plus 2021, 136, 1042. [Google Scholar] [CrossRef]
- Vogel, P.; Wen, L.; Zhang, C. Neutrino Oscillation Studies with Reactors. Nat. Commun. 2015, 6, 6935. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; Anderson, T.; et al. Measurement of Atmospheric Neutrino Oscillations at 6–56 GeV with IceCube DeepCore. Phys. Rev. Lett. 2018, 120, 071801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, W.M.; Amsler, C.D.; Asner, D.M.; Bamett, R.M.; Beringer, J.; Burchat, P.R.; Carone, C.D.; Caso, C.; Dahl, O.I.; D’Ambrosio, G.; et al. (Particle Data Group). Review of Particle Physics. Phys. Rev. D 2018, 98, 030001. [Google Scholar] [CrossRef] [Green Version]
- Nakano, Y. Recent Solar neutrino Results from Super-Kamiokande. J. Phys. Conf. Ser. 2020, 1342, 012037. [Google Scholar] [CrossRef]
- Agafonova, N.; Alexandrov, A.; Anokhina, A.; Aoki, S.; Ariga, A.; Ariga, T.; Bertolin, A.; Bozza, C.; Brugnera, R.; Buonaura, A.; et al. OPERA tau neutrino charged current interactions. Sci. Data 2021, 8, 218. [Google Scholar] [CrossRef]
- Cheng, T.; Li, L. Gauge Theory of Elementary Particle Physics; Clarendon Press: Oxford, UK, 1984. [Google Scholar]
- Weinberg, S. A Model of Leptons. Phys. Rev. Lett. 1967, 19, 1264–1266. [Google Scholar] [CrossRef]
- Salam, A. Weak and Electromagnetic Interactions. Conf. Proc. C 1968, 680519, 367–377. [Google Scholar] [CrossRef]
- Stone, M.H. Linear Transformations in Hilbert Space. Proc. Natl. Acad. Sci. USA 1930, 16, 172–175. [Google Scholar] [CrossRef] [Green Version]
- von Neumann, J. Die Eindeutigkeit der Schroedingerschen Operatoren. Math. Ann. 1931, 104, 570. [Google Scholar] [CrossRef]
- Friedrichs, K. Mathematical Aspects of the Quantum Theory of Fields; Interscience Publishers: New York, NY, USA, 1953. [Google Scholar]
- Barton, G. Introduction to Advanced Field Theory; Interscience Tracts on Physics and Astronomy; Wiley: Hoboken, NJ, USA, 1963. [Google Scholar]
- Berezin, J.; Berezin, F.; (Firm), E.S.T.; Mugibayashi, N.; Jeffrey, A. The Method of Second Quantization; Pure and Applied Physics: A Series of Monographs and Textbooks. 24; Academic Press: Cambridge, MA, USA, 1966. [Google Scholar]
- Umezawa, H.; Matsumoto, H.; Tachiki, M. Thermo Field Dynamics and Condensed States; North-Holland Publishing Company: Amsterdam, The Netherlands, 1982. [Google Scholar]
- Umezawa, H. Advanced Field Theory: Micro, Macro, and Thermal Physics; American Inst. of Physics: College Park, MD, USA, 1993. [Google Scholar]
- Miransky, V. Dynamical Symmetry Breaking in Quantum Field Theories; World Scientific: Singapore, 1993. [Google Scholar]
- Blasone, M.; Jizba, P.; Vitiello, G. Quantum Field Theory and Its Macroscopic Manifestations: Boson Condensation, Ordered Patterns, and Topological Defects; Imperial College Press: London, UK, 2011. [Google Scholar]
- Haag, R. On quantum field theories. Mat.-Fys. Meddelelser 1955, 29, 12. [Google Scholar]
- Haag, R. Local Quantum Physics: Fields, Particles, Algebras; Theoretical and Mathematical Physics; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Bogolyubov, N.N.; Logunov, A.A.; Oksak, A.I.; Todorov, I.T. General Principles of Quantum Field Theory; Reidel: Boston, MA, USA, 1990. [Google Scholar]
