Comparison of EEJ Longitudinal Variation from Satellite and Ground Measurements over Different Solar Activity Levels
Abstract
:1. Introduction
2. Data and Analysis Technique
2.1. Ground Data
2.2. Satellite Data
2.3. Ground and Satellite Data Selection
3. Results
3.1. EEJ Longitudinal Variability
3.2. EEJ Peak Time for Satellite and Ground Measurement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chapman, S.; Raja Rao, K.S. The H and Z variations along and near the equatorial electrojet in India, Africa and the Pacific. J. Atmos. Terr. Phys. 1965, 27, 559–581. [Google Scholar] [CrossRef]
- Egedal, J. The magnetic diurnal variation of the horizontal force near the magnetic equator. Terr. Magn. Atmos. Electr. 1947, 52, 658–676. [Google Scholar] [CrossRef]
- Onwumechili, C.A. The Equatorial Electrojet; Gordon and Breach: Newark, NJ, USA, 1997; ISBN 9056990691. [Google Scholar]
- Yacob, A.; Bhargava, B.N. The electrojet field from satellite and surface observations in the Indian equatorial region. J. Atmos. Sol. Terr. Phys. 1973, 35, 1253–1255. [Google Scholar] [CrossRef]
- Agu, C.E.; Onwumechili, C.A. Comparison of the POGO satellite and ground measurement of the magnetic field of the equatorial electrojet. J. Atmos. Terr. Phys. 1981, 43, 801–807. [Google Scholar] [CrossRef]
- Phani Chandrasekhar, N.; Arora, K.; Nagarajan, N. Characterization of seasonal and longitudinal variability of EEJ in the Indian region. J. Geophys. Res. Space Phys. 2014, 119, 10242–10259. [Google Scholar] [CrossRef] [Green Version]
- Doumouya, V.; Cohen, Y.; Arora, B.R.; Yumoto, K. Local time and longitude dependence of the equatorial electrojet magnetic effects. J. Atmos. Terr. Phys. 2003, 65, 1265–1282. [Google Scholar] [CrossRef]
- Hamid, N.S.A.; Liu, H.; Uozumi, T.; Yoshikawa, A. Empirical model of EEJ based on ground-based magnetometer data during solar minimum in fall. Earth Planets Space 2015, 67, 205. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, Y.; Maute, A. Sq and EEJ- A review on the Daily Variation of the Geomagnetic Field Caused by Ionospheric Dynamo Currents. Space Sci. Rev. 2016. [Google Scholar] [CrossRef] [Green Version]
- Yizengaw, E.; Brett, A.C. Longitudinal, seasonal and solar cycle variation in lunar tide influence on the equatorial electrojet. Ann. Geophys. 2017, 35, 525–533. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.R.; King, S.D. A study of local time and longitudinal variability of the amplitude of the equatorial electrojet observed in POGO satellited data. Earth Planets Space 1999, 51, 373–381. [Google Scholar] [CrossRef] [Green Version]
- Cain, J.C.; Sweeney, R.E. The POGO data. J. Atmos. Terr. Phys. 1973, 35, 1231–1247. [Google Scholar] [CrossRef]
- Onwumechili, C.A.; Agu, C.E. Longitudinal variation of equatorial electrojet parameters derived from POGO satellite observations. Planet. Space Sci. 1980, 29, 627–634. [Google Scholar] [CrossRef]
- Langel, R.A.; Purucker, M.; Rajaram, M. The equatorial electrojet and associated currents as seen in Magsat data. J. Atmos. Terr. Phys. 1993, 55, 1233–1269. [Google Scholar] [CrossRef]
- Jadhav, G.; Rajaram, M.; Rajaram, R. A detailed study of equatorial electrojet phenomenon using Ørsted satellite observations. J. Geophys. Res. 2002, 107, 1175. [Google Scholar] [CrossRef]
- Ivers, D.; Stening, R.; Turner, J.; Winch, D. Equatorial electrojet from Ørsted scalar magnetic Field observations. J. Geophys. Res. 2003, 108, 1061. [Google Scholar] [CrossRef] [Green Version]
- Lühr, H.; Rother, M.; Häusler, K.; Alken, P.; Maus, S. The influence of non migrating tides on the longitudinal variation of the equatorial electrojet. J. Geophys. Res. 2008, 113, A08313. [Google Scholar]
- Lühr, H.; Manoj, C. The complete spectrum of the equatorial electrojet related to solar tides: CHAMP observations. Ann. Geophys. 2013, 31, 1315–1331. [Google Scholar] [CrossRef] [Green Version]