- Fujii, K.; Habe, C.; Yabuki, T. Note on the field theory of neutrino mixing. Phys. Rev. D 1999, 59, 113003. [Google Scholar] [CrossRef] [Green Version]
- Hannabuss, K.C.; Latimer, D.C. The quantum field theory of fermion mixing. J. Phys. A 2000, 33, 1369–1373. [Google Scholar] [CrossRef]
- Fujii, K.; Habe, C.; Yabuki, T. Remarks on flavor-neutrino propagators and oscillation formulas. Phys. Rev. D 2001, 64, 013011. [Google Scholar] [CrossRef] [Green Version]
- Ji, C.R.; Mishchenko, Y. General theory of quantum field mixing. Phys. Rev. D 2002, 65, 096015. [Google Scholar] [CrossRef] [Green Version]
- Hannabuss, K.C.; Latimer, D.C. Fermion mixing in quasifree states. J. Phys. A 2003, 36, L69. [Google Scholar] [CrossRef]
- Lee, C.Y. Interactions and oscillations of coherent flavor eigenstates in beta decay. Mod. Phys. Lett. A 2020, 35, 2030015. [Google Scholar] [CrossRef]
- Bargmann, V. On Unitary Ray Representations of Continuous Groups. Ann. Math. 1954, 59, 1–46. [Google Scholar] [CrossRef]
- Greenberger, D.M. Inadequacy of the Usual Galilean Transformation in Quantum Mechanics. Phys. Rev. Lett. 2001, 87, 100405. [Google Scholar] [CrossRef] [PubMed]
- Maki, Z.; Nakagawa, M.; Sakata, S. Remarks on the Unified Model of Elementary Particles. Prog. Theor. Phys. 1962, 28, 870–880. [Google Scholar] [CrossRef] [Green Version]
- Blasone, M.; Gargiulo, M.; Vitiello, G. On the rôle of rotations and Bogoliubov transformations in neutrino mixing. Phys. Lett. B 2016, 761, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Nambu, Y.; Jona-Lasinio, G. Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. I. Phys. Rev. 1961, 122, 345–358. [Google Scholar] [CrossRef] [Green Version]
- Nambu, Y.; Jona-Lasinio, G. Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. II. Phys. Rev. 1961, 124, 246–254. [Google Scholar] [CrossRef]
- Perelomov, A. Generalized Coherent States and Their Applications; Theoretical and Mathematical Physics; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- De Filippo, S.; Vitiello, G. Vacuum Structure for Unstable Particles. Lett. Nuovo Cim. 1977, 19, 92. [Google Scholar] [CrossRef]
- Exner, P. Representations of the Poincaré group associated with unstable particles. Phys. Rev. D 1983, 28, 2621–2627. [Google Scholar] [CrossRef]
- Martellini, M.; Sodano, P.; Vitiello, G. Vacuum Structure for a Quantum Field Theory in Curved Space-time. Nuovo Cim. A 1978, 48, 341. [Google Scholar] [CrossRef]
- Celeghini, E.; Rasetti, M.; Vitiello, G. Quantum dissipation. Ann. Phys. 1992, 215, 156–170. [Google Scholar] [CrossRef]
- Bilenky, S.M.; Petcov, S.T. Massive Neutrinos and Neutrino Oscillations. Rev. Mod. Phys. 1987, 59, 671, Erratum in Rev. Mod. Phys. 1989, 61, 169Erratum in Rev. Mod. Phys. 1988, 60, 575–575. [Google Scholar] [CrossRef]
- Blasone, M.; Jizba, P.; Vitiello, G. Currents and charges for mixed fields. Phys. Lett. B 2001, 517, 471–475. [Google Scholar] [CrossRef] [Green Version]
- Giunti, C.; Kim, C.W.; Lee, U.W. Remarks on the weak states of neutrinos. Phys. Rev. D 1992, 45, 2414–2420. [Google Scholar] [CrossRef]
- Blasone, M.; Capolupo, A.; Ji, C.; Vitiello, G. On flavor violation for massive and mixed neutrinos. Nucl. Phys. B Proc. Suppl. 2009, 188, 37–39. [Google Scholar] [CrossRef] [Green Version]
- Close, F. Neutrino; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Blasone, M.; Vitiello, G. Remarks on the neutrino oscillation formula. Phys. Rev. D 1999, 60, 111302. [Google Scholar] [CrossRef] [Green Version]
- Mannheim, P.D. Derivation of the formalism for neutrino matter oscillations from the neutrino relativistic field equations. Phys. Rev. D 1988, 37, 1935–1941. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.M. On Neutrino Flavor States. JHEP 2012, 12, 022. [Google Scholar] [CrossRef] [Green Version]
- Lobanov, A.E. Particle quantum states with indefinite mass and neutrino oscillations. Ann. Phys. 2019, 403, 82–105. [Google Scholar] [CrossRef] [Green Version]
- Fantini, G.; Gallo Rosso, A.; Vissani, F.; Zema, V. Introduction to the Formalism of Neutrino Oscillations. Adv. Ser. Direct. High Energy Phys. 2018, 28, 37–119. [Google Scholar] [CrossRef]
- Nishi, C.C. Intrinsic flavor violation for massive neutrinos. Phys. Rev. D 2008, 78, 113007. [Google Scholar] [CrossRef] [Green Version]
- Greiner, W.; Bromley, D.; Reinhardt, J. Field Quantization; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Bilenky, S.M.; Giunti, C. Lepton numbers in the framework of neutrino mixing. Int. J. Mod. Phys. A 2001, 16, 3931–3949. [Google Scholar] [CrossRef] [Green Version]
- Itzykson, C.; Zuber, J. Quantum Field Theory; Dover Books on Physics; Dover Publications: New York, NY, USA, 2012. [Google Scholar]
- Li, Y.F.; Liu, Q.Y. A Paradox on quantum field theory of neutrino mixing and oscillations. JHEP 2006, 10, 048. [Google Scholar] [CrossRef] [Green Version]
- Blasone, M.; Capolupo, A.; Ji, C.R.; Vitiello, G. On flavor conservation in weak interaction decays involving mixed neutrinos. Int. J. Mod. Phys. A 2010, 25, 4179–4194. [Google Scholar] [CrossRef] [Green Version]
- Blasone, M.; Di Mauro, M.; Vitiello, G. Non-abelian gauge structure in neutrino mixing. Phys. Lett. B 2011, 697, 238–245. [Google Scholar] [CrossRef] [Green Version]
- Aharonov, Y.; Bohm, D. Significance of Electromagnetic Potentials in the Quantum Theory. Phys. Rev. 1959, 115, 485–491. [Google Scholar] [CrossRef]
- Celeghini, E.; Graziano, E.; Nakamura, K.; Vitiello, G. Finite temperature quantum field theory and gauge field. Phys. Lett. B 1992, 285, 98–102. [Google Scholar] [CrossRef]
- Celeghini, E.; Graziano, E.; Nakamura, K.; Vitiello, G. Dissipative and inhomogeneous systems and the gauge field. Phys. Lett. B 1993, 304, 121–126. [Google Scholar] [CrossRef]
- Del Giudice, E.; Vitiello, G. Role of the electromagnetic field in the formation of domains in the process of symmetry-breaking phase transitions. Phys. Rev. A 2006, 74, 022105. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, M.; Chuang, I. Quantum Computation and Quantum Information; Cambridge Series on Information and the Natural Sciences; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Blasone, M.; Dell’Anno, F.; De Siena, S.; Di Mauro, M.; Illuminati, F. Multipartite entangled states in particle mixing. Phys. Rev. D 2008, 77, 096002. [Google Scholar] [CrossRef] [Green Version]