- Chulliat, A.; Vigneron, P.; Hulot, G. First results from the swarm dedicated ionospheric Field inversion chain. Earth Planets Space 2016, 68, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Thomas, N.; Vichare, G.; Sinha, A.K. Characteristics of the equatorial electrojet derived from Swarm satellites. Adv. Space Res. 2017, 59, 1526–1538. [Google Scholar] [CrossRef]
- Alken, P.; Maus, S. Spatio-temporal characterization of the equatorial electrojet from CHAMP, Ørsted, and SAC-C satellite magnetic measurements. J. Geophys. Res. 2007, 112, A09305. [Google Scholar] [CrossRef] [Green Version]
- Doumbia, V.; Grodji, O.D.F. On the Longitudinal Dependence of the Equatorial Electrojet. In Geophysical Monograph Series; Fuller-Rowell, T., Yizengaw, E., Doherty, P.H., Basu, S., Eds.; Wiley: Hoboken, NJ, USA, 2016; pp. 115–125. [Google Scholar] [CrossRef]
- Tuo, Z.; Doumbia, V.; Coïsson, P.; Kouassi, N.; Kassamba, A.A. Variations of the peak positions in the longitudinal profile of noon-time equatorial electrojet. Earth Planets Space 2020, 72, 174. [Google Scholar] [CrossRef]
- Rigoti, A.; Chamalaun, F.H.; Trivedi, N.B.; Padilha, A.L. Characteristics of the equatorial electrojet determined from an array of magnetometers in N-NE Brazil. Earth Planets Space 1999, 51, 115–128. [Google Scholar] [CrossRef] [Green Version]
- Rastogi, R.G.; Chandra, H.; James, M.E.; Kitamura, K.; Yumoto, K. Characteristics of the equatorial electrojet in the central region of South America. Earth Planets Space 2008, 60, 623–632. [Google Scholar] [CrossRef] [Green Version]
- Rastogi, R.G.; Chandra, H.; Yumoto, K. Equatorial electrojet in east Brazil longitudes. J. Earth Syst. Sci. 2010, 119, 497–505. [Google Scholar] [CrossRef] [Green Version]
- Rastogi, R.G.; Kitamura, T.; Kitamura, K. Geomagnetic Field variations at the equatorial electrojet station in Sri Lanka, Peredinia. Ann. Geophys. 2004, 22, 2729–2739. [Google Scholar] [CrossRef] [Green Version]
- Onwumechili, C.A. A study of the equatorial electrojet, I: An experimental study. J. Atmos. Sol. Terr. Phys. 1959, 13, 222–234. [Google Scholar] [CrossRef]
- Doumouya, V.; Vassal, J.; Cohen, Y.; Fambitakoye, O.; Menvielle, M. Equatorial electrojet African longitude: First results from magnetic measurement. Ann. Geophys. 1998, 16, 658–676. [Google Scholar] [CrossRef]
- Rastogi, R.G.; Chandra, H. Equatorial electrojet in the African sector. Indian J. Radio Space Phys. 2015, 44, 187–198. [Google Scholar]
- Rastogi, R.G. Longitudinal variation in the equatorial electrojet. J. Atmos. Sol. Terr. Phys. 1962, 24, 1031–1040. [Google Scholar] [CrossRef]
- Babatunde Rabiu, A.; Folarin, O.O.; Uozumi, T.; Hamid, N.S.A.; Yoshikawa, A. Longitudinal variation of equatorial electrojet and the occurrence of its counter electrojet. Ann. Geophys. 2017, 35, 535–545. [Google Scholar] [CrossRef] [Green Version]
- Matzka, J.; Siddiqui, T.A.; Lilienkamp, H.; Stolle, C.; Veliz, O. Quantifying solar flux and geomagnetic main field influence on the equatorial ionospheric current system at the geomagnetic observatory Huancayo. J. Atmos. Sol. Terr. Phys. 2017, 56, 1364–6826. [Google Scholar] [CrossRef] [Green Version]
- Osborne, D.G. Electrojet measurements from satellite and ground. J. Atmos. Sol. Terr. Phys. 1973, 35, 1273–1279. [Google Scholar] [CrossRef]
- Yacob, A. Internal induction by the equatorial electrojet in India examined with surface and satellite geomagnetic observations. J. Atmos. Sol. Terr. Phys. 1973, 39, 601–606. [Google Scholar] [CrossRef]
- Manoj, C.; Lühr, H.; Maus, S.; Nagarajan, N. Evidence for short spatial correlation lengths of the noontime equatorial electrojet inferred from a comparison of satellite and ground magnetic data. J. Geophys. Res. 2006, 111, A11312. [Google Scholar] [CrossRef]