- Blasone, M.; Dell’Anno, F.; De Siena, S.; Illuminati, F. Entanglement in neutrino oscillations. EPL 2009, 85, 50002. [Google Scholar] [CrossRef]
- Blasone, M.; Dell’Anno, F.; De Siena, S.; Illuminati, F. Entanglement in a QFT Model of Neutrino Oscillations. Adv. High Energy Phys. 2014, 2014, 359168. [Google Scholar] [CrossRef]
- Massimo, B.; Dell’Anno, F.; De Siena, S.; Illuminati, F. Neutrino flavor entanglement. Nucl. Phys. B Proc. Suppl. 2013, 237-238, 320–322. [Google Scholar] [CrossRef]
- Blasone, M.; Dell’Anno, F.; De Siena, S.; Illuminati, F. A field-theoretical approach to entanglement in neutrino mixing and oscillations. EPL 2014, 106, 30002. [Google Scholar] [CrossRef] [Green Version]
- Bittencourt, V.A.S.V.; Villas Boas, C.J.; Bernardini, A.E. Maximal correlation between flavor entanglement and oscillation damping due to localization effects. EPL 2014, 108, 50005. [Google Scholar] [CrossRef] [Green Version]
- Blasone, M.; Dell’Anno, F.; De Siena, S.; Illuminati, F. Flavor entanglement in neutrino oscillations in the wave packet description. EPL 2015, 112, 20007. [Google Scholar] [CrossRef] [Green Version]
- Alok, A.K.; Banerjee, S.; Sankar, S.U. Quantum correlations in terms of neutrino oscillation probabilities. Nucl. Phys. B 2016, 909, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Blasone, M.; Dell’Anno, F.; De Siena, S.; Illuminati, F. On entanglement in neutrino mixing and oscillations. J. Phys. Conf. Ser. 2010, 237, 012007. [Google Scholar] [CrossRef] [Green Version]
- Klyachko, A.A.; Öztop, B.; Shumovsky, A.S. Quantification of entanglement via uncertainties. Phys. Rev. A 2007, 75, 032315. [Google Scholar] [CrossRef] [Green Version]
- Gerry, C.; Knight, P.; Knight, P. Introductory Quantum Optics; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Sabbadini, S.A.; Vitiello, G. Entanglement and Phase-Mediated Correlations in Quantum Field Theory. Application to Brain-Mind States. Appl. Sci. 2019, 9, 3203. [Google Scholar] [CrossRef] [Green Version]
- Blasone, M.; Jizba, P.; Smaldone, L. Flavor-energy uncertainty relations for neutrino oscillations in quantum field theory. Phys. Rev. D 2019, 99, 016014. [Google Scholar] [CrossRef] [Green Version]
- Mandelstam, L.; Tamm, I. The Uncertainty Relation Between Energy and Time in Non-relativistic Quantum Mechanics. J. Phys. Mosc. 1945, 9, 249. [Google Scholar] [CrossRef]
- Bilenky, S.M.; von Feilitzsch, F.; Potzel, W. Time–energy uncertainty relations for neutrino oscillations and the Mössbauer neutrino experiment. J. Phys. G Nucl. Part. Phys. 2008, 35, 095003. [Google Scholar] [CrossRef]
- Akhmedov, E.K.; Kopp, J.; Lindner, M. On application of the time-energy uncertainty relation to Mossbauer neutrino experiments. J. Phys. G 2009, 36, 078001. [Google Scholar] [CrossRef] [Green Version]
- Bilenky, S.M.; von Feilitzsch, F.; Potzel, W. Reply to the Comment on ‘On application of the time-energy uncertainty relation to Moessbauer neutrino experiments’ by E Kh Akhmedov, J Kopp and M Lindner. J. Phys. G 2009, 36, 078002. [Google Scholar] [CrossRef]
- Bilenky, S.M. Neutrino Oscillations and Time-Energy Uncertainty Relation. arXiv 2006, arXiv:hep-ph/0605228. [Google Scholar]
- Blasone, M.; Lambiase, G.; Luciano, G.G.; Petruzziello, L.; Smaldone, L. Time-energy uncertainty relation for neutrino oscillations in curved spacetime. Class. Quant. Grav. 2020, 37, 155004. [Google Scholar] [CrossRef]
- Blasone, M.; Jizba, P.; Smaldone, L. Flavor neutrinos as unstable particles. J. Phys. Conf. Ser. 2020, 1612, 012004. [Google Scholar] [CrossRef]
- Kayser, B. On the quantum mechanics of neutrino oscillation. Phys. Rev. D 1981, 24, 110–116. [Google Scholar] [CrossRef] [Green Version]
- King, S.F. Neutrino Mass Models: A Road map. J. Phys. Conf. Ser. 2008, 136, 022038. [Google Scholar] [CrossRef]
- Altarelli, G.; Feruglio, F. Discrete flavor symmetries and models of neutrino mixing. Rev. Mod. Phys. 2010, 82, 2701–2729. [Google Scholar] [CrossRef]
- Chaber, P.; Dziewit, B.; Holeczek, J.; Richter, M.; Zrałek, M.; Zajac, S. Lepton masses and mixing in a two-Higgs-doublet model. Phys. Rev. D 2018, 98, 055007. [Google Scholar] [CrossRef] [Green Version]
- King, S.F. Unified Models of Neutrinos, Flavour and CP Violation. Prog. Part. Nucl. Phys. 2017, 94, 217–256. [Google Scholar] [CrossRef] [Green Version]
- Cheng, T.P.; Li, L.F. Neutrino masses, mixings, and oscillations in SU(2)×U(1) models of electroweak interactions. Phys. Rev. D 1980, 22, 2860–2868. [Google Scholar] [CrossRef]
- Minkowski, P. μ → eγ at a rate of one out of 109 muon decays? Phys. Lett. B 1977, 67, 421–428. [Google Scholar] [CrossRef]
- Yanagida, T. Horizontal Symmetry and Masses of Neutrinos. Prog. Theor. Phys. 1980, 64, 1103. [Google Scholar] [CrossRef]
- Mavromatos, N.E.; Sarkar, S.; Tarantino, W. Flavour Condensates in Brane Models and Dark Energy. Phys. Rev. D 2009, 80, 084046. [Google Scholar] [CrossRef] [Green Version]
- Mavromatos, N.E.; Sarkar, S.; Tarantino, W. Condensate Structure of D-particle Induced Flavour Vacuum. Mod. Phys. Lett. A 2013, 28, 1350045. [Google Scholar] [CrossRef] [Green Version]
- Ellis, J.; Mavromatos, N.E.; Westmuckett, M. Supersymmetric D-brane model of space-time foam. Phys. Rev. D 2004, 70, 044036. [Google Scholar] [CrossRef] [Green Version]
- Blasone, M.; Jizba, P.; Mavromatos, N.E.; Smaldone, L. Dynamical generation of field mixing via flavor vacuum condensate. Phys. Rev. D 2019, 100, 045027. [Google Scholar] [CrossRef] [Green Version]
- Fujimoto, Y.; Papastamatiou, N.J. Spontaneous Breakdown and Current Algebras. Nuovo Cim. A 1977, 40, 468–482. [Google Scholar] [CrossRef]
- Blasone, M.; Palmer, J.S. Mixing and oscillations of neutral particles in quantum field theory. Phys. Rev. D 2004, 69, 057301. [Google Scholar] [CrossRef] [Green Version]
- Blasone, M.; Jizba, P.; Mavromatos, N.E.; Smaldone, L. Some nontrivial aspects of Poincaré and CPT invariance of flavor vacuum. Phys. Rev. D 2020, 102, 025021. [Google Scholar] [CrossRef]