- Rastogi, R.G.; Iyer, K.N. Quiet Day Variation of Geomagnetic H-Field at Low Latitude. J. Geomagn. Geoelectr. 1976, 28, 461–479. [Google Scholar] [CrossRef]
- Hamid, N.S.A.; Liu, H.; Uozumi, T.; Yoshikawa, A. Relationship between the equatorial electrojet and global Sq currents at the dip equator region. Earth Planets Space 2014, 66, 146. [Google Scholar] [CrossRef] [Green Version]
- Ismail, W.N.I.; Hamid, N.S.A.; Abdullah, M.; Yoshikawa, A.; Uozumi, T. Longitudinal Variation of EEJ current during Different Phases of Solar Cycle. Iop Conf. Ser. J. Phys. Conf. Ser. 2017, 852, 012019. [Google Scholar] [CrossRef] [Green Version]
- Ismail, W.N.I.; Hamid, N.S.A.; Abdullah, M.; Shukur, N.H.A.; Yoshikawa, A. Variation of equatorial electrojet curret profiles over solar phases. Asm Sci. J. 2019, 12, 125–133. [Google Scholar]
- Uozumi, T.; Yumoto, K.; Kitamura, K.; Abe, S.; Kakinami, Y.; Shinohara., M.; Yoshikawa, A.; Kawano, H.; Ueno, T.; Tokunaga, T.; et al. A new index to monitor temporal and long-term variations of the Equatorial Electrojet by MAGDAS/CPMN real-time data: EE-Index. Earth Planets Space 2008, 60, 784–790. [Google Scholar] [CrossRef] [Green Version]
- Sabaka, T.J.; Olsen, N.; Purucker, M.E. Extending comprehensive models of the Earth’s magnetic field with Ørsted and CHAMP data. Geophys. J. Int. 2004, 159, 521–547. [Google Scholar] [CrossRef]
- Alken, P.; Maus, S.; Vigneron, P.; Olivier, S.; Gauthier, H. Swarm SCARF equatorial electric field inversion chain. Earth Planets Space 2013, 65, 1309–1317. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, Y.; Yumoto, K.; Cardinal, M.G.; Fraser, B.J.; Hattori, P.; Kakinami, Y.; Liu, J.Y.; Lynn, J.W.; Marshall, R.; McNamara, D.; et al. An empirical model of the quiet daily geomagnetic field variation. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- Pedatella, N.M.; Forbes, J.M.; Richmond, A.D. Seasonal and longitudinal variation of the solar quiet (Sq) current system during solar minimum determined by CHAMP satellite magnetic field observations. J. Geophys. Res. 2011, 116, A04317. [Google Scholar] [CrossRef] [Green Version]
- Doumouya, V.; Cohen, Y. Improving and testing the empirical equatorial electrojet model with CHAMP satellite data. Ann. Geophys. 2004, 22, 3323–3333. [Google Scholar] [CrossRef]
- Le Mouel, J.L.; Shebalin, P.; Chulliat, A. The field of the equatorial electrojet from CHAMP data. Ann. Geophys. 2006, 24, 515–527. [Google Scholar] [CrossRef] [Green Version]
- England, S.L.; Maus, S.; Immel, T.J.; Mende., S.B. Longitudinal variation of the E-region electric fields caused by atmospheric tides. J. Geophys. Res. 2006, 33, L21105. [Google Scholar] [CrossRef] [Green Version]
- Alken, P.; Maus, S. Electric fields in the equatorial ionosphere derived from CHAMP satellite magnetic fields measurements. J. Atmos. Terr. Phys. 2010, 72, 319–326. [Google Scholar] [CrossRef]
- Oko, S.O.; Onwumechili, C.A.; Ezema, P.O. Geomagnetically quiet day ionospheric currents over the Indian sector-II. Equatorial Electrojet currents. J. Atmos. Sol. Terr. Phys. 1996, 58, 555–564. [Google Scholar] [CrossRef]
- Ogbuehi, P.O.; Onwumechili, C.A. Daily and seasonal changes in the equatorial electrojet in Nigeria. J. Atmos. Sol. Terr. Phys. 1964, 26, 889–898. [Google Scholar] [CrossRef]
- Forbes, J.M.; Zhang, X.; Palo, S.; Russell, J.; Mertens, C.J.; Mlynczak, M. Tidal variability in the ionospheric dynamo region. J. Geophys. Res. 2008, 113, A02310. [Google Scholar] [CrossRef]
- Doumbia, V.; Maute, A.; Richmond, A.D. Simulation of equatorial electrojet magnetic effects with the thermosphere-ionosphere-electrodynamics general circulation model: Equatorial electrojet magnetic effects. J. Geophys. Res. Space Phys. 2007, 112, A09309. [Google Scholar] [CrossRef] [Green Version]