- Blasone, M.; Magueijo, J.; Pires-Pacheco, P. Neutrino mixing and Lorentz invariance. Europhys. Lett. 2005, 70, 600. [Google Scholar] [CrossRef]
- Magueijo, J.; Smolin, L. Lorentz invariance with an invariant energy scale. Phys. Rev. Lett. 2002, 88, 190403. [Google Scholar] [CrossRef] [Green Version]
- Magueijo, J.; Smolin, L. Generalized Lorentz invariance with an invariant energy scale. Phys. Rev. D 2003, 67, 044017. [Google Scholar] [CrossRef] [Green Version]
- Lambiase, G. Neutrino oscillations and Lorentz invariance breakdown. Phys. Lett. B 2003, 560, 1–6. [Google Scholar] [CrossRef]
- Kostelecky, V.A.; Mewes, M. Lorentz and CPT violation in neutrinos. Phys. Rev. D 2004, 69, 016005. [Google Scholar] [CrossRef] [Green Version]
- Hooper, D.; Morgan, D.; Winstanley, E. Lorentz and CPT invariance violation in high-energy neutrinos. Phys. Rev. D 2005, 72, 065009. [Google Scholar] [CrossRef] [Green Version]
- Ellis, J.; Harries, N.; Meregaglia, A.; Rubbia, A.; Sakharov, A.S. Probes of Lorentz violation in neutrino propagation. Phys. Rev. D 2008, 78, 033013. [Google Scholar] [CrossRef] [Green Version]
- Diaz, J.S.; Kostelecky, V.A.; Mewes, M. Perturbative Lorentz and CPT violation for neutrino and antineutrino oscillations. Phys. Rev. D 2009, 80, 076007. [Google Scholar] [CrossRef] [Green Version]
- Amelino-Camelia, G. Neutrinos and quantum spacetime. Nat. Phys. 2007, 3, 81–83. [Google Scholar] [CrossRef]
- Alfaro, J.; Morales-Tecotl, H.A.; Urrutia, L.F. Quantum gravity corrections to neutrino propagation. Phys. Rev. Lett. 2000, 84, 2318–2321. [Google Scholar] [CrossRef] [Green Version]
- Lambiase, G. Cerenkov’s effect and neutrino oscillations in loop quantum gravity. Mod. Phys. Lett. A 2003, 18, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Bennett, C.L.; Banday, A.; Gorski, K.M.; Hinshaw, G.; Jackson, P.; Keegstra, P.; Kogut, A.; Smoot, G.F.; Wilkinson, D.T.; Wright, E.L. Four year COBE DMR cosmic microwave background observations: Maps and basic results. Astrophys. J. Lett. 1996, 464, L1–L4. [Google Scholar] [CrossRef] [Green Version]
- de Bernardis, P.; Ade, P.A.; Bock, J.J.; Bond, J.R.; Borrill, J.; Boscaleri, A.; Coble, K.; Crill, B.P.; De Gasperis, G.; Farese, P.C.; et al. A Flat universe from high resolution maps of the cosmic microwave background radiation. Nature 2000, 404, 955–959. [Google Scholar] [CrossRef] [PubMed]
- Gawiser, E.; Silk, J. The Cosmic microwave background radiation. Phys. Rep. 2000, 333, 245–267. [Google Scholar] [CrossRef] [Green Version]
- Bashinsky, S.; Seljak, U. Signatures of relativistic neutrinos in CMB anisotropy and matter clustering. Phys. Rev. D 2004, 69, 083002. [Google Scholar] [CrossRef] [Green Version]
- Mangano, G.; Miele, G.; Pastor, S.; Pinto, T.; Pisanti, O.; Serpico, P.D. Relic neutrino decoupling including flavor oscillations. Nucl. Phys. B 2005, 729, 221–234. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, S. Cosmology; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Fixsen, D.J. The temperature of the cosmic microwavebackground. Astrophys. J. 2009, 707, 916–920. [Google Scholar] [CrossRef] [Green Version]