- Klimenko, V.V.; Klimenko, M.V.; Bessarab, F.S.; Sukhodolov, T.V.; Rozanov, E.V. The dependence of four-peak longitudinal structure of the tropical electric field on the processes in the lower atmosphere and geomagnetic field configuration. 2019, 64, 1854–1864.doi 10.1016/j.asr.2019.06.029. Adv. Space Res. 2019, 64, 1854–1864. [Google Scholar] [CrossRef]
- Oberheide, J.; Forbes, J.M.; Zhang, X.; Bruinsma, S.L. Wavedriven variability in the ionosphere-thermosphere-mesosphere system from TIMED observations: What contributes to the ‘‘wave 4”? J. Geophys. Res. 2011, 116, A01306. [Google Scholar] [CrossRef]
- Kane, R.P. Quasi-biennial oscillations in quiet-day ranges of low latitude geomagnetic H component. Indian J. Radio Space Phys. 1996, 25, 101–105. [Google Scholar]
- Rao, K.R.; Joseph, K.T. Quasi-biennial oscillations in the geomagnetic Sq field in the low latitude region. J. Atmos. Sol. Terr. Phys. 1971, 33, 797–805. [Google Scholar] [CrossRef]
- Yadav, S.; Vineeth, C.; Kumar, K.K.; Choudhary, R.K.; Pant, T.K.; Sunda, S. The Role of the Phase of QBO in Modulating the Influence of the SSW Effect on the Equatorial Ionosphere. J. Geophys. Res. 2019, 124, 6047–6063. [Google Scholar] [CrossRef]
- Abdu, M.A.; Ramkumar, T.K.; Batista, I.S.; Brum, C.G.M.; Takahashi, H.; Reinisch, B.W.; Sobral, J.H.A. Planetary wave signatures in the equatorial atmosphere-ionosphere system, and mesosphere-E- and F-region coupling. J. Atmos. Sol. Terr. Phys. 2006, 68, 509–522. [Google Scholar] [CrossRef]
- Vineeth, C.; Pant, T.K.; Kumar, K.K.; Sumod, S.G.; Gurubaran, S.; Sridharan, R. Planetary wave-tidal interactions over the equatorial mesosphere-lower thermosphere region and their possible implications for the equatorial electrojet. J. Geophys. Res. 2011, 116, A01314. [Google Scholar] [CrossRef] [Green Version]
Sector | Station Name | Station Code | Geographic | Geomagnetic | ||
---|---|---|---|---|---|---|
Lat. (°) | Lon. (°) | Lat. (°) | Lon. (°) | |||
South America | Ancon | ANC | −11.77 | −77.15 | 0.77 | 354.33 |
Fuquene | FUQ | 5.40 | −73.73 | 15.72 | 357.99 | |
Africa | Ilorin | ILR | 8.50 | 4.68 | −1.82 | 76.80 |
Tamanrasset | TAM | 22.80 | 5.50 | 25.40 | 80.60 | |
Adis Ababa | AAB | 9.04 | 38.77 | 0.18 | 110.47 | |
Nairobi | NAB | −1.16 | 36.48 | −10.65 | 108.18 | |
India | Tirunelveli | TIR | 8.70 | 77.80 | 0.21 | 149.30 |
Alibag | ABG | 18.62 | 72.87 | 10.36 | 146.54 | |
Southeast Asia | Langkawi | LKW | 6.30 | 99.78 | −2.32 | 171.29 |
Kototabang | KTB | −0.20 | 100.32 | −10.63 | 171.93 | |
Davao | DAV | 7.00 | 125.40 | −1.02 | 196.54 | |
Muntinlupa | MUT | 14.37 | 121.02 | 6.79 | 192.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ismail, W.N.I.; Hamid, N.S.A.; Abdullah, M.; Yoshikawa, A.; Uozumi, T.; Radzi, Z.M. Comparison of EEJ Longitudinal Variation from Satellite and Ground Measurements over Different Solar Activity Levels. Universe 2021, 7, 23. https://doi.org/10.3390/universe7020023
Ismail WNI, Hamid NSA, Abdullah M, Yoshikawa A, Uozumi T, Radzi ZM. Comparison of EEJ Longitudinal Variation from Satellite and Ground Measurements over Different Solar Activity Levels. Universe. 2021; 7(2):23. https://doi.org/10.3390/universe7020023
Chicago/Turabian StyleIsmail, Wan Nur Izzaty, Nurul Shazana Abdul Hamid, Mardina Abdullah, Akimasa Yoshikawa, Teiji Uozumi, and Zahira Mohd Radzi. 2021. "Comparison of EEJ Longitudinal Variation from Satellite and Ground Measurements over Different Solar Activity Levels" Universe 7, no. 2: 23. https://doi.org/10.3390/universe7020023
APA StyleIsmail, W. N. I., Hamid, N. S. A., Abdullah, M., Yoshikawa, A., Uozumi, T., & Radzi, Z. M. (2021). Comparison of EEJ Longitudinal Variation from Satellite and Ground Measurements over Different Solar Activity Levels. Universe, 7(2), 23. https://doi.org/10.3390/universe7020023