- Komatsu, E.; Smith, K.M.; Dunkley, J.; Bennett, C.L.; Gold, B.; Hinshaw, G.; Jarosik, N.; Larson, D.; Nolta, M.R.; Page, L.; et al. Seven-year Wilkinson microwave anysotropy probe (WMAP) observations: Cosmological intepreatation. Astrophys. J. Suppl. Ser. 2011, 192, 18. [Google Scholar] [CrossRef] [Green Version]
- Kolb, E.; Turner, M. The Early Universe; Frontiers in Physics; Avalon Publishing: New York, NY, USA, 1994. [Google Scholar]
- Takahasi, Y.; Umezawa, H. Thermo field dynamics. Collect. Phenom. 1975, 2, 55–80. [Google Scholar]
- Capolupo, A.; Lambiase, G.; Vitiello, G. Thermal condensate structure and cosmological energy density of the Universe. Adv. High Energy Phys. 2016, 2016, 3127597. [Google Scholar] [CrossRef] [Green Version]
- Blasone, M.; Capolupo, A.; Capozziello, S.; Carloni, S.; Vitiello, G. Neutrino mixing contribution to the cosmological constant. Phys. Lett. A 2004, 323, 182–189. [Google Scholar] [CrossRef] [Green Version]
- Capolupo, A.; Capozziello, S.; Vitiello, G. Neutrino mixing as a source of dark energy. Phys. Lett. A 2007, 363, 53–56. [Google Scholar] [CrossRef] [Green Version]
- Capolupo, A.; Capozziello, S.; Vitiello, G. Dark energy, cosmological constant and neutrino mixing. Int. J. Mod. Phys. A 2008, 23, 4979–4990. [Google Scholar] [CrossRef] [Green Version]
- Bruno, A.; Capolupo, A.; Kak, S.; Raimondo, G.; Vitiello, G. Gauge theory and two level systems. Mod. Phys. Lett. B 2011, 25, 1661–1670. [Google Scholar] [CrossRef] [Green Version]
- Blasone, M.; Capolupo, A.; Vitiello, G. Quantum field theory of three flavor neutrino mixing and oscillations with CP violation. Phys. Rev. D 2002, 66, 025033. [Google Scholar] [CrossRef] [Green Version]
- Bernardini, A.E.; De Leo, S. Dirac spinors and flavor oscillations. Eur. Phys. J. C 2004, 37, 471–480. [Google Scholar] [CrossRef] [Green Version]
- Bernardini, A.E.; Leo, S.D. Flavor and chiral oscillations with Dirac wave packets. Phys. Rev. D 2005, 71, 076008. [Google Scholar] [CrossRef] [Green Version]
- Nishi, C.C. First quantized approaches to neutrino oscillations and second quantization. Phys. Rev. D 2006, 73, 053013. [Google Scholar] [CrossRef] [Green Version]
- Kurcz, A.; Capolupo, A.; Beige, A.; Del Giudice, E.; Vitiello, G. Energy concentration in composite quantum systems. Phys. Rev. A 2010, 81, 063821. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smaldone, L.; Vitiello, G. Neutrino Mixing and Oscillations in Quantum Field Theory: A Comprehensive Introduction. Universe 2021, 7, 504. https://doi.org/10.3390/universe7120504
Smaldone L, Vitiello G. Neutrino Mixing and Oscillations in Quantum Field Theory: A Comprehensive Introduction. Universe. 2021; 7(12):504. https://doi.org/10.3390/universe7120504
Chicago/Turabian StyleSmaldone, Luca, and Giuseppe Vitiello. 2021. "Neutrino Mixing and Oscillations in Quantum Field Theory: A Comprehensive Introduction" Universe 7, no. 12: 504. https://doi.org/10.3390/universe7120504
APA StyleSmaldone, L., & Vitiello, G. (2021). Neutrino Mixing and Oscillations in Quantum Field Theory: A Comprehensive Introduction. Universe, 7(12), 504. https://doi.org/10.3390/universe7120504